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Abstract. This paper presents the machine learning-based detection of foreign metal object for 

the wireless power transfer device including differential coils. To test the proposed method, the 

differential voltages are computed using finite element method for about 1500 cases with and 

without an aluminum cylinder at driving frequency of 85 kHz considering misalignment be-

tween the primal and secondary coils. It has been shown that gradient boosting decision tree 

and random forests classifier have the accuracy over 90% when input voltages and differential 

voltages are inputted together. 
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1. Introduction 

Electric vehicles (EV) are expected to spread rapidly in the background of serious environmen-

tal concerns. Wireless power transfer (WPT) has attained attentions for stationary and moving 

charging of EVs. Until now, many studies have focused on the designs of coils and magnetic 

cores for WPT aiming at increase in its power transfer efficiency [1, 2]. There is yet another 

important aspect for WPT, that is safety. 

Many researchers have made effort in reducing the leakage flux generated by WPT ex-

posed to persons [3]. Besides, it has been pointed out that the potential risk caused by foreign 

metal objects is also important. If any metallic objects such as can and key are exposed in the 

strong magnetic field generated by the WPT system, we would have dangerous electric dis-

charge and fire accidents. For this reason, there have been the studies to realize metal object 

detection (MOD). Typically, additional detection sensors [4] or differential detection coils [5] 

are introduced to know the existence of the metallic objects. On the other hand, the authors 

have shown that MOD is feasible without using the detection coils if we introduce machine 

learning for classification of the frequency loci of the input impedance of the primary coil [6]. 
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However, in [6], the effect of the magnetic core, which is used to increases the power transfer 

efficiency, on the detection system has not been considered. Moreover, the method proposed in 

[6] has been shown to be inaccurate for the loaded cases. 

In this paper, we propose a new MOD based on machine learning, which judges if there 

are foreign metallic objects or not from the signals of the differential detection coils and input 

impedance of the primary coil. We consider the misalignment between the primary and sec-

ondary coil which would cause confusion signals to the detection coils and changes to the input 

impedance. We expect that this difficulty can be overcome by introducing machine learning 

that would identify the existence of the metallic objects from the input data. We compare the 

performance of support vector machine (SVM), naive Bayes classifier (NBC), gradient boost-

ing decision tree (GBDT), and random forests classifier (RFC). 

2. Simulation model 

A WPT system that has resonance at 85kHz, driven by 1 A current source, is considered in the 

analysis. We consider the WPT device consists of the transfer coils shown in Figure 1.  

 

 

(a) Structure of WPT and detection coils (b) Size 

  

(c) circuit model 

Figure 1: WPT model 
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This system includes 1 mm-thick bar-shaped magnetic cores, relative permeability 3300, 

which increase the magnetic coupling between the primary and secondary coils. The gap be-

tween transmitter and receiver is 100 mm. We assume that two pairs of one-turn square detec-

tion coils shown in Figure 1 (a) are placed upon the transmitter. As illustrated in Figure 1 (a), 

two detection coils with opposite winding directions in diagonal position are connected to form 

pairs d1-d2 and d3-d4. All the coils in the model are assumed to have resistance of 1 Ω. The 

foreign metal object is assumed to be an aluminum cylinder of diameter 35 mm and height 35 

mm. The load on receiver is set as short or 20Ω. 

The idea of detecting metal object using differential coils is simple. When there is no 

misalignment on transmission coils and no metal object, the magnetic flux in each detection 

coil in a pair should be equal so that the induced voltages are totally canceled. In contrast, if 

there is a metal object in WPT system, it largely changes the magnetic flux of the closest coil, 

making the induced voltages in this coils pair different so that the induced voltage is not can-

celed. Moreover, misalignment between the transmission coils would also cause the net in-

duced voltage. This makes the situation complicated because the induced voltage is affected 

from the foreign metallic objects and also the misalignment. To distinguish these effects, we 

introduce the machine learning methods. 

