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Purpose—This work aims to realize a sensorless metal object detection using machine learning, to prevent the wireless power 

transfer system from the risks of electric discharge and fire accidents caused by foreign metal objects. 

 

methodology— The data constructed by analyzing the input impedance using finite element method are used in machine 

learning. From the loci of the input impedance of systems, the trained neural network, support vector machine, and naive Bayes 

classifier judge if a metal object exists. Then the proposed method is tested by experiments too. 

 

Findings— In the test using simulated data, all of the three machine learning methods show high accuracy over 80% for 

detecting an aluminum cylinder. And in the experimental verifications, the existence of an aluminum cylinder and empty can 

are successfully identified by neural network. 

 

Value— This work provides a new sensorless metal object detection method for wireless power transfer using three machine 

learning methods. And it shows that neural network obtain high accuracy than the others in both simulated and experimental 

verifications. 

 
Index Terms—machine learning, metal object detection, wireless power transfer.  

I. INTRODUCTION 

For recent decades, the attention to electric vehicles 

(EV) has been increasing because of the environmental 

concerns relevant to air pollution and global warming. This 

has stimulated the research and development of wireless 

power transfer (WPT) providing a safer and more reliable 

charging solution for EV. Until now, many studies 

focusing on the design of the transmission and receiving 

coils, including the classical circular [1] and double D 

patterns which can reduce the effect from coil 

misalignment [2], have been carried out. It is also 

important to design the magnetic cores for WPT for 

improvement of the efficiency of WPT systems. The 

topology optimization has been shown effective for this 

purpose owing to its high flexibility in shape 

representation [3]. The safety of WPT devices has to be 

also carefully considered in its development. The 

limitation of magnetic flux exposure to human bodies in 

frequency band ranging from 3 kHz to 10MHz is stipulated 

as 27 μT by ICNIRP [4]. To consider both safety and 

efficiency, the multi-objective topology optimization of a 

WPT device with respect to the efficiency and leakage flux 

density has been shown effectively [5]. 

In this work, we pay attention to the potential risk 

caused by foreign objects which threats safety of WPT 

systems. There are two kinds of foreign objects which are 

usually concerned: living objects and foreign metal objects 

[6]. The risk from living objects is somehow similar to 

what is described above; the magnetic flux exposure to 

creature’s body is dangerous. While the latter, relevant to 

metal objects, can cause dangerous electric discharge and 

fire accidents due to the localized strong electric field 

around metal edges and also eddy currents, as 

schematically shown in Figure. 1. 

For this reason, it is necessary to develop foreign object 

detection (FOD), including living object detection (LOD) 

and metal object detection (MOD). Many studies to realize 

FOD in WPT system has been reported. Typically, 

additional thermal cameras for LOD and MOD [7], and 

detection coils for MOD [8] have been introduced for FOD 

to improve the accuracy and effectiveness in both LOD 

and MOD. However, these additional devices would bring 

extra cost and complexity to WPT systems. For this reason, 

sensorless FOD is desirable for relatively lower cost and 

complexity. 

In this paper, a simple detection method of foreign 

metallic objects without additional sensors and equipment 

is proposed. In this method, the existence of foreign metal 

object is identified from the change in the locus of the input 

impedance. Because the impedance locus has highly 

complicated changes owing to the metal object and 

misalignment in the coils, we adopt here the machine 

learning to distinguish the impedance loci. In particular, 

we use neural network (NN), support vector machine 

(SVM) and naïve Bayes classifier (NBC), which are 

trained to give correct identification for various impedance 

loci with and without metallic object that can have 

different size and location and with different coil 

alignment conditions. The impedance loci for the training 

are computed using finite element method (FEM) by 

software JMAG®. The experimental verifications using 

aluminum cylinder, empty aluminum can and steel key as 

foreign metal objects are also carried out and compared 

with the numerical results. The novelty and universality of 

this work lines in the fact that the machine learning is 

introduced for detection of abnormality, and its feasibility 

is tested using EM simulation as well as experiments. 

