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S U M M A R Y
Melting in planetary mantles plays a key role in their thermochemical evolution. Assessing
the amount and location of melting generally requires the 3-D temperature fields of the
system, such that 3-D numerical simulations are in principle necessary prohibiting us from
exploring wide ranges of conditions. To overcome this issue, we propose a new 1-D analytical
framework estimating at first order the amount and depths of melting for a simplified convective
system. To do so, we develop an approach, partly based on an extended version of the mixing
length theory, able to estimate the distribution of the hottest temperatures in natural systems.
The approach involves several free parameters that are calibrated by fitting 3-D numerical
simulations. We demonstrate that our algorithm produces melting profiles at steady-state and
long-term evolutions in fairly good agreement with 3-D numerical simulations. We then apply
our framework to a wide variety of planetary sizes and heating rates. We find that an increase in
planetary radius R increases the depth of melting for small planets (R < 800 km) but decreases
it for larger planets. This is caused by the pressure dependence of the solidus.

Key words: Numerical modelling; Planetary interiors; Dynamics: convection currents, and
mantle plumes; Heat generation and transport; Planetary volcanism.

1 I N T RO D U C T I O N

The thermochemical evolution of a planetary body is fundamental
to determine its past and current state. For a terrestrial planet, this
evolution is characterized by the coupling of different processes oc-
curring in different parts of the planet and at different temporal and
spatial scales. A usual way to circumvent the difficulty of modelling
such a complex system is to focus on the long-term evolution of
the planetary mantle. Indeed, because of its much slower dynamics
compared to the atmosphere or the liquid iron core, the evolution
of the mantle is believed to control the heat transfer of the planet’s
interior. However, modelling the dynamics of planetary mantles is
in itself a complex problem.

One major issue is to account for the melting of rocks and the sub-
sequent chemical differentiation and volcanism. Although 3-D nu-
merical simulations consider increasingly sophisticated modelling
of melting (Christensen & Hofmann 1994; Samuel & Farnetani
2003; Xie & Tackley 2004; Lourenço et al. 2018), the composition
of the produced melt is generally prescribed and is independent
of the depth and temperature of the molten rocks. While this sim-
plification is required to reduce the computational time, it induces
bias in the estimated long-term evolution, especially the location,
quantity and composition of melt.

Alternatively, one may also use analytical models to account for
the effects of melting on planetary evolutions (Breuer & Spohn

2003; Morschhauser et al. 2011; Grott et al. 2011). These previ-
ous works generally rely on a parametrized approach where scaling
relationships are used to reconstruct an approximate average tem-
perature profile. However, melting should not be estimated from the
average temperature profile, but from the full lateral distribution of
temperature. As a matter of fact, the average temperature can be
significantly lower than the solidus, while locally the temperature
is high enough to generate melt. Considering the average temper-
ature profile to assess the generation of melting leads to a much
lower volume of melt generated at greater depths (see for instance
temperature profiles reported in Labrosse 2002).

In this work, we derive a new 1-D analytical framework to es-
timate at first order the amount and depths of melting. As 1-D
models are not appropriate for estimating the full lateral distribu-
tion of temperature, we develop instead an approach, partly based
on an extended version of the mixing length theory (MLT), able
to estimate the cumulative distribution function of the hottest tem-
peratures. In other words, our aim is not to constrain the precise
lateral distribution of temperature but only the distribution of the
hottest temperatures from a statistic/probability point of view. Due
to the novelty of our approach, we apply our framework to a sim-
plified convective system consisting of a purely internally heated
fluid in a Cartesian geometry. This approach involves several free
parameters that are calibrated by fitting 3-D numerical simulations
(obtained previously in Limare et al. 2015; Vilella et al. 2018).
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We then verify the accuracy of our analytical approach against 3-
D numerical simulations. In that aim, we develop an algorithm
calculating the evolution of a system experiencing secular cool-
ing and melting. At last, this algorithm is used to investigate the
influence of different parameters on the amount and depths of
melting.

2 T H E O R E T I C A L C O N S I D E R AT I O N S

Before developing our extended version of the MLT, we give a
short description of the convective system considered and a brief
overview of the classical MLT. These preliminary considerations are
crucial to understand the limitations and strengths of our theoretical
approach.

2.1 Description of purely internally heated convection

As a reference set-up for our approach, we consider a purely in-
ternally heated fluid. This convective system generally consists in
a horizontal layer of fluid, with a constant temperature imposed at
the top boundary and an adiabatic condition at the base. Because
of the adiabatic condition at the bottom, the only source of heat is
volumetric heating, that is each parcel of fluid is homogeneously
heated, and the heat escapes from the top boundary. When the fluid
is further considered to be isoviscous and incompressible, the sys-
tem is only controlled by the Rayleigh–Roberts number (Roberts
1967),

RaH = ρgα�TH d3

κη
, (1)

where

�TH = Hd2

λ
(2)

is the temperature scale of the system, ρ density, g the acceleration
of gravity, α the thermal expansion coefficient, H the volumetric
heating rate, d the layer’s height, λ the thermal conductivity, κ the
thermal diffusivity, and η viscosity. The Rayleigh–Roberts num-
ber quantifies the vigour of convection. With increasing RaH, the
convective system becomes more and more chaotic, velocities in-
crease and the lengthscale of convective structure decreases. As
this convective system has already been extensively investigated
(Parmentier & Sotin 2000; Vilella & Kaminski 2017), we will only
mention few of its important characteristics. Note that, here and
hereafter, we will use for illustration purposes the 3-D numerical
simulations published in Vilella et al. (2018), obtained with StagYY
(Tackley 2008) and described in Supplementary Text 1.

A brief look at the convective system (Fig. 1) indicates the pres-
ence of a top thermal boundary layer (TBL), where large vertical
temperature variations occur, above an almost isothermal convec-
tive interior. The top TBL controls the dynamics of the system by
generating cold downwellings that sink into the convective interior.
As a result, a non-buoyant return flow is present in the convective
interior to balance the input of sinking materials. However, a part
of the cold material accumulates at the base of the system (Fig. 1b)
inducing a slight decrease of the temperature with depth (Fig. 1a).
This feature is called subadiabaticity and has been observed in var-
ious internally heated systems (e.g. Jeanloz & Morris 1987; Sinha
& Butler 2007).

2.2 Fundamentals of the MLT

The MLT has been widely used to study turbulent convective sys-
tems, for example stellar convection (Vitense 1953; Spiegel 1963)
or magma ocean solidification (Sasaki & Nakazawa 1986; Abe
1993). By contrast, applications to laminar convective systems are
less common and mainly concern icy satellites (Kimura et al. 2009;
Kamata 2018) or rocky planets (Tachinami et al. 2011; Wagner
et al. 2019). Overall, the MLT is considered to be more accurate
for complex convective systems than traditional approaches such as
parametrized convection (Sharpe & Peltier 1978; Jellinek & Jack-
son 2015) or boundary-layer theory (Stevenson et al. 1983; Driscoll
& Bercovici 2014). It is however important to keep in mind that
the calibration of the MLT is becoming increasingly difficult as the
system complexity increases.

