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ABSTRACT: The first examples of single crystals exhibiting salient effects by different structure change mechanisms are
reported. The crystals of newly prepared aryl(9-isocyanoanthracene)gold(I) complexes jump in response to two different
external stimuli: ultraviolet (UV) irradiation and cooling. The photosalient effect is triggered by photodimerization reaction
of the anthracene moieties under photoirradiation. By contrast, the thermosalient effect is caused by anisotropic thermal
contraction upon cooling without chemical structure change. By taking advantage of the multiple jump feature, we also
show sequential jumps of crystals by cooling and then UV irradiation for demonstration of programmed motion of

molecular crystals.

INTRODUCTION

Crystal jumping phenomena, so-called salient effects of
organic crystals, have been known for a long time,' and
they were first reported in 1983.> Typically,
photoirradiation and thermal treatment initiate salient
effects, which are accordingly called the photosalient effect
(Scheme S1) and thermosalient effect (Scheme S2),
respectively (Figure 1a). In the last decade, salient effects
have attracted considerable attention in terms of their
mechanisms and possible application to microactuators or
sensors.> Photosalient effects are mostly triggered by
photochemical covalent/coordination bond formation,
such as ring-opening/closing reactions,? cycloadditions,*
rearrangement,” and linkage isomerization,® upon
photoirradiation. The molecular structure changes by
these covalent/coordination bond formations result in
accumulation of lattice strain in the crystal. The strain is
then released in a short time, resulting in the crystal
jumping.” Thermosalient effects are caused by a packing
structure change with*>®#* or without# a thermal phase
transition upon temperature change. This structural
alternation generates strain within the crystal. The release
of this accumulated strain then results in the crystal
jumping. Salient-active crystals are known to show
common crystallographic features during salient
phenomena. They exhibit the same space group, a small
cell volume change, and an anisotropic lattice dimension
change before and after jumping.®

Salient crystals that can jump by multiple mechanisms
with different types of stimulation are attractive for
designing micractuators with programmed motions.*
However, creation of a crystal that exhibits two different
jumping modes by different mechanisms is difficult
because of the complexity of salient phenomena. In fact, a
single crystal exhibiting salient effects caused by two
different mechanisms has not been reported. Naumov’s
group reported that a  single  crystal of
(phenylazophenyl)palladium hexafluoroacetylacetonate,
which exhibits the thermosalient effect in the crystalline
form,*® can also jump upon photoirradiation after
incubation of the compound in a polymer film.** The same
group also reported that thermosalient crystals of
terephthalic acid jump upon mechanical stimuli by the
same phase transition as the structure change for the
thermosalient effect.*> However, there is no clear example
of a single crystal with multiple structure change
mechanisms for jumping. Development of a “multisalient”
crystal remains a challenge in the crystal engineering field.
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Figure 1. (a) Schematic image of salient effects. (b) Schematic
representation of the two mechanisms of the photosalient
effect and thermosalient effect of 1. The red and blue arrows
schematically indicate expansion and shrinking of the unit cell
dimensions, respectively. (c) Molecular structures of 1, 2, and

3.
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Herein, we report newly synthesized aryl(9-
isocyanoanthracene)gold(I) complexes (1, 2, and 3)
exhibiting both the photosalient effect and thermosalient
effect based on different mechanisms (Figures 1b, 1c and
Figure S1). Single-crystal X-ray diffraction (XRD) analysis
indicated that the photosalient effect was triggered by
photodimerization of the anthracene skeletons under
photoirradiation. By contrast, temperature-dependent
XRD analysis indicated that the thermosalient effect of
these complexes was initiated by anisotropic thermal
contraction without chemical structure change upon
cooling. The mechanism difference of these salient effects
enabled a crystalline sample to sequentially exhibit both
salient effects. These complexes are the first examples
exhibiting two different salient effects in a single crystal.

RESULTS AND DISCUSSION

The gold(I) isocyanide complexes with the ¢-
isocyanoanthracene ligand (1, 2, and 3) were synthesized by
a similar procedure to that described in our previous
report.46 Reactions of the chloro(g-
isocyanoanthracene)gold(I) complexes and the
corresponding organozinc reagents at o °C for 15 min
afforded 1, 2, and 3 in good yield (89%-99%). The
structures of 1, 2, and 3 were confirmed by 1H NMR

spectroscopy and high-resolution mass spectrometry
(HRMS).