3. Simulation results 

We assume that the coil-misalignment ranges from 0 to 80 mm in any direction, while the metal 

object is placed randomly within the space covered by the detection coils. In total, for the no-

load condition where the receiver coil is shorted, we consider 901 cases with different coil 

misalignment and different position of the metal object, and 677 cases without the metal object 

to compute the induced voltage in the detection coils. Similarly, for load condition where 20Ω 

is connected to the receiver coil, 677 cases without metal and 625 cases with metal are simu-

lated. We use JMAG® for the field computation, where the coil is modeled as a pancake instead 

of discretizing into the wires, under the assumption that the wire radius is sufficiently smaller 

than the skin depth. The eddy currents in conductors are considered in the field computation. 

The differential induced voltage 𝑉𝑑12 at 75, 85 and 100 kHz in the pair d1- d2 for the no-

load condition are plotted in (a) of Figure 2, 3 and 4, where the horizonal and vertical axes 

represent the real and imaginary part of 𝑉𝑑12, respectively. The differential voltages 𝑉𝑑34 for 

the pair d3-d4 is found to have the similar tendency as that for 𝑉𝑑12, as shown in (b) of Figure 

2, 3 and 4. At 85 kHz that is the resonant frequency, when coil-misalignment is smaller than 

about 30 mm, the imaginary part of the differential induced voltages is relatively small, while 

the real part still changes obviously. At other frequencies, the differential voltages become 

smaller than those at the resonance. Moreover, the loci are linear in contrast to those at the 

resonance. It would difficult for humans to judge if there is a metallic object or not from the 

differential voltages. We employ the machine learning to which the differential voltages as well 
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as the existence of the metallic object are input as the training data. 

 

  

(a). pair d1-d2 (b). pair d3-d4 

Figure 2: Differential induced voltages at 75 kHz for different cases 

  

(a). pair d1-d2 (b). pair d3-d4 

Figure 3: Differential induced voltages at 85 kHz for different cases 

  

(a). pair d1-d2 (b). pair d3-d4 

Figure 4: Differential induced voltages at 100 kHz for different cases 
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4. Proposed method based on machine learning 

The proposed method judges the existence of foreign metallic objects through solving the clas-

sification problem with machine learning as shown in Figure 5. To construct the training data 

for machine learning, we compute the input voltage of the primary coil, which is equivalent to 

the input impedance since the system is driven by the current source, as well as the differential 

voltages of the detection coils pairs using finite element method. We train the classifier so that 

it makes correct judge of existence of metallic object from the input data. The data preparation 

and machine learning methods are described in detail below. 

 

4.1. Data preparation 

We compute the input voltage of WPT system, and differential voltages of two coil pairs at 

frequencies ranging from 75 to 100 kHz in equal 11 increments. Using this data, we construct 

three 22-dimensional vectors as followings: 

𝑽𝟏 = [𝑢(1,1), … , 𝑢(1,11), 𝑣(1,1), … , 𝑣(1,11) ] (1) 

𝑽𝟐 = [𝑢(2,1), … , 𝑢(2,11), 𝑣(2,1), … , 𝑣(2,11) ] (2) 

𝑽𝟑 = [𝑢𝑖𝑛(1), … , 𝑢𝑖𝑛(11), 𝑣𝑖𝑛(1), … , 𝑣𝑖𝑛(11)] (3) 

where 𝑽𝟏 and 𝑽𝟐 consist of the real 𝑢(𝑖, 𝑗) and imaginary part 𝑣(𝑖, 𝑗) of the differential 

voltage of pair 𝑖 at sampling frequencies identified by 𝑗 = 1,2, … ,11. Moreover, 𝑽𝟑 is com-

posed of the real and imaginary part of the input voltage of the primary coil. 

The classifiers are trained by these three vectors. For the machine learning methods, we 

employ here SVM, NBC, GBDT and RFC, described below, which are implemented by 

scikit-learn® [7] in Python. 