The main purpose of the MLT is to estimate the 1-D thermal
state of a system. To do so, the starting point is to consider the
conservation of energy, which at steady state can be written as

0 = −dFcond

dz
− dFconv

dz
+ H, (3)

where z is height, Fcond = −λdT/dz the conductive heat flux and
Fconv the advective heat flux. Assuming H as independent from z,
an integration of eq. (3) gives simply,

C = −Fcond − Fconv + H z, (4)

with C a constant to be determined. At the base of the system (z =
0), Fcond = 0 and Fconv = 0, because the base is adiabatic, implying
C = 0. As a consequence, estimating the thermal state of the system
consists in the determination of the advective heat flux Fconv. The
specificity of the MLT is to obtain an approximate expression of
this advective heat flux by neglecting the horizontal advection of
heat, so that Fconv simply represents the vertical advection of heat.
In that purpose, using the definition of the specific heat capacity Cp

= λ/κρ, one can write that at first order

Fconv = ρCpwθ, (5)

where w is the vertical velocity and θ the temperature perturbation
compared to the laterally averaged value. Note that here and here-
after the overbar denotes laterally averaged properties. Assuming
a Stokes velocity for w, determining Fconv boils down to the de-
termination of an appropriate expression for θ . To do so, the MLT
focuses on a column of fluid and considers that the perturbation of
temperature θ is caused by a fluid parcel transported from a height z
= z0 that was originally at ambient temperature T (z0). This implies

T (z) = T (z0) + dT

dz
(z − z0). (6)

Furthermore, by a lateral average of this equation we obtain

T (z) = T (z0) + dT

dz
(z − z0), (7)

and when combining these two equations,

θ = T (z) − T (z) =
(

dT

dz
− dT

dz

)
(z − z0). (8)

We further note l(z) = 2(z − z0) the mixing length, that is cor-
responding to the typical length-scale where temperature pertur-
bations are homogenized. Finally, following Sasaki & Nakazawa
(1986), we incorporate the Stokes velocity

w = 2l2gαρθ

9η
(9)
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(a)

(b)

Figure 1. (a) Horizontally averaged temperature profiles obtained for various values of the Rayleigh–Roberts number (RaH). (b) Vertical slice of the temperature
field obtained for RaH = 106. The results of (a) and (b) are from 3-D numerical simulations (see Vilella et al. 2018, for more details on the simulations).

and eq. (8) into eq. (5) to obtain

Fconv = ρ2Cpαgl4

18η

(
dT

dz
− dT

dz

)2

. (10)

Incorporating eq. (10) into eq. (4) and normalizing the equation
with the temperature scale (eq. 2) and the layer’s height d, we
finally obtain

dT ∗

dz∗ − RaH l∗4

18

(
dT ∗

dz∗ − dT ∗

dz∗

)2

+ z∗ = 0, (11)

where dimensionless values are denoted with a ∗. Eq. (11) is the
main equation solved in the following section.

3 E X T E N D E D V E R S I O N O F T H E M LT

Our goal is to build an analytical framework able to estimate at first
order the amount and depths of melting. Estimating the location and
amount of melting requires to compare the solidus/liquidus profile
with the distribution of temperature. Here, we focus on systems
with a moderate amount of melting, so that only the distribution of
the hottest temperatures is required. Furthermore, because the melt-
ing temperature of silicates is increasing with pressure/depth (e.g.
Zhang & Herzberg 1994), the shape of the temperature profiles in
Fig. 1(a) implies that melting should be mainly generated within the
top TBL. Therefore, our main objective is to reproduce accurately
the distribution of the hottest temperatures in the top TBL.

This process will be carried out in several stages. First, we pro-
pose a modification of the MLT providing a satisfactory estimate of
the horizontally averaged temperature profile for purely internally
heated fluids. We then apply this framework to determine the ‘hot’

temperature profile, that is composed of the hottest temperature at
every depth. Finally, using the estimated hot and average temper-
ature profiles, we develop a process to reconstruct the cumulative
distribution function for the 5 per cent hottest temperatures.

3.1 Determination of the average temperature profile T∗
avg

The determination of the temperature profile using eq. (11) requires
to prescribe a profile for l∗ and dT ∗/dz∗. While l∗ is generally
assumed to be the closest distance from a horizontal boundary, the
average temperature profile is difficult to evaluate a priori. As such,
the MLT is generally used to study turbulent convection, since the
average temperature is simply the adiabatic temperature profile.
Following Kamata (2018), the adiabatic profile can also be used as
a proxy for the average temperature profile in laminar convection.
Provided that a modified expression for l∗ is considered (Fig. 2),
this approach is able to reproduce reasonably well numerical results
(Kamata 2018; Wagner et al. 2019).

As a first step, we apply this formalism to internally heated con-
vection. In that case, the adiabatic temperature profile is constant
with depth so eq. (11) simply writes

dT ∗

dz∗ − RaH l∗4

18

(
dT ∗

dz∗

)2

+ z∗ = 0. (12)

This equation does not have a solution for dT∗/dz∗ = 0 and z∗

> 0 indicating that the temperature will continuously increase or
decrease with depth. In practice, because the average temperature
profile is maximum at the base of the TBL (Fig. 1), only the upper
part of the TBL can be reproduced correctly. This formalism is
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(a) (b)

Figure 2. (a) Plots of the dimensionless mixing length (l∗) and (b) horizontally averaged temperature profile as a function of the dimensionless height. For the
sake of simplicity, we characterize l∗ with (a,b) where l∗(b) = a is the maximum value of l∗. The dashed line represents the traditional mixing length (0.5, 0.5),
while the solid line is an example of mixing length used here. Note that in our framework a is given by eq. (13) while b = 1 − δ∗

TBL with δ∗
TBL the dimensionless

thickness of the thermal boundary layer.

therefore not appropriate for the specific case of purely internally
heated systems.

Alternatively, we propose to approximate dT ∗/dz∗ using a simple
but unknown function (f∗) of z. By doing this, we depart from the
framework used to establish eq. (11), but this approximation has the
advantage of giving solutions for purely internally heated fluids. For
the specific case dT∗/dz∗ = 0, obtained at z∗ = 1 − δ∗

TBL, eq. (11)
implies

l∗(z = 1 − δ∗
TBL) =

(
18(1 − δ∗

TBL)

RaH f ∗(z = 1 − δ∗
TBL)2

)1/4

, (13)

with δ∗
TBL the thickness of the TBL. We can further assume that the

mixing length is maximum at z∗ = 1 − δ∗
TBL (Fig. 2). In that case,

solving eq. (11) only requires to know the value of f∗ and δ∗
TBL. The

latter can be obtained from numerical simulations, while the former
has to be determined. Therefore, the main difficulty of our approach
lies in the determination of a robust and convenient expression for
f∗.

There are several possible methods to achieve this task. For in-
stance, one may conduct a systematic search using a large range of
functions to find one providing a good fit for the whole tempera-
ture profile. The risk of this method is to require a modelling of f∗

so complex that it decreases the applicability of our approach. We
therefore choose to put our emphasis on finding a simple expression,
that is without an excessive number of parameters, that provides an
accurate description of the TBL. As such, we simply consider

f ∗(z∗) = c/z∗ d , (14)

where c and d are constants. In the original MLT, the function f∗ is the
gradient of the average temperature profile dT ∗/dz∗. Surprisingly, f∗

is very different from dT ∗/dz∗ (Fig. S4), especially at z∗ = 0 where
f∗ is divergent while dT ∗/dz∗ is equal to zero. Note however that
the reason for this discrepancy can be explained by using scaling
arguments (see Supplementary Text 2).

