<table>
<thead>
<tr>
<th>Section</th>
<th>Text</th>
</tr>
</thead>
<tbody>
<tr>
<td>Title</td>
<td>Formation Mechanism of beta-Li3PS4 through Decomposition of Complexes</td>
</tr>
<tr>
<td>Author(s)</td>
<td>Calpa, Marcela; Nakajima, Hiroshi; Mori, Shigeo; Goto, Yosuke; Mizuguchi, Yoshikazu; Moriyoshi, Chikako; Kuroiwa, Yoshihiro; Rosero-Navarro, Nataly Carolina; Miura, Akira; Tadanaga, Kiyoharu</td>
</tr>
<tr>
<td>Citation</td>
<td>Inorganic chemistry, 60(10), 6964-6970</td>
</tr>
<tr>
<td>Issue Date</td>
<td>2021-05-17</td>
</tr>
<tr>
<td>Doc URL</td>
<td>Link to doc URL</td>
</tr>
<tr>
<td>Rights</td>
<td>This document is the unedited Author's version of a Submitted Work that was subsequently accepted for publication in Inorganic chemistry, copyright © American Chemical Society after peer review. To access the final edited and published work see link.</td>
</tr>
<tr>
<td>Type</td>
<td>article (author version)</td>
</tr>
<tr>
<td>Additional Information</td>
<td>There are other files related to this item in HUSCAP. Check the above URL.</td>
</tr>
<tr>
<td>File Information</td>
<td>Manuscript_2_2_clean.pdf</td>
</tr>
</tbody>
</table>
Formation Mechanism of β-Li$_3$PS$_4$ through Decomposition of Complexes

Marcela Calpa, Hiroshi Nakajima, Shigeo Mori, Yosuke Goto, Yoshikazu Mizuguchi, Chikako Moriyoshi, Yoshihiro Kuroiwa, Nataly Carolina Rosero-Navarro, Akira Miura, Kiyoharu Tadanaga

Abstract

β-Li$_3$PS$_4$ is a solid electrolyte with high Li$^+$ conductivity, applicable to sulfide-based all-solid-state batteries. While β-Li$_3$PS$_4$ synthesized solid-state reaction forms only in a narrow 300–400 °C temperature range upon heating, β-Li$_3$PS$_4$ is readily available by liquid-phase synthesis through low-temperature thermal decomposition of complexes composed of PS$_4^{3−}$ and various organic solvents. However, the conversion mechanism of β-Li$_3$PS$_4$ from these complexes has not been yet understood. Herein, we proposed the synthesis mechanism of β-Li$_3$PS$_4$ from Li$_3$PS$_4$·acetonitrile (Li$_3$PS$_4$·ACN) and Li$_3$PS$_4$·1,2-dimethoxyethane (Li$_3$PS$_4$·DME), whose structural similarity with β-Li$_3$PS$_4$ would reduce the nucleation barrier for the formation of β-Li$_3$PS$_4$. Synchrotron X-ray diffraction clarified that both the complexes possess similar layered structures consisting of alternating Li$_2$PS$_4^{−}$ and Li$^+$-ACN/DME layers. ACN/DME was removed from these complexes upon heating, and rotation of the PS$_4$ tetrahedra induced a uniaxial compression to form the β-Li$_3$PS$_4$ framework.
Introduction

The synthesis of polymorphs, i.e., different structures with the same composition, attracts great scientific interests1-4 and is important for utilizing their excellent properties, such as catalysts5-6, solid electrolytes7-8, and superconductors9-10. The formation energies of different polymorphs often have small differences11; therefore, approaches that control the kinetics need to be developed. Rate-limited kinetics of the reactions to form target compounds can be understood as diffusion, nucleation, or crystal growth. However, the required reaction conditions for diffusing all the components, nucleate, and grow a targeted polymorph are often very challenging to find12. In particular, the temperature requirements of diffusion and nucleation for producing polymorphs are conflicting. An increase in temperature is favored for enhancing diffusion to complete the reaction; however, it often loses selectivity by exceeding the kinetic barrier of the nucleation of the most stable phase. In contrast, a decrease in temperature favors the kinetic trapping of polymorphs, not by overcoming the nucleation barrier of stable phases; however, reactions may not proceed because of low diffusion rates of components and/or may prevent the nucleation of polymorphs13.