It is remarked that the authors presented the basic idea 

and results of the proposed method at IGTE Symposium 

2020 on 22th September 2020. Until this date, so far as the 

authors know, there had been no studies for application of 

machine learning to sensorless FOD. Afterward, a 

sensorless FOD for WPT based on neural network in 

megahertz frequency band was proposed in [9]. 

II. EQUIVALENT CIRCUIT 

In this work, resonance WPT is considered whose coil 

system is illustrated in Fig.2. An assumed foreign metal 

object is included in Fig.2(b). The input impedance and 
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inductance (𝐿1, 𝐿2) are computed using FEM by JMAG®, 

while the two coils are simply modeled as a lump whose 

skin effect is not considered during simulation. The shape 

parameters are listed in TABLE I. 

 
Figure 1:  Risk caused by foreign metallic object in WPT system. 

 

 
 

(a) coil (b) Extremal position 

Figure 2: Model of WPT coil and foreign metal object 

 

 
(a) Equivalent circuit 

 

(b) Magnetic flux distribution 

Figure 3: Equivalent circuit and magnetic flux distribution around 

the WPT coils with misalignment and foreign metal object. 

TABLE I 

SHAPE PARAMETERS 

Inner radius of coil 100 mm 

Outer radius of coil 165 mm 

Turns of coil 16 

Transmission distance 100 mm 

Coil misalignment 0 ~ 160 mm 

Metal object offset 0, 130, 200 mm 

Diameter and height of 

aluminum cylinder 
35 mm 

TABLE II 
 PARAMETERS OF CIRCUIT. 

Input source (current) 𝐼𝑟𝑚𝑠 = 20 mA 

𝑅1, 𝑅2 1 Ω 

𝐶1, 𝐶2 45 nF 

 

The equivalent circuit for the WPT system shown in 

Fig.2 is illustrated in Fig.3(a), where the primary and 

secondary coils are modeled as the series RLC resonance 

circuits. In the FE analysis, the currents are computed from 

the circuit shown in Fig.3(a). Moreover, the coil is 

modeled as a pancake without discretizing into the wires 

assuming that the wire radius is sufficiently smaller than 

the skin depth. 

The circuit parameters are listed in TABLE I. The values 

of capacitor (𝐶1, 𝐶2) in both sides are set identical, making 

the circuit to achieve resonance at about 81 kHz. 𝑅1 and 

𝑅2 are the inner resistance of coils. Although the mutual 

inductance 𝑀12  between transmitting (Tx) and receiving 

(Rx) coils is included in the equivalent circuit, those 

among Tx, Rx and metal object are not included. For 

simplicity, the load of Rx is assumed as 0 in simulation and 

experiments validations. The effect of load will be 

discussed in IV.C.  

The influence of the metal object on the input 

impedance is evaluated by FEM. A typical magnetic field 

distribution is shown in Fig. 3(b), where the eddy currents 

in the metal object is considered. 

III. PROPOSED METHOD BASED ON MACHINE LEARNING 

A. Data preparation 

Considering both effects coming from the metal object 

and coil misalignment, in the simulations, the 

displacement of the secondary coil 𝑑 is varied from 0 mm 

to 160 mm, and the position 𝑥  of the metal object 

measured from the center of the primary coil is set to 0 

mm, 130 mm and 200 mm. As for the foreign metal object, 

we assume an aluminum cylinder of height 35 mm and 

diameter 35 mm. 

In total, 116 cases are simulated, where the metal object 

is considered in 65 cases while it is not included in other 

cases. 

In each case, the input resistance 𝑅𝑖 and reactance 𝑋𝑖 at 

frequencies ranging from 75 kHz to 85 kHz are computed 

at intervals of 500Hz to obtain the 11 sampling data. This 

results in a vector 𝒁 = [𝑅1, … , 𝑅11, 𝑋1, … , 𝑋11]𝑡  ∈ ℝ22. 
Those values are connected to obtain a locus of the input 

impedance on an 𝑅 − 𝑋 plane for each case. We construct 

𝒁 with labels of 0 or 1 representing without or with metal 

object. All the impedance vectors are randomly assigned 

into 2 datasets and treated as the training and validation 

data. The three machine learning methods described 

below, which are widely used for classification problems, 

are trained to give correct judgement to the labels of data 

vectors.  