The crystalline samples of 1, 2, and 3 exhibited both the
photosalient effect and thermosalient effect. Crystalline
samples were prepared by recrystallization, for example, a
solution of 1 in CHCL,; was slowly evaporated in the dark to
give yellow crystals after a few days. The crystals remained
intact at room temperature in the dark. However, upon UV
irradiation at 365 nm, the crystals of 1 rapidly fragmented
after moving (Figures 2a, S2a and Movie S1). Almost all of
the samples of 1 exhibited the photosalient effect.
Irradiation with longer wavelength light (405 and 435 nm)
also resulted in the photosalient effect (Figures Sz2b, Sac
and Movies Sz, S3). Remarkably, a temperature change also
induced the thermosalient effect. When crystals of 1 were
cooled on a cooling plate at 50 °C/min, the crystals also
jumped (Figures 2b, S3 and Movie S4). The temperature at
which the crystals jumped was different in each
experiment, ranging from —go to -110 °C. This could be
because of the rapid cooling speed and different crystal
size/quality, as commonly observed for crystals exhibiting
the thermosalient effect.3® Compared with the photosalient
effect of 1, the probability of the thermosalient effect was
not high (approximately 5% of the crystals jumped). The
different jumping probabilities of the photosalient effect
and thermosalient effect of 1 would indicate the existence
of different mechanisms. Crystals of 2 and 3 were prepared
by a similar method to that for preparation of crystals of 1.
The crystals of 2 and 3 also exhibited the photosalient effect
(Figures S4, S5 and Movies S5-S10) and thermosalient
effect (Figures S6 and Movies Su, S12).
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Figure 2. (a) Photographs showing the photosalient effect of 1
under UV light (365 nm). The red arrows indicate the crystal
that jumps by the photosalient effect. Scale bars represent 50
mm. (b) Photographs showing the thermosalient effect of 1
upon cooling at 50 °C/min. The red ellipses indicate the crystal
that jumps by the thermosalient effect. Scale bars represent
200 mm.

To investigate the mechanisms of both salient effects of
1, single-crystal XRD analysis of an as-prepared single
crystal of 1 was first performed at 20 °C. Complex 1 was
found to crystallize in the monoclinic P2,/n space group
(Table S1), with all of the molecules being
crystallographically equivalent (Figure S7). The 1
molecules in the crystal adopt a planar conformation with
a small dihedral angle between the naphthalene and
anthracene rings [0 = 5.1(3)°, Figure S8]. The 1 molecules in



the planar conformation constitute a m-stacked dimer in a
head-to-tail orientation (Figure 3a). This n-stacked dimer
forms Au(I)--Au(I) and m—m interactions. The Au(I)---Au(I)
distance is 3.6714(5) A. The displaced m-m distances
between the naphthyl and anthryl moieties are 3.410 A.
This - stacking slips with a parallel displacement of 1.577
A (Figure Sg).#” These m-stacked dimers of 1 further form
CH/m and m-m interactions between their anthracene
moieties and neighboring n-stacked dimers (Figure 3b).
The CH/m distance between the hydrogen atom in the
anthryl group and the carbon atom in the naphthyl group
is 2.862 A. The -t distance between the anthryl groups of
neighboring m-stacked dimers is 3.616 A. The anthryl
groups are stacked with a parallel displacement of 1.453 A
(Figure S9).47 As a result, 1 forms a herringbone structure
within the (101) plane (Figure 3b). Upon UV irradiation,
photodimerization of the anthryl groups proceeds at the
Cg and C10 carbon atoms between the n-stacked dimers.®®
Between the m-stacked dimers, the reactive carbon-carbon
distance in the anthracene moiety (C9-Ci0’ and C9'-C10)
is 3.891 A (Figure 3c). This carbon-carbon distance is
within the limit of 4.2 A proposed by Schmidt for
photodimerization.*® This information indicates that the
anthracene moiety of 1 has structural potential to allow
photodimerization in the crystalline state.
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Figure 3. (a) ORTEP drawing of the m-stacked dimer of 1 at
20 °C. Hydrogen atoms are omitted for clarity. (b)
Herringbone structure of 1 within the (101) plane. Three m-
stacked dimers are highlighted in cyan or purple. (c) Distance
between the reactive carbon atoms (C9-Ci0’ and C9'-C10) of
1. Two adjacent n-stacked dimers are highlighted in cyan and
purple.