The choice of starting materials is another factor that affords the phase selectivity of polymorphs. Single-source precursors, comprising all the elements of the targeted material with organic molecules in one compound, have been widely used in low-temperature approaches to produce polymorphs14-16. Low-temperature heating of single-source precursors removes organic molecules, thereby resulting in phase conversion into target materials. Atomically mixed components in a precursor need only short-range diffusion, making nucleation a rate-limiting step. Structural similarity between precursors and target products decreases the nucleation barriers. Successful examples of the synthesis of materials from complexes are brookite-TiO\textsubscript{2}14, zinc blende-SnS15, and cubic GaN16.

Sulfide-based solid electrolytes are key materials for all-solid-state lithium batteries owing to their high room-temperature ionic conductivity17-20 and good ductility20-22. Li$_3$PS\textsubscript{4} are typical sulfide electrolytes having three polymorphs, i.e., α-, β-, and γ-Li$_3$PS\textsubscript{4} with different arrangements of PS\textsubscript{4}$^{3-}$.
polyanions. The preparation of sulfide electrolytes generally involves the solid-state reaction of mixed Li$_2$S and P$_2$S$_5$ powders or liquid-phase reaction of these powders in organic solvents. Through a solid-state reaction, β-Li$_3$PS$_4$ is obtained only within a narrow temperature range of 300–400 °C. Heating at a higher temperature produces α-Li$_3$PS$_4$ phase and cooling yields γ-Li$_3$PS$_4$ phase, attesting to the metastability of β-Li$_3$PS$_4$ near room temperature. In comparison, an interesting feature of the liquid-phase synthesis is that β-Li$_3$PS$_4$ is obtained by the formation of Li$_3$PS$_4$ complexes (Li$_3$PS$_4$·acetonitrile, Li$_3$PS$_4$·tetrahydrofuran, Li$_3$PS$_4$·ethyl propionate and Li$_3$PS$_4$·ethyl acetate) in organic solvents and the subsequent thermal decomposition below 250 °C of these complexes. The all-solid-state batteries composed of β-Li$_3$PS$_4$ synthesized through the formation of complexes, Li(Ni, Mn, Co)O$_2$ and Li metal show good cycle performances. However, why and how β-Li$_3$PS$_4$ is synthesized from these complexes synthesized in organic solvents is not yet clear. Additionally, the structures of complexes have not been determined except Li$_3$PS$_4$·1,2-dimethoxyethane (Li$_3$PS$_4$·DME) complex, which is used for the synthesis of Li$_4$PS$_4$I solid electrolytes by adding LiI, not β-Li$_3$PS$_4$.

Herein, we proposed the formation mechanism by which β-Li$_3$PS$_4$ is formed through thermal decomposition of complex precursors. The crystal structure of Li$_3$PS$_4$·acetonitrile (Li$_3$PS$_4$·ACN) was determined, and the transformation mechanism from Li$_3$PS$_4$·ACN to β-Li$_3$PS$_4$ through its uniaxial compression is proposed, and possible Li$^+$ conducting path in β-Li$_3$PS$_4$ deduced from the structure of complexes are discussed. The structural similarity of Li$_3$PS$_4$·DME and Li$_3$PS$_4$·ACN and their parallel decomposition processes identify these materials as useful precursors of β-Li$_3$PS$_4$.