B. Neural network 

A simple neural network (NN) realized by 

Tensorflow® [10] in Python is used in this work. The 

hyper parameters for training of NN are listed in TABLE 

III. The hyper parameters are determined by trial-by-error 

while it needs small computing cost compared to the field 

source

device

Foreign metal objects

can

key

WPT coils

100 mm

165 mm
100 mm

input

source

Tx Rx



computations. 

The loss function for NN based on the sparse categorical 

cross entropy is used, where 𝑦�̂� is the i-th scalar value in 

the model output, 𝑦𝑖  is the corresponding target value, 

and 𝑛 is the number of scalar values in the model output. 

Loss = − ∑ 𝑦𝑖 ∙ log 𝑦�̂�
𝑛
𝑖=1                                                 (1) 

Four layers which are composed of 64, 32, 16, 2 neurons, 

respectively, are configured, as shown in Fig .4. ReLU is 

set after the dense layers as activation functions. The data 

vectors of the input impedances are input to NN after 

normalization, while {0,1}  representing the existence 

probability of the metal object is output. 
TABLE III  

HYPER PARAMETERS OF NEURAL NETWORK 

Batch size 5 

Epochs 500 

Activation function ReLU 

Optimizer Adam [11] 

Learning rate 0.001 

Loss function 
Sparse categorical cross 

entropy 

 

Figure 4: Structure of NN 

C. Support vector machine 

Support vector machine (SVM) is a supervised learning 

method used for classification and regression [12]. The 

idea of SVM is to find a (𝑝 − 1)-dimensional hyperplane 

which separates the 𝑝-dimensional vectors into different 

classes with widest gaps. When facing non-linear 

classification, a kernel function is introduced to implicitly 

map the data into high-dimensional feature spaces, where 

the classification can be turned into linear. 

In this work, we adopt the radial basis function kernel 

(RBF kernel) defined by 

            𝐾(𝒙, 𝒙′) = exp (−γ‖𝒙 − 𝒙′‖2)              (2) 

for SVM, where 𝒙 and 𝒙′ represent the feature vectors in 

the input space. The classification based on SVM is 

implemented by scikit-learn® [13] in Python, in which we 

assume that 𝛾 = 1/𝜎2 for simplicity where 𝜎2 denotes the 

valiance of the data. These values are summarized in 

TABLE IV. 

TABLE IV  

VALUE OF  𝛾2 = 1 𝜎2⁄  

Simulation, no load 0.0442 

Simulation, 20Ω load 0.0439 

Experiment, cylinder 0.0449 

Experiment, can 0.0490 

Experiment, key 0.0477 

D. Naive Bayes classifier 

Naive Bayes classifier (NBC) is a simple probabilistic 

classifier based on Bayes’ theorem, which is expressed as 

𝑃(𝐶|𝒁) =
𝑝(𝒁|𝐶)𝑃(𝐶)

𝑝(𝒁)
                                                (3) 

where 𝐶  is {0, 1}  that represents existence of a metal 

object, 𝒁  is the input impedance locus. The prior 

probability 𝑃(𝐶)  and likelihood 𝑝(𝒁|𝐶)  are determined 

from the training data while 𝑝(𝒁)  is assumed to be 

uniform distribution. The classification based on NBC is 

implemented by scikit-learn ® in Python as well. 

IV. SIMULATION RESULTS 

A. Loci of input impedances 

The loci of the input impedance for 116 simulated cases 

are shown in Fig. 5, where blue and orange loci denote the 

cases without and with a metal object, respectively.  

When the coil misalignment 𝑑  increases, the largest 

input resistance in frequency range decreases, and the 

whole locus tends to shrink. The locus also tends to shrink 

owing to the existence of a metal object as shown in Fig.5. 