The next step is to calibrate the model parameters. To do so,
we calculate the average temperature profile by solving eq. (11)
(method described in the Appendix) for a large range of parameter
values (c, d and δ∗

TBL). Then, for each RaH investigated, we identify
the set of parameter values that minimizes the misfit between the
analytical and numerical results. The objective of this is to estab-
lish scaling relationships characterizing the three parameters of the
model. Interestingly, our results indicate that it seems reasonable to
consider a constant value for c and d implying a function f∗ that
does not change with RaH (values reported in Table 1). δ∗

TBL is thus
the only parameter function of RaH. Previous works on similar con-
vective systems (e.g. Sotin & Labrosse 1999; Vilella & Kaminski
2017) have shown that it is possible to establish a scaling relation-
ship for δ∗

TBL using a power-law function. Nevertheless, it is difficult
to establish a single scaling relationship valid for the whole range of
RaH because of the change in the convective structure, for example
from time-independent structure at RaH < 105 to time-dependent
structure at RaH > 105. Based on numerical results from Vilella &
Kaminski (2017), it seems more appropriate to separate the range
of RaH into three domains (RaH < 105, 105 ≤ RaH < 107 and RaH

≥ 107), and, for each domain, conduct a best-fitting procedure us-
ing a power-law function. The results of the best-fit procedure are
reported in Table 1. Using these relationships, we reconstruct the
average temperature profile for each of our 3-D numerical simu-
lations and plot some representative results in Fig. 3. To quantify
the ability of our analytical method to reproduce numerical results,
we calculate the coefficient of determination R2 for each case and
find an average value of 0.658. This low value is not surprising
considering the significant temperature deviation occurring in the
convective interior. However, this deviation is not necessarily an
issue for our purpose as the melt generation is expected to occur in
the top TBL where temperature variations are well reproduced (R2

= 0.998).
The modified version of the MLT proposed in this section is

therefore able to reproduce reasonably well the results of 3-D
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Table 1. Parameters of the modified mixing length theory (see text for more details).

Average temperature profile (Tavg)

MLT (eq. 20)
dT ∗

avg

dz∗ − RaH l∗(z∗)4

18

(
dT ∗

avg

dz∗ − f ∗(z∗)

)2

+ z∗ = 0

Input function (eq. 14) f ∗(z∗) = c

z∗ d
with c = 0.05 and d = 1.55

Mixing length (eq. 13) l∗(z = 1 − δ∗
TBL) =

(
18(1 − δ∗

TBL)

RaH f ∗(z = 1 − δ∗
TBL)2

)1/4

RaH < 105 105 ≤ RaH < 107 107 ≤ RaH

δ∗
TBL 0.8241Ra−0.06637

H 4.4412Ra−0.2203
H 5.6885Ra−0.2352

H

Hot temperature profile (Thot)

MLT (eq. 19)
dT ∗

hot

dz∗ − RaH l∗(z∗)4

18

(
dT ∗

hot

dz∗ − f ∗(z∗)

)2

+ Numaxz∗ = 0 with Numax = 1.65 (Fig. S1)

Input function (eq. 14) f ∗(z∗) = c

z∗ d
with c = 0.055 and d = 1.52

Mixing length (eq. 16) l∗(z = 1 − δ∗
TBL) =

(
18 Numax(1 − δ∗

TBL)

RaH f ∗(z = 1 − δ∗
TBL)2

)1/4

RaH < 105 105 ≤ RaH < 107 107 ≤ RaH

δ∗
TBL 1.7881Ra−0.1558

H 4.3793Ra−0.234
H 4.6238Ra−0.2361

H

Temperature distribution (gdist)

Eq. (18) T ∗
95 = n95 T ∗

avg + (1 − n95) T ∗
hot with n95 = 1/3

Cdf of the temperature gdist = 95 + 5

[
1 − exp

(
−p

T ∗ − T ∗
95

T ∗
hot − T ∗

95

)]
with p = 5

between 95 and 100 per cent
following eq. (17)

numerical simulations, and this for all values of RaH between 104

and 109. The next step of our study is to apply this framework to the
hot temperature profile.

3.2 Determination of the hot temperature profile T∗
hot

The hot temperature profile is essentially similar to the horizon-
tally averaged temperature profile, with the exception of the sur-
face heat flux. Indeed, the average surface heat flux is, by con-
struction, equal to Hd, while the surface heat flux calculated from
the hot temperature profile is a priori unknown. Nevertheless,
in our numerical simulations, its value only slightly varies be-
tween 1.52Hd and 1.75Hd (Fig. S1). We therefore decide to as-
sume an intermediate value of 1.65Hd and modify accordingly
eq. (11),

dT ∗

dz∗ − RaH l∗(z∗)4

18

(
dT ∗

dz∗ − f ∗(z∗)

)2

+ 1.65z∗ = 0, (15)

and eq. (13),

l∗(z = 1 − δ∗
TBL) =

(
29.7(1 − δ∗

TBL)

RaH f ∗(z = 1 − δ∗
TBL)2

)1/4

. (16)

We can now estimate the model parameters (c, d and δ∗
TBL) for the hot

temperature profile adopting the same procedure as in Section 3.1.
The scaling relationship for each parameter is again reported in
Table 1, while some representative results are shown in Fig. 4.
Compared to the average temperature profile (Fig. 3), the fit of the
TBL is slightly less satisfying (R2 = 0.998 and 0.993, respectively),
especially for low values of RaH. By contrast, because the subadi-
abacity is less pronounced, the convective interior is better fitted
(R2 = 0.866 compared to R2 = 0.658 for the average temperature

profile). Overall, the calculated hot temperature profiles are in good
agreement with 3-D numerical results.

3.3 Determination of the temperature distribution

The last step is to estimate the distribution of the hottest tempera-
tures using both the average and hot temperature profiles obtained
above. Here, we will mainly focus on the distribution of tempera-
ture at a given depth using the cumulative density function (cdf).
A brief explanation of the cdf is provided in Fig. 5. Although the
precise shape of the distribution changes with RaH (Vilella et al.
2018), the main characteristics remain similar independently of the
RaH and depth considered. First, the cumulative density function
slowly increases until values up to 0.1–0.2, then sharply increases
until reaching 0.95–0.98, and again slowly increases until 1.0. The
fitting of this type of distribution is challenging. In particular, the
extreme values of the distribution will often be grossly misfitted by
classical distribution functions, while being crucial for our purpose.

To overcome these difficulties, we only focus on the hottest tem-
peratures, here taken as the cdf between 0.95 and 1. Interestingly,
when these distributions are rescaled, that is the dimensions of both
the x-axis and y-axis are modified in order to range from 0 to 1
(Fig. 6), they exhibit a similar trend, independently of the depth or
RaH. We can therefore estimate this part of the distribution using a
simple function. For instance,

g∗
dist = 1 − exp(−pT ∗

rsc), (17)

with p a fitting parameter and T ∗
rsc the dimensionless and rescaled

temperature, provides a good fit (Fig. 6). The best-fitting value of
the parameter p changes with the depth and RaH considered and
ranges typically between 1 and 10. Here, for the sake of simplicity,
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Figure 3. Horizontally averaged temperature profiles from 3-D numerical simulations and calculated using the mixing length theory for various values of the
Rayleigh–Roberts number (RaH). Profiles at different time-steps are reported to account for temporal variations.

we consider a constant value p = 5 as it provides a distribution in
fairly good agreement with numerical results (Fig. 6).

To obtain the original distribution of temperature from the
rescaled one, it is necessary to estimate the temperature profile
corresponding to a cdf of 95 per cent (T ∗

95). Based on empirical
observations, we calculate this profile assuming, at first order, that

T ∗
95 = (1/3) T ∗

avg + (2/3) T ∗
hot. (18)

Our analytical results are plotted in Fig. 7 along with results from 3-
D numerical simulations. For RaH < 107, the profiles agree reason-
ably well in the TBL with only slight differences that are equivalent
to the ones found for the average (Fig. 3) and hot (Fig. 4) tempera-
ture profiles. For RaH > 107, the agreement is less satisfactory, with
a slight overestimation of the temperatures at the base of the TBL.
Nevertheless, close to the base of the TBL (where the differences
are larger), the disagreement is lower than 5 per cent for all the cases
studied. Results given by eq. (18) are therefore accurate enough for
our purpose.