1. Experimental

2.1 Synthesis

Li$_2$S (Mitsuwa Chemical, 99.9%) and P$_2$S$_5$ (Aldrich, 99%) were mixed with stoichiometric composition of 3 to 1 in anhydrous acetonitrile (ACN, Wako Pure Chemical Industries 99.5%) or 1,2-
Dimethoxyethane (DME, Sigma Aldrich 99.5%) using magnetic stirring for 2-7 days at 50 °C. Each sample was subsequently dry at 50 °C under vacuum for 2 h to remove excess of solvent.

2.2 Characterization

Synchrotron X-ray powder diffraction (PXRD) measurements were performed at the beamline BL02B2 of SPring-8 with the approval of the Japan Synchrotron Radiation Research Institute (JASRI) (Proposal number 2018B1246). The wavelength was $\lambda = 0.496353(1)$ Å, and measurement temperature was room temperature. The sample was sealed in a glass capillary with a diameter of 0.2 mm and intensity data were collected using a high-resolution one-dimensional semiconductor detector, multiple MYTHEN system36. Initial model was proposed by using EXPO-201437, and further refinement was performed by RIETAN-FP38. Electron density was derived by a maximum entropy method using Dysnomia39. Crystal structure and electron density were drawn by VESTA40.

The ionic conductivity of the pelletized samples was evaluated by electrochemical impedance spectroscopy (EIS). The solid electrolyte powders (60 mg) were pressed under 360 MPa (at room temperature) in a polycarbonate tube, with a 10 mm diameter; two stainless steel (SS) disks were used as current collectors. EIS was measured using an impedance analyser (SI 1260, Solartron) in the frequency range from 0.1 Hz to 1 MHz at the amplitude of 30 mV. The spectra were analyzed with ZView software (Version 3.3f, Scribner Associates) in order to assess the ohmic resistance (R) of the pellet.

2.3 Computational

DFT calculation was performed using the Vienna ab initio software package (VASP)41-42, using the projector augmented-wave method with the GGA-PBE functional. The k-point densities were distributed within the Brillouin zone in a Monkhorst–Pack grid43 of $3 \times 3 \times 2$ or $2 \times 2 \times 2$. Plane-wave basis cut-off energies are set to 300 eV. The lattice parameters and atomic positions were optimized until the residual force reaches below 0.04 eV/ Å.
3. Results and Discussion

3.1. Crystal structure of Li$_3$PS$_4$·ACN

The crystal structure of Li$_3$PS$_4$·ACN was successfully proposed based on the synchrotron XRD. The direct method implanted in the EXPO 2014 software37 produced the initial model with the unit cell of the $P4_2/nbc$ space group with the lattice parameters of $a\approx 8.59$ and $c\approx 12.8$ Å together with reasonable atomic positions within the PS$_4$ tetrahedron and a linear representation of the ACN molecule. Partial occupancies of Li$^+$ improved the refinement parameters. Final Rietveld analysis to minimize residual electron density assuming the same molar ratio of Li$_3$PS$_4$ and ACN converged with reasonable R-factors: $R_{wp}=3.02$ and $R_p=2.29\%$. Figure 1(a) shows the corresponding Rietveld profile.

Figure 1. SXRD pattern and proposed crystal structure of Li$_3$PS$_4$·ACN compared with that of Li$_3$PS$_4$·DME. a) Rietveld refinement of Li$_3$PS$_4$·ACN. Diffraction of residual Li$_2$S is removed. Observed (dot), calculated (line), and difference (bottom line) patterns are shown. Vertical bars denote the positions
of Bragg reflections. b,c) Crystal structure of Li$_3$PS$_4$·ACN. The corresponding electron density distribution of Li$_3$PS$_4$·ACN is shown at an equi-density level of 0.6 Å. d) Structural model of Li$_3$PS$_4$·DME.35

Figures 1(b) and 1(c) show the crystal structure of Li$_3$PS$_4$·ACN proposed by the Rietveld refinement. The crystal structure is represented as a layered configuration comprising Li$_2$PS$_4^-$ layers and interposed Li$^+$ and ACN molecules. Lithium ions in the Li$_2$PS$_4^-$ layers are arrayed in distorted tetrahedra, and interlayered Li$^+$ ions are located in a rectangular plane. A statistical distribution of Li$^+$ improves the fitting parameters. The top view shows the channels containing the ACN molecules.