Single-crystal XRD analysis of a photoirradiated single
crystal of 1 was performed to reveal the mechanism of its
photosalient effect. The fragmented crystals obtained after
photoirradiation in air were too small and not suitable for
single-crystal XRD analysis. When single crystals of 1 in
Paratone oil were exposed to sunlight for a week,
photoreacted single crystals suitable for XRD analysis were

obtained. The crystal color of 1 changed from yellow to
colorless by photodimerization (Figure 4a). Single-crystal
XRD analysis of the colorless crystal was then performed at
20 °C, showing formation of the photodimer 1pp, in which
the Cg9 and Ci0’ atoms are connected through newly
formed covalent bonds (Figures 4b and S10).5°* In the
single crystal of 1pp, the photodimer 1pp is packed in the
monoclinic space group P2,/n, which is the same space
group as before photoirradiation (Table S1). The
asymmetric unit contains one half of the molecular
structure of 1pp. 1pp forms Au(I)---Au(l) interactions of
3.463(1) A, which are shorter than those in pristine 1,
constructing the herringbone structure (Figure 4c). A
single crystal of 1pp could not be prepared from CHCl,
solution of 1pp because 1pp was unstable and easily
decomposed in the solution state.
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Figure 4. (a) Images of single crystals of 1 before and after
sunlight irradiation in Paratone oil. The scale bar is 100 pum.
(b) ORTEP drawing of the molecular structure of 1pp.
Hydrogen atoms are omitted for clarity. (c) Packing structure
of 1pp. The moieties of 1pp highlighted in cyan and purple are
originally included in two different pairs of n-stacked dimers
of 1.

Next, the crystal structures of 1 and 1pp are compared to
understand the crystal structure change upon
photoirradiation (Figure 5a). As often observed in previous
examples of photosalient compounds, the crystal
structures of 1 and 1pp are similar. Upon photodimerization
from 1 to 1pp, the space group (monoclinic P2,/n) is
retained and the change of the unit cell volume is small
(AV = +16.84 A3, +0.9%).5* The crystal packing overlay of 1
and 1pp viewed along the a axis provides a visual
understanding of the anisotropic lattice change as a result
of photodimerization (Figure 5b). Upon
photodimerization, the length of the c axis decreases by
about 5.0%, while the lengths of the a and b axes increase
by about 2.9% and 3.7%, respectively. This anisotropic
lattice dimension change is the origin of the photosalient
effect of 1.
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Figure 5. (a) Packing structures of 1 and 1pp represented by
the ORTEP and space-filling model. The carbon atoms of 1and
1pp are shown in pink and light green, respectively. Hydrogen
atoms are omitted for clarity. (b) An overlay image of the
packing structures of 1 and 1pp viewed along the a axis. The
crystallographic axes b and c are indicated by arrows. The red
and blue arrows indicate the directions of expansion and
shrinking of the packing structure by photodimerization
along the b and c axes, respectively.

We then investigated the structure change of 1 upon the
thermosalient effect. Temperature-dependent single-
crystal XRD analysis of 1 revealed that the thermosalient
effect of 1 was caused by anisotropic thermal contraction
without a phase change upon cooling. We performed
single-crystal XRD analysis of 1 from 20 to -140 °C with a
20 °C interval. The crystal qualities were all satisfactory for
XRD analysis (Figure S13), and the results are summarized
in Table Si. All of the crystal structures at different
temperatures were similar, that is, they had the same space
group (monoclinic P2,/n) with only a small change of the
unit cell volume (AV = —36.17 (-1.9%); 20 °C — -140 °C)
(Figure 6a). In the m-stacked dimer, the Au(I)--Au(I)
distance decreased from 3.6714(5) to 3.6124(5) A upon
cooling. The lattice dimensions of 1 slightly and
anisotropically changed upon cooling. The lengths of the
crystallographic b and ¢ axes slightly decreased upon
cooling (Ab = -0.058 A (-0.5%); Ac = —0.210 A (-1.5%); 20 °C
— —140 °C), while that of the a axis remained almost the
same [Aa = +0.003 A (+0.0%)]. A crystal packing overlay of
1at 20 and -140 °C viewed along the b axis provides a visual
understanding of the anisotropic crystal lattice change
upon cooling (Figure 6b). Focusing on the 1 molecules, we
found that the molecules keep their positions along the
direction of the a axis upon cooling (20 — -140 °C), while
they slightly approached each other along the c axis (blue
arrows in Figure 6b). These results are consistent with the
aforementioned anisotropic changes in the lengths of the
crystallographic axes upon cooling (Aa = 0; Ac < 0).55° This
anisotropic lattice dimension change would be the origin
of the thermosalient effect of 1. From temperature-