3.4 Summary of the key stages of our method

At that point, we have all the necessary ingredients to estimate, at
given conditions, the distribution of the 5 per cent hottest tempera-
tures and thus to estimate the generation of melt in a natural system.
For the sake of clarity, we provide in this section a brief summary
of this process. The first step is to build the dimensionless hot (T ∗

hot)
and horizontally averaged (T ∗

avg) profile using

dT ∗
hot

dz∗ − RaH l∗4

18

(
dT ∗

hot

dz∗ − 0.055

z∗ 1.52

)2

+ 1.65z∗ = 0 (19)

and

dT ∗
avg

dz∗ − RaH l∗4

18

(
dT ∗

avg

dz∗ − 0.05

z∗ 1.55

)2

+ z∗ = 0, (20)

respectively. In these equations, the profile of the mixing length l∗

is indicated in Fig. 2, while its maximum value is given by eqs (16)
and (13), respectively. Note that the parameter values are reported
in Table 1. The second step is to use eq. (18) to calculate T ∗

95, the
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Figure 4. Hot temperature profiles from 3-D numerical simulations and calculated using the mixing length theory for various values of the Rayleigh–Roberts
number (RaH). Profiles at different time-steps are reported to account for temporal variations.

temperature profile corresponding to a cumulative density function
of 95 per cent. It is then possible to calculate at every depth the
distribution of temperature between T ∗

95 and T ∗
hot using eq. (17), with

p = 5. The last step is to dimensionalize the calculated distribution
of temperature using the temperature scale of the system (eq. 2).
These distributions can then be used to estimate the generation of
melt in a natural system. However, our approach relies on a large
number of assumptions, each one having intrinsic uncertainties. It
is therefore important to test the accuracy of our method in practical
cases.

4 P R E C I S I O N O F T H E A NA LY T I C A L
A P P ROA C H

The aim of this section is to estimate the potential accuracy of our
analytical approach when applied to a natural system. A direct appli-
cation may however be misleading, since our model assumes a too
simple set-up to be applied to an actual planetary body, for instance,

viscosity variations and compressibility effects are neglected. We
therefore chose to apply our analytical approach to a generic plane-
tary mantle. This gives a first indication on the performance of our
analytical model, which is crucial before attempting to extend the
approach to actual systems. The evaluation will be conducted in two
stages. First, we will compare 1-D analytical results and 3-D nu-
merical results at steady state for various RaH in the range 104–109

in order to confirm that, at first order, the 1-D analytical results are
consistent with results of 3-D simulations. Then, we will use a more
sophisticated model to estimate the evolution of a generic planetary
mantle using both our analytical approach and the numerical code
StagYY (Tackley 2008).

4.1 Silicate mantle at steady state

The first test will be conducted as follows: (i) we will calculate
the analytical results corresponding to each of our 3-D numerical
simulations; (ii) the analytical and numerical results will be applied
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(a) (b) (c)

Figure 5. Illustration of the cumulative density function (cdf) using the 3-D numerical simulation obtained for RaH = 107.15. At a given depth, here taken
as a dimensionless height equal to 0.9, that is the base of the thermal boundary layer in (a) the average temperature profile, (b) the temperature field exhibit
large lateral variations. These variations can be quantified using the (c) cdf. The cdf measures the proportion of material with a temperature lower than the
temperature considered. For instance, a cdf of 0.5 indicates the median temperature, while a cdf of 0 and 1 indicate that there is no temperature lower or higher,
respectively, than the temperature considered. The average (Tavg), minimum (Tmin) and maximum (Tmax) temperature at that depth are indicated in (c), while
the shaded area corresponds to the distribution of temperature between a cdf of 0.95 and 1.0 reported in Fig. 6.

Figure 6. Distributions of temperature from 3-D numerical simulations taken at different depths for RaH = 105 (left-hand panel) and RaH = 107.15 (right-hand
panel). The plots focus on the 5 per cent hottest temperatures, where melting is potentially occurring. When the distributions are rescaled, they show a similar
behaviour that can be fitted with eq. (17) (dashed line), here showed for p = 5.

to a generic mantle. In particular, we will estimate the proportion
of material above the melting temperature as a function of depth
and (iii) we will compare the two sets of results to evaluate the
accuracy of our analytical approach. Using the line of reasoning
developed in Section 3, the calculation of the analytical results is
straightforward. It only requires to dimensionalize the results and
set the solidus profile.

The temperature scale of the system is given in eq. (2) and de-
pends on the heating rate (Htp), the mantle depth (dtp) and its thermal
conductivity (λtp). For the sake of example, we decide to study a
1000 km deep generic planetary mantle composed of silicates. Un-
der this assumption, typical values for the properties of silicates are
reported in Table 2 along with other important properties. Note that
different values could have been considered without affecting our
conclusions. The last parameter needed to calculate the temperature

scale is Htp. We investigate a large range of values for Htp, but only
focus on cases with a moderate amount of melt. The quantity of
melt generated is estimated by comparing the calculated tempera-
tures to a solidus profile (Fig. S2) obtained from an interpolation of
experimental works on terrestrial peridodites (Zhang & Herzberg
1994; Hirschmann 2000; Andrault et al. 2011), while the pressure is
assumed to be hydrostatic. As such, we do not estimate the amount
of melt generated, but the proportion XM of material with a temper-
ature larger than the solidus profile. Note that the amount of melt
generated will be investigated in the next section.

The analysis of our results has shown that all the cases investi-
gated could be separated into two groups depending on their RaH.
We therefore report in Fig. 8 only one representative case for each
group. For cases with RaH ≤ 107 (Fig. 8a), the predicted tempera-
ture profiles are in relatively good agreement with profiles obtained
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Figure 7. Temperature profiles corresponding to a cumulative density function of 95 per cent from 3-D numerical simulations and calculated by our approach
for various values of the Rayleigh–Roberts number (RaH). Profiles at different time-steps are reported to account for temporal variations. The analytical curves
are calculated using eq. (18) and the profiles predicted in Figs 3 and 4.

Table 2. Model parameters for our generic planetary mantle.