The P–S distance of 2.026(3) Å in the PS$_4$ tetrahedron is comparable to that in Li$_3$PS$_4$ crystals (~2.03 Å in β-Li$_3$PS$_4$.29) The C$_2$H$_3$N molecules are represented by partially occupied symmetric C/N–C–C–C/N bonds without three H. The distance between two C/N units is 2.844(17) Å, which is slightly longer than the linear N≡C–C distance in acetonitrile (2.585(3) Å).44 This difference is attributed to displacement of the ACN molecules and/or the lack of electron density related to the absence of three H. However, electron densities derived by the maximum entropy method provide a reasonable representation of linear ACN molecules. Li$^+$ ions occurring in highly occupied sites bind to the negatively charged nitrogen in ACN molecules, which explains the stability of Li$_3$PS$_4$·ACN even above the boiling temperature of ACN (355 K).

The crystal structure of Li$_3$PS$_4$·ACN is similar to that of Li$_3$PS$_4$·DME.35 Both structures are tetragonal and consist of alternate Li$_2$PS$_4^-$ layers and interposed Li$^+$ layers bonded to organic molecules. Both display ABAB stacking of Li$_2$PS$_4^-$ layers. Whereas the stacking of organic molecules in Li$_3$PS$_4$·ACN is ABAB, it is ABCDABCD in Li$_3$PS$_4$·DME. Thus, the a-axis lattice parameters of both complexes are comparable, but the c-axis parameter is larger in the DME derivative. Whereas the Li$^+$ positions in Li$_3$PS$_4$·ACN is proposed to be partially occupied sites, those sites are fully occupied in Li$_3$PS$_4$·DME.
Nuetron diffraction study is desired to discuss this difference because X-ray scattering factor of Li$^+$ is small.

3.2. Conversion from Li$_3$PS$_4$·ACN/Li$_3$PS$_4$·DME to β-Li$_3$PS$_4$

SEM images of Li$_3$PS$_4$·ACN and Li$_3$PS$_4$·DME, shown in figure 2, exhibit plate crystals, which are typical for materials having layered structures. XRD patterns of Li$_3$PS$_4$·ACN and Li$_3$PS$_4$·DME are similar to the XRD patterns simulated from the corresponding crystal structures. The formation of Li$_3$PS$_4$·ACN was also supported by electron diffraction (Figure S1). The heat treatment of both complexes produces β-Li$_3$PS$_4$, in agreement with the reported behavior of Li$_3$PS$_4$·ACN.45 The weight losses of Li$_3$PS$_4$·ACN and Li$_3$PS$_4$·DME are 18.4 and 33.6%, respectively, which agree with values of 18.6 and 33.4%, respectively, expected from the chemical formulas. Figure 3 shows the temperature dependence of conductivity of the synthesized β-Li$_3$PS$_4$. The Li$^+$ conductivities and activation energies of the synthesized β-Li$_3$PS$_4$ are respectively ~0.1 mS·cm$^{-1}$ and ~26-30 kJ mol$^{-1}$, which are comparable to other β-Li$_3$PS$_4$ synthesized by the decomposition of complexes.$^8, 26-27, 33$
Figure 2. a) and b) SEM images of Li$_3$PS$_4$·ACN and Li$_3$PS$_4$·DME complexes, respectively. c) and d) XRD patterns before and after heat treatment at 220 °C of Li$_3$PS$_4$·ACN and Li$_3$PS$_4$·DME, respectively. Simulated patterns from CIF data are shown for comparison.35

