

HOKKAIDO UNIVERSITY

Title	Substitution of Deoxycholate with the Amphiphilic Polymer Amphipol A8-35 Improves the Stability of Large Protein Complexes during Native Electrophoresis
Author(s)	Kameo, Shinsa; Aso, Michiki; Furukawa, Ryo; Matsumae, Renon; Yokono, Makio; Fujita, Tomomichi; Tanaka, Ayumi; Tanaka, Ryouichi; Takabayashi, Atsushi
Citation	Plant and Cell Physiology, 62(2), 348-355 https://doi.org/10.1093/pcp/pcaa165
Issue Date	2021-01-05
Doc URL	http://hdl.handle.net/2115/85167
Rights	This is a pre-copyedited, author-produced version of an article accepted for publication in Plant and cell physiology following peer review. The version of record is available online at: https://academic.oup.com/pcp/article/62/2/348/6064163, https://doi.org/10.1093/pcp/pcaa165.
Туре	article (author version)
File Information	Plant and Cell Physiology62(2)_348-355.pdf

Hokkaido University Collection of Scholarly and Academic Papers : HUSCAP

1	This is a "clear copy" of the revised manuscript. The content is exactly the same as
2	"marked copy" described above.
3	
4	Cover page
5	
6	Title: Substitution of deoxycholate with the amphiphilic polymer amphipol A8-35
7	improves the stability of large protein complexes during native electrophoresis
8	
9	Running Title: Improved Stability with Clear Native-PAGE
10	
11	Corresponding Author: Atsushi Takabayashi
12	Institute of Low Temperature Science, Hokkaido University, N19 W8 Kita-Ku, Sapporo
13	060-0819, Japan
14	E-mail: <u>takabayashi@pop.lowtem.hokudai.ac.jp</u>
15	Tel: +81-75-706-5493; Fax: +81-75-706-5493
16	
17	Subject Area: (11) new methodology
18	Number of black and white figures: 0

19	Number	of color	figures:	6

20 Number of tables: 0

- 21 **Type and number of supplementary materials:** 3 figures
- 22 Title: Substitution of deoxycholate with the amphiphilic polymer amphipol A8-35
- 23 improves the stability of large protein complexes during native electrophoresis
- 24
- 25 **Running Title:** Improved Stability with Clear Native-PAGE
- 26
- 27 Shinsa Kameo¹, Michiki Aso¹, Ryo Furukawa¹, Renon Matsumae¹, Makio Yokono²,
- 28 Tomomichi Fujita³, Ayumi Tanaka¹, Ryouichi Tanaka¹, Atsushi Takabayashi¹
- ²⁹ ¹Institute of Low Temperature Science, Hokkaido University, N19 W8 Kita-ku,
- 30 Sapporo 060-0819, Japan
- ³¹ ²Innovation Center, Nippon Flour Mills Co., Ltd., Atsugi 243-0041, Japan
- ³Faculty of Science, Hokkaido University, N10 W8 Kita-ku, Sapporo 060-0810, Japan
- 33
- 34 **Abbreviations:** BN, blue-native; CBB, Coomassie brilliant blue; CN, clear-native; α-
- 35 DDM, α-dodecyl maltoside; DOC, sodium deoxycholate; LHC, light-harvesting
- 36 complex; polyacrylamide gel electrophoresis (PAGE)
- 37