Parameter Symbol Value Unit

Mantle depth dtp 1000 km

Gravity acceleration gtp 3.0 m s−2

Surface temperature Tsurf, tp 250 K

Density ρtp 3400 kg m−3

Thermal conductivity λtp 3.0 W m−1 K−1

Thermal expansion coefficient αtp 5 × 10−5 K−1

Thermal diffusivity κ tp 7 × 10−7 m2 s−1

Specific heat capacity Cp, tp 1260 J kg−1 K−1

Viscosity ηtp 1020 Pa s

Latent heat of fusion Ltp 600 kJ kg−1

Half-life 238U t1/2 4.468 Gyr

Initial heating rate Htp0 2.45× 10−7 W m−3

in numerical simulations (R2 > 0.99 in the TBL, while R2 ≈ 0.7 for
the whole profile), and the proportion of material with a tempera-
ture larger than the solidus profile agrees with the 3-D numerical
results. To achieve this, however, we have considered a slightly dif-
ferent heating rate between the analytical and numerical results. If
we assume the same value, Fig. S3 shows that the temperature pro-
files are visually identical, but the amplitude of XM is systematically
underestimated or overestimated. This is because the amplitude of
XM is very sensitive to variations of Htp (e.g. Vilella et al. 2020).
For all the numerical simulations investigated (i.e. even for lower
RaH), the difference in Htp required to obtain the same amplitude of
XM in the analytical and numerical results is lower than 4 per cent
(an average of ≈2 per cent, which is consistent with typical errors
of scaling laws). The effect of this difference on the amount of melt
predicted is quantified in the next paragraph. For cases with RaH

≥ 107 (Fig. 8b), the temperature profiles are also well reproduced
by our analytical results (R2 > 0.99 in the TBL, while R2 ≈ 0.8
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(a)

(b)

Figure 8. Horizontally averaged (left-hand column) and hot (central column) temperature profiles as well as XM the proportion of material whose temperature
is larger than the solidus temperature (right-hand column) for (a) RaH = 106 and (b) RaH = 109. Note that a different vertical scale is used in the right column
for visualization purposes. Results obtained from both 3-D numerical simulations and our analytical framework are reported. In the right column, two different
heating rates (Htp) are considered in order to reproduce the temporal fluctuations exhibited by the 3-D numerical results (shaded area).

for the whole profile). Nevertheless, a slight disagreement exists
between the two sets of results for XM. Indeed, the maximum of XM

is slightly deeper in the analytical results (for RaH = 109, 32 km
deep versus 25 km deep). This rather small difference (0.7 per cent
of the mantle depth) is equivalent to the vertical resolution of our
3-D simulation (4 km resolution) and also equivalent to the typi-
cal errors expected from scaling laws of δTBL (Vilella & Kaminski
2017). We therefore conclude that, despite the simplifications, our
analytical framework is able to provide a reasonable estimate of the
location and proportion of material above the melting point.

4.2 Evolution of a generic planetary mantle

In the previous section, we have shown that our analytical approach
should theoretically be able to estimate the melt generation for a
wide range of RaH. We however used a simplified model assuming
a steady-state without the effects of melting on the heat budget.
These results may thus in practice not be applicable to the evolution
of planets. Here, we therefore aim to verify the accuracy provided
by our framework in the modelling of planetary evolution. This
will be done in several steps. First, we develop an algorithm to
estimate the evolution of a planetary mantle including the effects
of melting and secular cooling. This model is then applied to the
generic mantle described in the previous section. As a second step,
we conduct a numerical simulation of this generic mantle using

StagYY (Tackley 2008). Finally, we compare the results obtained
with the two approaches.

4.2.1 Analytical estimation of the mantle evolution

The evolution of our generic mantle is mainly governed by its con-
servation of energy,

ρtpCp,tp
dT

dt
= −dFcond

dz
− dFconv

dz
+ Hrad − Pmelt

V
, (21)

with Hrad the heating rate produced by radioactive heating, Pmelt

the power used for melting, V the volume of the mantle and t time.
This equation is a priori different from the equation used in our
analytical framework (eq. 3), so that a direct application may not be
possible. However, if we simply write,

Hmelt = Pmelt

V
, Hsec = ρtpCp,tp

dT

dt
, and

Heff = Hrad − Hmelt − Hsec, (22)

then eq. (21) implies

0 = −dFcond

dz
− dFconv

dz
+ Heff , (23)

which is identical to eq. (3). It seems therefore possible to use our
framework to estimate the distribution of temperature as long as Heff
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is assumed to be independent from z. Note that this is not entirely
correct because both secular cooling and melting vary spatially.
Nevertheless, the equivalence between secular cooling and a homo-
geneous heating source is often assumed (e.g. Krishnamurti 1968;
Weinstein & Olson 1990; Davaille & Jaupart 1993) and has been
confirmed empirically by Grasset & Parmentier (1998) in a system
without melting. By contrast, the assumption that melting can be
approximated by a homogeneous heating source has not yet been
investigated. This is however out of the scope of this paper.

The effective heating rate Heff is composed of three components
(eq. 22). The first component, the radioactive heating contribution,
is calculated using

Hrad = Htp0 exp

(
−log(2)

t

t1/2

)
, (24)

with Htp0 the initial heating rate and t1/2 the half-life of the radioac-
tive isotopes. The main long-lived radioactive isotopes in terrestrial
planets are 238U, 235U, 232Th and 40K. As the proportion of these
radioactive isotopes may vary importantly depending on the plan-
etary body considered, we follow a general approach by assuming
only the presence of 238U with an initial abundance set to obtain a
moderate amount of melting. Note that when investigating a specific
planet, one may easily incorporate additional radioactive isotopes.
The second component corresponds to the power associated with
melt generation,

Hmelt = Ltpρtp�Vmelt

�t V
, (25)

with �Vmelt the volume of melt generated during the time-step
of the evolution model �t and Ltp the latent heat of fusion. Note
that we here assume that all the material above the solidus is fully
molten and instantaneously extracted to the surface (Section 5.1.5
provides a detailed discussion on this assumption). Therefore, the
determination of �Vmelt only requires to compare the solidus profile
with the estimated distribution of temperature. This assumption is
made in order to increase the sensitivity of our analytical model
to the input parameters. In other words, our goal is to estimate the
maximum error between the numerical and analytical results. The
third component corresponds to secular cooling. In practice, we
calculate this contribution using,

Hsec = ρtpCp,tp
�Tvol

�t
, (26)

with �Tvol the variation of the volume average temperature between
the time t and t + �t. Note that all the properties of the model are
reported in Table 2.

Following eqs (25) and (26), the effective heating rate Heff is a
function of the thermal state of the mantle, while Heff is required to
estimate the distribution of temperature. One has therefore to follow
an iterative process to obtain the actual thermal state (so Heff) of
the system. In order to improve the speed and accuracy of our
numerical scheme, we decided to calculate a priori the temperature
and melting profiles for a large range of Heff. As a result, at each
time-step, the actual Heff can simply be obtained by solving eq. (23)
using the pre-calculated data. Once the value of Heff is obtained,
we move to the time t + �t and repeat the process until the full
evolution is calculated.

An interesting feature of this model is that the effective heating
rate decreases, at first order, with �t (eqs 25 and 26). It is there-
fore possible to lower the amount of melt produced by reducing the
time-step used. This is a crucial feature because our framework is
only able to predict, at a given depth, a maximum melt proportion
of 5 per cent. Decreasing the time-step can therefore be used to

overcome this limitation (see Section 5.1.5 for more details). How-
ever, a small time-step would induce a large computational time.
We therefore use a small time-step in eq. (25), set by the need to
have a low proportion of melting, while we use a time-step �tev

= 10 000 yr for the time-stepping procedure (and in eq. 25). This
should have no impact on the results as long as the change of Heff

remains modest between t and t + �tev. In our case, this condition
implies that �tev has to be lower than 100 000 yr (Fig. S6).

4.2.2 Numerical simulations of the mantle evolution

The numerical simulation is designed to reproduce as closely as pos-
sible our analytical framework. As such, we consider a simplified
version of melting, where all the volcanism is extrusive, all material
above solidus is fully molten, and melt is instantaneously extracted
to the surface. The rock properties are given in Table 2 and the heat-
ing rate is specified in eq. (24). The initial temperature condition is
obtained by running a numerical simulation, with a constant heat-
ing rate Htp0, until a steady-state is reached. This has the advantage
to decrease the transient effects at the start of the simulation (see
Section 5.1.3 for more details). The grid resolution and aspect ratio
are 512 × 256 × 256 and 4:2, respectively. Grid refinement is used
at the surface to improve the resolution of the TBL.