Figure 3. Temperature dependency of the ionic conductivity of β-Li$_3$PS$_4$ obtained from Li$_3$PS$_4$·ACN (red) and Li$_3$PS$_4$·DME (blue). β-Li$_3$PS$_4$ from Li$_3$PS$_4$·ACN exhibited an ionic conductivity of 1×10^{-4} S cm$^{-1}$ at room temperature, and an activation energy of 26.8 kJ mol$^{-1}$. Li$_3$PS$_4$·DME exhibited an ionic conductivity of 0.7×10^{-4} S
cm⁻¹ at room temperature and an activation energy of 30.5 kJ mol⁻¹. The density of pelletized samples was 1.5 g/cm³ in both samples.

3.3. Conversion mechanism from Li₃PS₄·ACN/Li₃PS₄·DME to β-Li₃PS₄

Figure 4. Proposed mechanism of Li₃PS₄·ACN decomposition to β-Li₃PS₄. Minus energy means high thermodynamic stability. To illustrate the structural similarity, the origin of Li₃PS₄·ACN is shifted and the a- and c-axes of β-Li₃PS₄ are transformed. Structural refinement was performed by DFT calculation in VASP.⁴¹

The structural similarity between Li₃PS₄·ACN and Li₃PS₄·DME suggests that both materials decompose by a similar mechanism. We used Li₃PS₄·ACN with the smaller unit cell to construct a decomposition model. Figure 4 illustrates the simplified mechanism comprising the uniaxial compression of Li₃PS₄·ACN to β-Li₃PS₄ by removal of ACN, rotation of PS₄ tetrahedra, and a shift of Li⁺ ions. After
each step in the process, DFT calculation relaxed the structures by optimizing the lattice parameters and all atomic positions. Li\(^+\) positions are simplified as being fully occupied in each structure by merging partial Li\(^+\) occupancies into an intermediate position between full and half occupancies. Positions with low occupancies are ignored. To illustrate the structural similarity, the origin of the structure is shifted (Model 1), the \(a\)‐ and \(c\)‐axes of \(\beta\)-Li\(_3\)PS\(_4\) are transformed (Model 5), and the \(b\)‐axis is unchanged.

Structural Model 2 maintains its framework after removal of ACN and subsequent structural optimization. The lattice parameters and atomic coordinates are not significantly changed by structural optimization. The thermodynamic driving force for ACN removal is derived partially from the entropy gain in forming ACN gas. The energies calculated for the structure without ACN nearly equal those of \(\beta\)-Li\(_3\)PS\(_4\) (Model 5). Thus, the subsequent steps proceed without a large thermodynamic driving force. Rotation of the PS\(_4\) tetrahedra was visualized in two ways. One model considers the alternate upward and downward orientation of PS\(_4\) apexes to be similar to the PS\(_4\) arrangement in \(\beta\)-Li\(_3\)PS\(_4\). The other one considers all PS\(_4\) apexes to be aligned in the same direction as in \(\gamma\)-Li\(_3\)PS\(_4\). Subsequent DFT calculation of the model comprising alternate upward and downward PS\(_4\) apexes reveals the uniaxial compression along the \(a\)‐axis (see the movie in Supporting Information) that leads to optimized lattice parameters similar to those of \(\beta\)-Li\(_3\)PS\(_4\) (Model 3). Thermodynamically, the model 3 is slightly unfavorable over Model 2 and 5. DFT relaxation of the model with all PS\(_4\) apexes aligned in the same direction reverts to a structure similar to that of Model 2 except for a 90° rotation of every other layer (Model 4). This result indicates that the reaction does not proceed. Therefore, rotation of the PS\(_4\) tetrahedra in different directions generates the framework of \(\beta\)-Li\(_3\)PS\(_4\), which reduces the nucleation barrier to the formation of \(\beta\)-Li\(_3\)PS\(_4\). In this way, \(\beta\)-Li\(_3\)PS\(_4\), not \(\gamma\)-Li\(_3\)PS\(_4\), is formed from Li\(_3\)PS\(_4\)·ACN. Finally, a shift of two-thirds of the Li\(^+\) positions and further optimization results in the formation of \(\beta\)-Li\(_3\)PS\(_4\) (Model 5). This reorganization is understandable based on Li\(^+\) ion mobility. The transformation mechanism suggests that the framework of the Li\(_2\)PS\(_4\)\(^-\) layers is decisive in producing \(\beta\)-Li\(_3\)PS\(_4\).
The displacement factors of Li sites in β-Li$_3$PS$_4$ is enormously high. The positions of Li$^+$ sites with partial occupancy depend on the synthetic method, measurement temperature, and diffraction technique. The lithium-ion conduction path is reported to traverse the network of partially occupied Li sites in the PS$_4$ units along the [010] and/or [101] direction. Model 3, which contains a high Li concentration along the [010] direction, is slightly unstable relative to β-Li$_3$PS$_4$ (Model 5). However, we cannot eliminate the possibility that the Li$^+$ positions in Model 3 are reasonable, because the models are simplified by ignoring the partial occupancies of Li. Moreover, a variety of structural models with comparable formation energies and different Li positions can stabilize their structures by entropy gain. Thus, Model 3, in which Li$^+$ transport occurs in the [010] direction, potentially accounts for the high conductivity of β-Li$_3$PS$_4$ synthesized from Li$_3$PS$_4$·ACN compared with that of β-Li$_3$PS$_4$ synthesized by solid-state reaction. Structural models become more complicated when the hydrogen incorporation suggested by Kaup et al. and the dynamical movement of constituent atoms are considered. Further investigation of the effect of highly mobile Li$^+$ and H$^+$ on the decomposition mechanism is needed because various Li$^+$ configurations and H$^+$ incorporation impact the stability and conductivity of β-Li$_3$PS$_4$.