 

Figure 5: Loci of input impedances from simulations (no load). 

 

(a) Accuracy for training dataset 

 

(b) Accuracy for validation dataset 

Figure 6: Training history of NN (simulations). 
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(a) At 75 kHz 

 

(b) At 81 kHz 

Figure 7: Input impedance points. (no load) 

 

(a) At 75 kHz 

 

(b) At 81 kHz 

Figure 8: Input impedances points (20Ω load). 

B. Training results 

The 80% of the whole training data, that are 116 loci of 

the computed input impedance, are used as the training 

data while the others are used as the validation set. The 

training histories of NN for the training and validation 

datasets are shown in Fig.6, and the performance of the 

three machine learning methods after training are 

summarized in TABLE V. 

As shown in TABLE V, all of the three machine 

learning methods have accuracy better than 85%. In 

particular, NN has no classification errors with fast 

convergence. 

To know the reason why all the methods get high 

accuracy, the input impedance values at 71 kHz and also 

81 kHz that is near the resonance frequency are plotted in 

Fig.7, respectively. It can be seen that there are clear 

differences between the cases with metal and without 

metal especially at 71 kHz, which is considered to be the 

key of the successful classification. 

 
TABLE V  

ACCURACY OF THREE MEHODS FOR VALIDATION DATA  
(SIMULATIONS, NO LOAD) 

NN 100% 

SVM 96% 

NBC 88% 

C. Effect of load 

Above mentioned results are obtained assuming no load 

on Rx. To consider if the load affects the classification 

accuracy, we connected the load, 20Ω, to Rx. The resultant 

input impedance points at 75 and 81 kHz are shown in 

Fig.8. In this case we find no clear differences between the 

input impedance values with and without metal, in contrast 

to the results shown in Fig. 7. This is understood from the 

fact that the quality factor is reduced when the load is 

connected to Rx. The average accuracy for five-fold cross 

validation is summarized in TABLE VI. It can be seen that 

the accuracy reduces by about 20% owing to the load on 

Rx, which indicates that the addition of load will make 

classification harder. For this reason, we conclude that the 

proposed method should be used under the condition that 

Rx is short. 
TABLE VI  

ACCURACY OF THREE METHODS FOR VALIDATION DATA  

(SIMULATIONS, LOAD = 20Ω) 

NN 77.6% 

SVM 73.2% 

NBC 63.8% 

V. EXPERIMENTAL RESULTS 

We perform experimental verification where the input 

impedance is measured. The LCR meter and coils used in 

experiments are shown in Fig.9. The shape parameters of 

coils and circuit parameters are set to the same as those in 

the aforementioned simulation-based method. 

There are three foreign metal objects used in 

experiments, which are shown in Fig.10. The aluminum 

cylinder has been considered in the simulation-based 

method while the empty aluminum can has a diameter of 

55 mm and height of 155 mm, and the length of the steel 

key is 60 mm. 

  

(a) coils (b) LCR meter  

(HIOKI IM3536) 

Figure 9: Experimental devices 
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(a) Cylinder (b) Can (c) Key 

Figure 10: foreign metal objects used in experiments. 

 

Figure 11: Loci of input impedances from experiments (cylinder).  

 

(a) Accuracy for training dataset 

 

(b) Accuracy for validation dataset 

Figure 12: Training history of NN (experiments, cylinder). 

A. Aluminum cylinder 

In the experiment, the aluminum cylinder is placed 0 

mm, 130 mm and 200 mm away from the center of Tx coil, 

which is set to the same as the simulations. The input 

impedance values for 131 cases have been measured here, 

where 33 cases are without metal and 98 cases are with 

metal. 

The input impedance loci of the 131 cases are shown in 

Fig.11. The tendencies in the loci obtained from the 

simulation and experiments seem similar although there 

are quantitative differences between them which are 

possibly caused by factors such as skin effect and noise of 

devices. The differences in the loci for the cases with and 

without metal object are unclear though NN still obtains 

good performance as described below. The training history 

of NN is shown in Fig.12, and the performances of the 

three methods are listed in TABLE VII. 