4.2.3 Comparison between 1-D analytical evolution and 3-D
simulation

The comparison between the two approaches can be done using
a variety of characteristics. Here, we have selected the following
properties: (i) the maximum and volume average temperature in the
mantle, to assess the thermal evolution and (ii) the depths where
melting occurs and the rate of melt production Rmelt, to assess the
melt generation. These properties are straightforward to obtain ex-
cept the melting rate that is calculated at each time-step using

Rmelt = ρtpCp,tp

�tV Ltp

∫
V

(T − Tsol)dV, (27)

with T the local temperature, and Tsol the local solidus temperature.
We report in Fig. 9 the evolution of the four selected properties

for both the 1-D analytical model and the 3-D simulation. We first
note that the evolution of the maximum temperature is fairly well
reproduced by the analytical approach with a typical deviation lower
than 50 K (≈6 per cent, Fig. 9a). By contrast, the volume average
temperature is systematically underestimated by ∼50–80 K (≈6–
10 per cent, Fig. 9b). The latter is however not surprising as our
analytical approach tends to underestimate the temperature in the
convective interior for very large RaH (Fig. 3; Section 3.1). A close
inspection of these plots reveals two important shortcomings of our
analytical approach: (i) the analytical approach predicts an almost
constant temperature and melting depths for almost 1 Gyr, whereas
it is continuously decreasing in the simulation. This difference may
be due to the difficulty of accounting for the dynamic nature of a
convective system in an analytical approach based on a sequence
of static snapshots (see Section 5.1.5 for more details). (ii) even
though we tried to reduce the transient effects, we can still observe
a slight transient phase in the first 300 Myr. This transient phase
is caused by the inadequacy between the initial condition and the
equilibrium state of the system. As the system naturally tends to
reach equilibrium, a gradual change of its thermal state occurs with
an increase of the mean temperature and a decrease of the maximum
temperature, which in turn induces a slight decrease of the melting
rate (Figs 9a, b and d). Transient effects may be important for the
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(a) (b)

(c) (d)

Figure 9. Evolution of the (a) maximum temperature, (b) the volume average temperature, (c) the depths where melting occurs and (d) the melting rate for the
generic mantle described in Section 4.1. Results obtained from both 3-D numerical simulations and our analytical framework are reported.

early evolution of planetary bodies, while being difficult to account
for in 1-D analytical models (see Section 5.1.3 for more details).
With these two shortcomings in mind, we can now describe the
evolution of the melt generation. In both the analytical approach
and 3-D simulation, melting is present for an extended period of
time and stops at ∼1.6 Gyr (Fig. 9c). The depths where melting
occurs are well reproduced by the analytical approach, especially
the initial depth range where melting occurs (∼60–100 km) and
the decreased depth range with time. The only notable difference
concerns the amplitude of the melting rate that is systematically
underestimated by a factor 3 in the analytical calculation (Fig. 9d).

The comparison between the 1-D analytical evolution and 3-D
simulation has shown that some properties, such as the maximum
temperature or the depth range where melting occurs, are relatively
well reproduced by our analytical approach, while other properties,
such as the volume average temperature or melting rate, are subject
to systematic deviations. By comparison, using the horizontally
averaged temperature profile to assess the presence of melt, as done
by previous studies (Morschhauser et al. 2011; Grott et al. 2011),
leads to a period where melting occurs about 4.5 times shorter, while
the power available for melting is about 30 times lower. In that sense,
our method provides a net improvement in accuracy and stands
therefore as a useful tool to study the evolution of planetary bodies.

5 D I S C U S S I O N

5.1 Limitations

The approach developed in this study is subject to several important
limitations. While some of these limitations can be easily alleviated,

some others are inherent to the model and should be kept in mind.
We provide in this section a brief discussion of these limitations.

5.1.1 Applicability domain

To start the discussion, it is important to mention that the laws built
in this work are only valid for the specific conditions investigated.
In particular, it would be hazardous to apply our results to systems
with RaH much larger than 109. Indeed, the calculated temperature
profiles are very sensitive to the value of δTBL. So the inevitable
error on δTBL made when extrapolating the scaling laws may lead to
large errors on the calculated temperature profiles. We would like
to emphasize that this limitation is not specific to our work. Scaling
laws are traditionally established by fitting numerical, experimental
or empirical results with a power-law function (e.g. Silveston 1958;
Castaing et al. 1989). This process is intrinsically flawed by the
existing trade-off between the value of the pre-factor and the value
of the exponent. While errors on the pre-factor are not dramatic,
errors on the exponent would grow exponentially leading to large
uncertainties when extrapolated over several orders of magnitude.
As a general rule, scaling laws should therefore only be used to
interpolate results.

5.1.2 Model complexity

This study considers a simplified convective system with only in-
ternal heating. Although this system is appropriate for some natural
systems such as planetary bodies with large amount of tidal heating
(e.g. for Io, Steinke et al. 2020) or radioactive heating (e.g. for the
early evolution of planetesimals, Kaminski et al. 2020), its potential

D
ow

nloaded from
 https://academ

ic.oup.com
/gji/article/229/1/328/6442198 by H

okkaido U
niversity Library user on 28 April 2022



340 K. Vilella and S. Kamata

applications are limited as several important ingredients are miss-
ing, for example basal heating or spherical geometry. Theoretically,
the approach developed here can also be applied to more complex
systems provided that a few modifications are adopted. First, the
MLT eq. (11) should be adapted to the considered system. For in-
stance, when both basal and internal heating are present, eq. (11)
becomes

dT ∗

dz∗ − Ral∗4

18

(
dT ∗

dz∗ − dT ∗

dz∗

)2

+ NuT − H (1 − z∗) = 0, (28)

where

Ra = ρgα�T d3

κη
, (29)

is the Rayleigh number, �T the temperature jump across the system
and NuT the dimensionless surface heat flux. Secondly, the shape of
the mixing length (Fig. 2a) should also be adapted to the expected
temperature profile. For instance, when basal heating is significant,
a bottom TBL is present and the convective interior may be sub-
adiabatic (i.e. with a negative temperature gradient). In that case,
the mixing length should have a double peak, one for each TBL.
After the implementation of these modifications, the last step is to
determine scaling laws for the thickness of the two TBLs and for
the function f∗ (eq. 14). Note that the difficulty of this task increases
with the complexity of the system.

5.1.3 Transient effects

Transient effects are particularly important in the early evolution of
planets. Right after the planet formation, the whole planet, including
the mantle, is unlikely to be at steady state, but rather in a much
hotter state. The planetary mantle may even be fully molten and
experience a magma ocean event (e.g. Monteux et al. 2016). As a
consequence, the mantle evolution is characterized by a first phase,
possibly lasting for several hundred million years, where it cools
down until reaching a steady state. This first phase may be crucial
in planetary evolution because it can potentially impact the whole
subsequent evolution, as it has been postulated for instance for
the Moon (Laneuville et al. 2013) or Earth (Ballmer et al. 2017).
Generally, it is believed to be difficult to include these transient
effects in 1-D analytical models. However, some previous works
(Choblet & Sotin 2000; Limare et al. 2021) have suggested that
scaling laws established at steady state remain valid in the transient
phase allowing the introduction of transient effects in analytical
models. Nevertheless, one may keep in mind that we have very few
constraints on the early evolution of planets. Therefore, even if we
could model accurately these transient effects, a lot of uncertainties
would remain on the early evolution of planets because of our lack
of constraints.