4. Conclusion

We propose the formation mechanism of metastable β-Li$_3$PS$_4$ from Li$_3$PS$_4$·ACN and Li$_3$PS$_4$·DME. Both the complex, which contain alternating Li$_2$PS$_4^-$ and Li$^+$-ACN/DME layers, yield metastable β-Li$_3$PS$_4$ upon heating at 220 °C in an inert atmosphere. The transformation mechanism is viewed as a uniaxial compression combined with the rotation of PS$_4$ tetrahedra in different directions, which reduces the nucleation barrier for metastable β-Li$_3$PS$_4$ formation. Considering various polymorph structures are derived during the proposed decomposition of complexes, this work will help to understand the conduction path in metastable electrolytes from the structure of complex precursors, pushing rational design of highly conducting electrolytes with superior conducting path in the future.
SUPPORTING DOCUMENTS

TEM images, structural analysis detail, CIF file for Li₃PS₄·ACN, and the movie of DFT optimization.

Conflicts of interest

There are no conflicts to declare.

ACKNOWLEDGMENT

AM acknowledges Profs. K. Hirai, Y. Kitagawa and Y. Hasegawa (Hokkaido Univ.) for the suggestions about complexes, Prof. D. Urushihara (Nagoya Institute of Technology) for the advice for structural refinement. AM, GY, and YM thank Dr. S. Kawaguchi (JASRI) for technical support for synchrotron measurement in SPring-8 with the approvals of 2018B1246. This research was partially supported by KAKENHI Grant Numbers JP19H04682, JP20KK0124, JP21H01610.

REFERENCES

44. Calpa, M.; Rosero-Navarro, N. C.; Miura, A.; Tadanaga, K., Instantaneous preparation of high lithium-ion conducting sulfide solid electrolyte Li2PS4 by a liquid phase process. *RSC Advances* 2017, 7 (73), 46499-46504.
Lithium-ion conductive β-Li$_3$PS$_4$ was formed through the decomposition of Li$_3$PS$_4$·acetonitrile complex accompanied with a uniaxial compression and a rotation of PS$_4$ units.