   

Figure 5: Process of proposed method 
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4.2. Support vector machine (SVM) 

To solve the classification problem, SVM searches for a (𝑛-1)-dimensional hyperplane which 

divide the 𝑛-dimensional vectors into different classes with the widest gap [8]. In addition, for 

non-linear classification, a kernel function is usually used to project the input vectors into 

higher dimensional spaces, where the classification can be turned to linear. In this work, radial 

basis function kernel (RBF kernel) is used for the projection, which is defined as 

𝐾(𝒙, 𝒙′) = exp (−γ‖𝒙 − 𝒙′‖2) (4) 

where 𝒙 and 𝒙′ denote the feature vectors. It is assumed that γ = 1/(𝑛𝜎2), where 𝜎2 rep-

resent the variance of the vectors. After standardization, the variance of the input vector become 

nearly 1 so that we have γ ≈ 1/𝑛. 

4.3. Naive Bayes classifier (NBC) 

The naive Bayes classifier is based on the Bayes’s theorem which state that the posterior prob-

ability is given by 

𝑃(𝑦𝑖|𝒙) =
𝑃(𝒙|𝑦𝑖)𝑃(𝑦𝑖)

∑ 𝑃(𝒙|𝑦𝑖)𝑃(𝑦𝑖)
𝑁
1

 
(5) 

where 𝑦𝑖 and 𝒙 denote the label of classification {0,1}, where 0 (1) corresponds to non-existence 

(existence) of metallic objects, and feature vector. We assume that likelihood 𝑃(𝒙|𝑦𝑖) obeys the 

normal distribution, and the prior probability 𝑃(𝑦𝑖) and 𝑃(𝒙|𝑦𝑖) are determined from the training 

data. 𝑁 represents the number of labels of classification.  

4.4. Gradient boosting decision tree (GBDT) 

 

Figure 6: Gradient boosting decision tree 
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Gradient boosting decision tree (GBDT) is a machine learning method based on gradient boost-

ing technique and decision tree [9]. Figure 6 schematically shows GBDT. Starting from the 

first prediction which is set as the average value of all the labels, decision trees are trained in 

each step to minimize the mean squared error between the correct answer and the prediction 

obtained in previous step. The sum of all the trees and prediction 1 provides the final answer 

of GBDT. 

In scikit-learn®, softmax function given by 

𝜎(𝒛)𝑗 =
𝑒𝒛𝒋

∑ 𝑒𝒛𝒏𝑁
𝑛=1

, 𝑓𝑜𝑟 𝑗 = 1, … , 𝑁. 
(6) 

is used to transform the continuous predicted value to discrete label, when GBDT is applied in 

classification problem, where 𝑁 denotes the number of class, which is 2 in this work. The hyper 

parameters and settings of GBDT are determined by default of scikit-learn®, and some important 

items of them are listed as Table 1. 

Table 1: Hyper parameters and setting of GBDT 

Loss function Logistic regression 
Number of boosting 

stages 
100 

Learning rate 0.1 
Maximum depth of 

estimators 
3 

Function to evaluate 

split 

mean squared error 

with improved by 

Friedman [10] 

Minimum Number 

of samples to split a 

node 

2 

4.5. Random forest classifier (RFC) 

Random forest (RFC) is an ensemble learning method based on bagging and decision tree [11]. 

To train each decision tree, the training data is selected randomly with replacement. The split 

of each tree is found from a random subset of the features, whose size is set as square root of 

the number of features. By repeating this, we construct many decision trees to compose a ran-

dom forest. For classification, each tree in the forest gives their own prediction based on the 

input. The final prediction of the forest is decided by majority vote. 