5.1.4 Secular cooling

Results of our 1-D analytical evolution show a systematic underes-
timation of the volume average temperature (∼70 K). Although it
does not directly impact the generation of melting, it still influences
the results as it may change the degree of secular cooling (eq. 26).
In our case, the temporal derivative of the volume average temper-
ature, which sets the amplitude of secular cooling, is similar in the
1-D analytical evolution and 3-D numerical simulation (Fig. 9b).
Secular cooling should thus be correctly estimated. This may how-
ever not be always true. In particular, when the Rayleigh–Roberts
number is changing by several orders of magnitude throughout the
calculated evolution, one may expect a non-systematic error on the

volume average temperature, which in turn may lead to a significant
error on the amplitude of secular cooling. Nevertheless, for a typical
terrestrial planet, large temporal variations of the Rayleigh–Roberts
number are not expected so that our approach may be accurate. One
should however remain careful when investigating evolutions ex-
hibiting large temporal variations of the Rayleigh–Roberts number.

5.1.5 Melting process

Our model assumes a simple version of melting where at each time-
step all the melt is reaching instantaneously the surface (extrusive
volcanism). This assumption underlies several important simplifi-
cations. First, in a planetary setting, a non-negligible proportion of
the melt would actually not reach the surface but would remain in
the mantle and solidify (intrusive volcanism). The exact ratio be-
tween intrusive and extrusive volcanism is difficult to estimate, such
that it is often considered as an input parameter in 3-D simulations.
Secondly, melting ascent is not instantaneous, although it is much
faster than the typical convective time-scale. Lastly, all material
above the solidus is not fully molten but experiences partial melting
producing chemical differentiation. One may note that these limi-
tations are not peculiar to our analytical approach as they are also
present in 3-D numerical simulations. Different methods developed
to account for some of these complexities could be included in our
model (e.g. Katz et al. 2003; Driscoll & Bercovici 2014). Here, the
use of a simple version of melting was not dictated by an intrinsic
limitation of our model, but because the aim of this study is only
to show the validity of our approach and not to provide a realistic
modelling of mantle evolution.

Our analytical approach has however an additional intrinsic limi-
tation that induces a connection between time-step and melt gener-
ation. A simple way to identify this connection is by considering the
extreme case of a very small time-step �t. For such a case, follow-
ing eqs (22) and (25), the volume of melt produced �Vmelt has to
be very low in order to maintain a reasonable value for the effective
heating rate Heff. In this extreme case, melt generation would only
occur at a specific depth and at a specific temperature. This limi-
tation comes from the dynamic nature of a convective system and
can be understood by considering the evolution of hot upwellings.
Generally, hot upwellings are rising through the convective interior
due to their buoyancy. At one point, the plume head may cross the
solidus and start to generate melt. The first generation of melt would
however not stop the plume motion, such that the hot material would
keep rising and producing melt over a certain depth range. Unfortu-
nately, this dynamic process cannot be reproduced in an analytical
approach relying on static snapshots of the convective system. Here,
we thus tried to account for this limitation by setting a time-step
value leading to a maximum proportion of material experiencing
melting (Pmm) around 4.5 per cent. A different value of Pmm could
be selected inducing changes in the calculated evolution.

In order to evaluate the consequences of this choice on our model
results, we plotted in Fig. 10 the calculated evolutions assuming a
value for Pmm of 4.5 per cent (as in Fig. 9), 2.0 and 0.5 per cent. As
predicted, the depths where melting occurs is the most impacted
property with a reduction of the depth range as Pmm decreases.
Interestingly, this reduction is mainly caused by the decrease of the
estimated maximum depth of melting for a low maximum propor-
tion of melt (Pmm <2 per cent). By contrast, the estimated minimum
depth of melting is only slightly affected indicating that it is a robust
output of our model. We also note that the maximum temperature
follows a similar behaviour than the maximum depth of melting,
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(a) (b)

(c) (d)

Figure 10. Evolution of the (a) maximum temperature, (b) the volume average temperature, (c) the depths where melting occurs and (d) the melting rate for
the generic mantle described in Section 4.1. Solid curves are from Fig. 9, while dotted and dashed lines are obtained favouring a maximum amount of melting
of 2.0 and 0.5 per cent, respectively.

while the volume of melt produced and its duration are hardly af-
fected. For reference, the total volume of melt is ∼10 per cent lower
when assumed Pmm = 4.5 per cent compared to Pmm = 0.5 per cent.
Intuitively, the melting rate should not be impacted by our choice of
Pmm. However, increasing Pmm induces an increase in the average
temperature of melt, so that more heat is required to produce the
same amount of melt. As a result, the total volume of melt generated
decreases with Pmm, although the amount of heat available for
melting is roughly similar. Note that it is not strictly similar because
higher values of Pmm also implies a hotter initial temperature
profile, so that more secular cooling is available (Fig. S5).

Overall, we conclude that only the maximum depth where melting
occurs and the maximum temperature may be significantly affected
by this limitation. For instance, this limitation is responsible for
the constant maximum temperature and melting depths for the first
1 Gyr in Fig. 9. Nevertheless, our choice for Pmm (i.e. 4.5 per cent)
seems to be high enough to provide a reasonable estimate for these
properties, as shown by the results in Fig. 9. A higher value of Pmm

(4.5–4.9 per cent) can also be considered as long as it remains lower
than the maximum value accepted by our model (5 per cent). The
reason is simply that our analytical method cannot estimate the melt
volume for Pmm > 5 per cent introducing a numerical singularity
at Pmm = 5 per cent. We therefore suggest to use Pmm = 4.5–
4.9 per cent for the analytical evolution while remaining cautious
when analysing the maximum depth where melting occurs.

5.2 Implications for melting in exoplanets

A unique characteristic of our approach is to provide a fast first order
estimate of the melt generation. This ability may be particularly

useful when studying poorly constrained terrestrial planets, since a
thorough numerical investigation would require a large calculation
power. Here, we show an example of application by investigating
the generation of melt in exoplanets.

Following the model used by Vilella & Kaminski (2017), we
consider a differentiated terrestrial planet with a radius Rtp and a
heating rate Htp. The mass of the planet (Mtp) is obtained using
the mass-radius relationship obtained by Valencia et al. (2006) for
Earth-like planets,

Rtp

RT
=

(
Mtp

MT

)0.27

, (30)

where RT and MT are the radius and mass of the Earth, respectively.
We can then calculate the acceleration of gravity gtp = G Mtp/R2

tp ,
with G the gravitational constant. The mantle depth (dtp) is estimated
using (Valencia et al. 2006),

dtp = Rtp − Rc,tp with Rc,tp = 3.5 103

(
Rtp

RT

)0.926

, (31)

the core radius (all the distances are in kilometres). By contrast
with Vilella & Kaminski (2017), we do not consider a temperature
dependent viscosity nor the effects of spherical geometry. Further-
more, values for rock properties are listed in Table 2 and slightly
differ from the ones used in Vilella & Kaminski (2017), in particular
the pressure is here assumed to be hydrostatic.