Although the accuracy for training and validation data 

has fluctuations in the history, both of them finally reach 

over 90%. In contrast to NN, the accuracy of SVM and 

NBC deteriorates compared to the simulation-based 

classification.  
TABLE VII  

ACCURACY OF 3 METHODS FOR VALIDATION DATA  
(EXPERIMENTS, CYLINDER) 

NN 96% ~ 100% 

SVM 70% 

NBC 58% 

B. Empty aluminum can 

When using the empty aluminum can as the foreign 

metal object, the input impedance loci show obvious 

differences between cases without and with metal as 

shown in Fig.13, where 101 cases are measured, including 

33 and 68 cases without and with metal. The can is laid in 

experiments, and placed in the center of Tx coil, or 100 

mm far away from the central axis. 

It seems easier for NN to make correct judgement for 

the cases. As shown in Fig.14, during the training, NN 

quickly reaches at accuracy of 100% for both training and 

validation data. In TABLE VIII, it can be seen that all the 

three machine learning methods have accuracy over 90%. 

These results come from the clear difference in the loci 

shown in Fig.13. However, it would be difficult for us to 

pick the features from the loci for classification. The 

machine learning methods automatically take those 

features from the data. 
TABLE VIII  

ACCURACY OF 3 METHODS FOR VALIDATION DATA 

(EXPERIMENTS, CAN) 

NN 100% 

SVM 100% 

NBC 90% 

C. Steel Key 

In the experiments with key, the positions of the key are 

set to the same as the cylinder cases. In total, 136 cases are 

measured, including 34 without metal and 102 with metal. 

The input impedance loci of all the cases are shown in 

Fig.15. It seems hard to find the differences between the 

loci without and with metal. As a result, as shown in Fig. 

16 and TABLE IX, the accuracy of NN remains unchanged 

during the training, and all the three machine learning 

methods judge all the cases in validation as with metal, so 

the accuracy of them are all 71%, which is exactly the 

proportion of cases with metal in the validation dataset. 
TABLE IX  

ACCURACY OF 3 METHODS FOR VALIDATION DATA 
(EXPERIMENTS, KEY) 

NN 71% 

SVM 71% 

NBC 71% 

 

 

Figure 13:  Loci of input impedances from experiments (can). 
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(a) Accuracy for training dataset 

 

(b) Accuracy for validation dataset 

Figure 14: Training history of NN (experiments, can). 

 

Figure 15:  Loci of input impedances from experiments (key). 

 

(a) Accuracy for training dataset 

 

(b) Accuracy for validation dataset 

Figure 16: Training history of NN (experiments, key). 

 

The input impedance loci of all the cases are shown in 

Fig.15. It seems hard to find the differences between the 

loci without and with metal. As a result, as shown in Fig. 

16 and TABLE IX, the accuracy of NN remains unchanged 

during the training, and all the three machine learning 

methods judge all the cases in validation as with metal, so 

the accuracy of them are all 71%, which is exactly the 

proportion of cases with metal in the validation dataset. 

It is concluded that the influence from the key to the 

input impedances is so small that the methods cannot make 

correct classification at all. 

VI. CONCLUSION 

In this paper, a new detection method of a foreign metal 

object without additional sensors or coils using machine 

learning has been proposed. The input impedances of a 

WPT system with and without the metal object having 

different misalignment distances are obtained by FEM and 

experiments, and are used as the training data for machine 

learning. When relatively large objects such as an 

aluminum cylinder and empty can are set as the foreign 

metal object, the accuracy of this method is satisfactory. In 

particular, NN gives the best performance for them. When 

the metal object is small, as in the case for the key, the 

proposed method does not work well. Moreover, the 

proposed method should be used under the condition that 

the receiving circuit is short because its accuracy becomes 

worse when the load is introduced to Rx. These shows the 

limitation of the method. In future, we will study the 

quantitative limitation in the size for the successful 

detection. Moreover, we will develop a method to improve 

the classification accuracy for the load cases. 
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