We set the hyper parameters and settings of RFC by default of scikit-learn® as well. The 

important items are summarized in Table 2. 
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Table 2: Hyper parameters and setting of RFC 

Number of trees 100 
Number of features 

for finding split 

Square root of the 

dimension of input 

Maximum depth of 

the tree 
None 

Minimum Number 

of samples to split a 

node 

2 

Function to evaluate 

split 
Gini impurity 

minimum number of 

samples required to 

be at a leaf node 

1 

 

5. Training and validation 

5.1. K-fold cross validation 

To eliminate the influence of division between training and validation data on the performance 

of classifiers, K-fold cross validation is used in this work. All the data are divided into 10 

subsets while the proportion of each class in the subsets remain same as that in the entire dataset. 

Classifiers obtained by each machine learning methods will be trained for 10 times, while each 

subset will be used as validation data in order and the others as training data at the same time. 

Finally, the average accuracy of the 10 times training is treated as the final accuracy of the 

methods. 

5.2. Classification results 

We consider the different combinations of the input vectors 𝑽𝟏, 𝑽𝟐 and  𝑽𝟑 and load condi-

tions for the secondary (receive) coil in this work, which are summarized in Table 3. Under 

these conditions, the training and validation datasets are constructed with the procedure shown 

in Figure 5. We employ K-fold cross validation to measure the accuracy of the classifier. The 

resultant average accuracy of each method for validation datasets, which are not exposed to the 

classifiers, are listed in Table 3. 
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Table 3: Accuracy of trained classifiers 

Load conditions 20Ω load No load (short) 

Case I: {𝑽𝟑} 

(22 dimensions) 

SVM=60.5% SVM=77.9% 

NBC=60.5% NBC=56.5% 

GBDT=82.5% GBDT=93.5% 

RFC=84.0% RFC=94.2% 

Case II: {𝑽𝟏, 𝑽𝟐} 

(44 dimensions) 

SVM=51.2% SVM=57.1% 

NBC=50.8% NBC=48.4% 

GBDT=93.4% GBDT=89.2% 

RFC=97.2% RCF=95.0% 

Case III: {𝑽𝟏, 𝑽𝟐, 𝑽𝟑} 

(66 dimensions) 

SVM=63.4% SVM=68.2% 

NBC=56.3% NBC=54.8% 

GBDT=93.8% GBDT=94.1% 

RFC=97.9% RFC=95.8% 

 

Comparing the three cases, Case III where we use all the input voltages results in the best 

performance, where GBDT and RF achieves accuracy over 90% regardless of the load condi-

tions. Note that this accuracy is obtained even if there is misalignment between the primary 

and secondary coils. In Case I, the classification accuracy is below 85% for all the methods for 

the load condition, whose tendency has been reported in [6]. The reason for this is due to the 

fact that there are little differences in 𝑽𝟑 because of the off-resonant states. By introducing 

the differential voltages into the input data, we can perform accurate classification. 

Under all the situations, GBDT and RFC have relatively higher accuracy than SVM and 

NBC. The tree-based methods are concluded to be adequate for this classification problem. It 

is also found that RFC always performs best for all the situations, and it is the only method 

whose accuracy is higher than 95%. We conclude that the recognition of the foreign metallic 

objects is possible at about 95% accuracy by training RFC by {𝑽𝟏, 𝑽𝟐, 𝑽𝟑}. The proposed 

method would have difficulty in detecting small metallic objects. We plan to study the limit of 

the proposed method in future. Moreover, the experimental verification of the proposed method 

is remained for future work. 

6. Conclusion 

In this paper, a new metal object detection method for WPT including magnetic core using 

differential coils and machine learning has been proposed. Considering different misalignment 

between the coils and different positions of metal objects, the training and validation are com-
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puted using FEM. The input voltages of the primary coil and differential voltages of the detec-

tion coils are exposed to the classifier. We have trained four different classifiers which is tested 

by K-fold cross validation. It has been shown that GBDT and RFC have the accuracy over 90%, 

when input voltages and differential voltages are inputted together. In future, we will bring out 

experimental validation of the proposed method. 
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