dependent single-crystal XRD and differential scanning
calorimetry (DSC) analyses of 1, we found that the crystal
of 1 did not show the thermal phase transition upon the
thermosalient effect.5” We plotted the lengths of the a, b,
and c axes of 1 against temperature and found the absence
of an abrupt change (Figure S16). These structures and
thermal measurements indicate that the thermosalient
effect of 1 does not occur through a thermoinduced phase
transition. Moreover, DSC analysis of 1 from -140 to 100 °C
gave a featureless trace, indicating the absence of a thermal
phase transition during this salient effect (Figure S17). The
absence of a phase transition during the thermosalient
effect has been reported, but it is rare.”
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Figure 6. (a) ORTEP drawings of the n-stacked dimers of 1 at
20 and -140 °C. The carbon atoms at 20 and -140 °C are shown
in pink and light blue, respectively. Hydrogen atoms are
omitted for clarity. (b) Overlay of the packing structures of 1
at 20 and -140 °C viewed along the b axis. The crystallographic
a and c axes are indicated by arrows. The blue arrows indicate
the shrinking direction of the packing structure along the ¢
axis upon cooling.

Taking advantage of the mechanistic difference, the
same crystal of 1 can exhibit sequential salient effects by
cooling and then UV irradiation. When crystals of 1 were
cooled from 20 to -150 °C, several crystals exhibited the
thermosalient effect (Figure 7). For the second salient
effect, keeping the temperature at -150 °C, the crystals
were photoirradiated with UV light (365 nm). The crystals
of 1 also exhibited the photosalient effect (Figure 7 and
Movie S13). However, the photodimerized samples of 1
obtained after exhibiting the photosalient effect did not
exhibit the thermosalient effect because photoirradiation
produced 1pp, which does not exhibit the thermosalient
effect. This is the first example of sequential salient effects
of a single crystal based on two different mechanisms.
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Figure 7. Photographs showing the sequential salient effects
(thermosalient effect — photosalient effect) of the same
crystalline sample of 1 by cooling and then UV
photoirradiation (365 nm). The blue arrow indicates the
directions of the jumps as a result of the thermosalient effect.
Orange ellipse indicates the crystal showing photosalient
effect.

Similar to 1, the structure changes of 2 and 3 caused by
the salient effects were also investigated by XRD and DSC
analyses. When UV light was irradiated on crystalline
samples of 2 and 3, their photodimers (2pp and 3pp) formed,
which were detected by 'H NMR and HRMS (Figures Si8
and S19).5®* These photodimers indicated that the
photosalient effect of 2 and 3 was also initiated by
photodimerization of the anthracene moieties. Similar to 1,
DSC analysis of 2 and 3 gave featureless traces from -140 to
100 °C (Figure S20). These traces indicated that the
thermosalient effect of 2 and 3 occurs without thermal
phase transitions. Temperature-dependent XRD analysis
of 3 upon cooling showed anisotropic lattice dimension
changes (Aa = —0.041 A (-0.3%); Ab = —0.225 A (-1.5%); Ac
=-0.116 A (-0.6%); 20 °C — -140 °C)) (Table Sz and Figures
S21-S27).5 These results suggest that the mechanisms of
the salient effects of 2 and 3 are similar to those of 1.

CONCLUSION

In summary, we have reported aryl(g-
isocyanoanthracene)gold(I) complexes (1, 2, and 3)
exhibiting both the photosalient effect and thermosalient
effect based on different mechanisms. Single-crystal XRD
analysis, 'H NMR, and HRMS indicate that the
photosalient effect of 1 is triggered by intermolecular
photodimerization reaction of the anthracene moieties in
the crystal. Temperature-dependent XRD analysis
indicates that the thermosalient effect of 1 is caused by
anisotropic thermal contraction upon cooling without a
thermal phase transition. The mechanism difference of
these salient effects enables sequential multisalient
jumping of one crystal by UV irradiation and cooling. The
mechanisms of the two salient effects of 2 and 3 were also
investigated. These salient effects of single molecular

crystals will provide a new guideline for designing
multisalient crystals.
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