Using this set of parameters combined with our analytical ap-
proach, we estimate the generation of melting for a large range of
planetary radius and heating rates assuming a maximum amount of
melt of 4.5 per cent (see Section 5.1.5). As a first step, we identify
the conditions for which the Rayleigh–Roberts number is either too
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(a) (b)

(c) (d)

Figure 11. Diagram showing the estimated (a) maximum depth of melting, (b) minimum depth of melting, (c) melting rate and (d) dimensionless average
melting depth as a function of the planetary radius and heating rate. We exclude the cases where the natural system is either conductive (RaH < 868), or has a
Rayleigh–Roberts number so high that our approach cannot be applied (RaH > 1010). The details of the modelling and parameters values are given in the text.

high to apply our approach (here chosen to be RaH > 1010), or too
low to allow for convection (RaH < 868). As a second step, we
exclude all the cases where no melt is generated to focus only on
the conditions for which melting is present (Fig. 11). In that regime,
a surprising result is the absence of variations in the melting depths
with increasing heating rate. This is actually caused by the simpli-
fied version of melting considered here (see Section 5.1.5). A more
sophisticated modelling of melting should predict a widening of the
melting depths with increasing heating rate. Furthermore, for heat-
ing rates as large as 10−4 W m−3, one may expect the appearance
of a local magma ocean. As a matter of fact, considering Rtp =
1000 km and Htp = 10−4 W m−3, a volume equivalent to the whole
mantle should melt every 10 Myr. This may be difficult to reconcile
with solid-state convection. Our results can therefore be seen as a
preliminary step. A more sophisticated model of melting is thus
required to obtain a precise assessment of melting in exoplanets.

Nevertheless, the present results already provide crucial and ro-
bust information that deserved to be discussed. For instance, the
depth range where melting occurs exhibit two different trends with
increasing planetary radius. For Rtp < 1000 km, the depth range
becomes deeper with increasing planetary radius. In that case, the
solidus temperature varies only slightly with depth due to the low
acceleration of gravity. As a result, melting occurs from the base of

the mantle to the base of the TBL. In other words, the maximum
depth of melting is simply the mantle depth, while the minimum
depth of melting varies as the thickness of the TBL (which is in-
creasing with the planetary radius following Vilella & Kaminski
2017). One way to verify this observation is with the dimension-
less average melting depth (Fig. 11d) that remains constantly high
(>0.6) in that regime. For Rtp > 1000 km, the depth range becomes
shallower with increasing planetary radius. This is because pres-
sure variations are becoming significant inducing an increase of the
melting temperature with the planetary radius. Melting therefore
requires a higher effective heating rate, inducing a larger RaH so a
thinner TBL. This trend is likely to remain valid for RaH larger than
1010 as long as the trend of the solidus profile with pressure is not
significantly modified, which is unlikely to happen even for large
exoplanets (Stixrude 2014).

6 C O N C LU S I O N

We have developed a new analytical approach, partly based on an
extended version of the MLT, able to estimate the distribution of the
hottest temperatures for a purely volumetrically heated system. The
final objective was to assess the melt generation in 1-D analytical
models. We have therefore proposed a 1-D analytical approach that
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accounts for the effects of melting, secular cooling and radioactive
heating. To demonstrate its relevance, we applied this model to a
generic planetary mantle and conducted a 3-D simulation reproduc-
ing these conditions. The comparison between the analytical results
and the 3-D simulation are encouraging. In particular, the evolution
of the maximum temperature and the depth range where melting
occurs is well reproduced by our analytical approach. Note however
that the volume average temperature is systematically underesti-
mated by ∼70 K and that the total amount of melting is three times
lower than in the 3-D simulation. Despite these disagreements, our
analytical approach stands as a useful tool to study planetary evolu-
tion: (i) it is the only analytical approach able to constrain a part of
the temperature distribution, that is able to model melt generation
properly; (ii) compared to 2-D or 3-D simulations, 1-D analytical
models are much faster so that a much larger parameter space can
be explored and (iii) our analytical approach can be combined with
a sophisticated modelling of melt generation in order to investigate
the chemical evolution of planetary mantles. The latter point is cru-
cial for our understanding of planetary evolution, while it seems out
of reach for current 2-D and 3-D simulations. This study, however,
considers a purely volumetrically heated fluid, which may not be
appropriate to model accurately a planetary body. Additional work
is therefore required to extend our analytical approach to a system
appropriately depicting a planetary mantle or an icy shell.
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Figure S1. Dimensionless surface heat flux calculated from the hot
temperature profile as a function of the Rayleigh–Roberts number
(RaH). The results are from the 3-D numerical simulations con-
ducted in Vilella et al. (2018). We also plot the constant dimension-
less value 1.65 that is used in this work as a reference value.
Figure S2. Solidus profile used in our analytical approach. This
profile is built by combining and interpolating experimental works
on terrestrial peridodites (Hirschmann, 2000; Zhang & Herzberg,
1994; Andrault et al., 2011).
Figure S3. Horizontally averaged (left column) and hot (central
column) temperature profiles as well as XM the proportion of mate-
rial whose temperature is larger than the solidus temperature (right

column) for (a) RaH = 106 and (b) RaH = 109. Blue curves are
obtained from 3-D numerical simulations, while red curves are cal-
culated with our analytical framework. In the right column, the blue
shaded area reproduces the temporal fluctuations exhibited by the
3-D numerical results.
Figure S4. Plot of the function f∗ (black curves) used in our ana-
lytical model and gradient of the temperature profile obtained by
our analytical model with RaH = 109 (red curves) for the average
temperature profile. Note that the x-axis has a logarithmic scale for
visualization purposes.
Figure S5. Evolution of the (a) effective heating rate (Heff), (b) the
power associated with melt generation (Hmelt), (c) the radioactive
heating rate (Hrad), and (d) the secular cooling contribution (Hsec)
estimated using our analytical approach for the generic mantle de-
scribed in Section 4.1. The red, purple and blue curves are obtained
favouring a maximum amount of melting of 4.5, 2.0 and 0.5 per cent,
respectively. This figure is complementary to Fig. 10.
Figure S6. Evolution of the (a) maximum temperature, (b) the vol-
ume average temperature, (c) the depths where melting occurs and
(d) the melting rate for the generic mantle described in Section 4.1.
The different curves are obtained using a different value of �tev

comprises between 1 Myr and 1 kyr. Except for the melting rate,
the curves are superimposed. The melting rate is impacted by �tev,
because it influences how the maximum proportion of melting de-
creases with time. This is for example responsible for the stepwise
variations visible for �tev = 10 and 1 kyr. Overall, the difference
in term of total volume of melt generated is less than 0.02 per cent
between cases with �tev = 100, 10 and 1 kyr, while this difference
rises to 0.5 per cent when considering cases with �tev = 1 Myr and
100 kyr. Values of �tev lower than 100 kyr are therefore required to
ensure a correct depiction of the evolution.

Please note: Oxford University Press is not responsible for the con-
tent or functionality of any supporting materials supplied by the
authors. Any queries (other than missing material) should be di-
rected to the corresponding author for the paper.

A P P E N D I X : S O LV I N G T H E G OV E R N I N G
E Q UAT I O N

The resolution of eq. (11) is achieved using a finite difference ap-
proach. More specifically, the discretization of eq.(11) implies,

T ∗
i+1 − T ∗

i

dz
− RaH l∗ 4

i

18

(
T ∗

i+1 − T ∗
i

dz
− f ∗(z∗

i )

)2

+ z∗
i = 0, (A1)

where T ∗
i and l∗

i are the temperature and mixing length at height
z∗

i , and T ∗
i+1 the temperature at height z∗

i+1 = z∗
i + dz, with dz a

small increment. This equation allows to calculate T ∗
i from T ∗

i+1 by
solving a second order polynomial equation. A difficulty, however,
is to choose the correct solution from the two solutions of the
polynomial equation. To do so, we select the solution given the
best continuity in term of temperature gradient. As a result, the
increment dz has to be very small in order to ensure that the correct
solution is chosen. For reference, we typically use 50 000 vertical
points to safely prevent any possible problems. Note that the same
method can be followed to calculate the hot temperature profile
from eq. (15).
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