38 Abstract

Native polyacrylamide gel electrophoresis (PAGE) is a powerful technique for protein 39 complex separation that retains both their activity and structure. In photosynthetic 40 41 research, native-PAGE is particularly useful given that photosynthetic complexes are generally large in size, ranging from 200 kD to 1 MD or more. Recently, it has been 4243reported that the addition of amphipol A8-35 to solubilized protein samples improved 44protein complex stability. In a previous study, we found that amphipol A8-35 could substitute sodium deoxycholate (DOC), a conventional electrophoretic carrier, in clear-45native (CN)-PAGE. In this study, we present the optimization of amphipol-based CN-46 PAGE. We found that the ratio of amphipol A8-35 to α -dodecyl maltoside (α -DDM), a 47detergent commonly used to solubilize photosynthetic complexes, was critical for 48 49resolving photosynthetic machinery in CN-PAGE. In addition, LHCII dissociation from PSII-LHCII was effectively prevented by amphipol-based CN-PAGE compared with 50that of DOC-based CN-PAGE. Our data strongly suggest that majority of the PSII-5152LHCII in vivo forms C₂S₂M₂ at least in Arabidopsis and Physcomitrella. The other forms might appear owing to the dissociation of LHCII from PSII during sample 5354preparation and electrophoresis, which could be prevented by the addition of amphipol A8-35 after solubilization from thylakoid membranes. These results suggest that 55

amphipol-based CN-PAGE may be a better alternative to DOC-based CN-PAGE for the
study of labile protein complexes.

 $\mathbf{58}$

```
59 [Introduction]
```

Oxygenic photosynthetic organisms possess two photosystems, PSI and PSII, 60 61 which are comprised of core and peripheral antenna complexes. The core antenna 62 complex harvests light energy and transfers it to the reaction center where charge 63 separation and the first electron transfer step occur. In comparison, the peripheral lightharvesting antenna associated with the PSII core harvests light energy and transfers the 64 excitation energy to the core complex, where charge separation and the first electron 65transfer step occurs. Heat dissipation of the excess energy primarily occurs in the 66 67 peripheral antenna complex. The core complexes of both PSI and PSII are highly conserved among photosynthetic organisms, while peripheral antenna systems are quite 68 diverse (Blankenship 2010; Croce and van Amerongen 2014; Neilson and Durnford 69 2010; Nelson and Junge 2015). The diversity of the peripheral antenna system should be 70 key to the adaptation of photosynthetic organisms to a wide range of environments. 7172The peripheral antenna complexes of green plants, including green algae and land plants, are comprised of light-harvesting complexes (LHCs). Light harvesting 73

74	complex proteins bind chlorophyll a, chlorophyll b, and carotenoids, which are
75	indispensable for multiple LHC antenna functions. The LHCs can be associated with
76	PSI and PSII to form PS supercomplexes (Caffarri et al. 2014; Gao et al. 2018; Kouril et
77	al. 2012; Pan et al. 2019). Notably, the number of LHCs associated with PSI and PSII
78	can be dynamically changed in response to environmental changes (Pan et al. 2019).
79	Dynamic structural changes in the size of the peripheral antenna of photosystems may
80	reveal the adaptive mechanisms of photosynthetic species.
81	Blue-Native (BN)-PAGE is a powerful technique that can be used to resolve
82	protein complexes. For the analysis of photosynthetic complexes from various
83	photosynthetic organisms, BN-PAGE has been used to separate the components of the
84	thylakoid membranes that are solubilized with mild detergents such as dodecyl
85	maltoside (α-DDM) or digitonin (Järvi et al. 2011; Wittig et al. 2006). Since BN-PAGE
86	allows for the native structure and activity of protein complexes to be retained during
87	electrophoresis, broad downstream BN-PAGE applications have been reported, such as
88	proteomic identification, pigment composition evaluations, spectroscopic analyses, and
89	the reconstitution of protein structures using electron microscopy (Wittig et al. 2006).
90	As such, multiple post-BN-PAGE applications have furthered the analysis of
91	photosynthetic machinery from various perspectives.

 $\mathbf{5}$

92	Coomassie brilliant blue (CBB) dye is used in BN-PAGE to negatively charge
93	protein complexes, which enables them to be resolved at neutral pH (Wittig et al. 2006).
94	The presence of CBB on the protein surface reduces the dissociation risk due to protein-
95	protein interactions when detergents are present (Wittig et al. 2006). However, the blue
96	color of the CBB dye inhibits some downstream experiments, including absorption
97	spectra measurements of the resolved photosynthetic complexes. In addition, CBB dye
98	can act as a competitive quencher of chlorophyll fluorescence in LHCII (Yokono,
99	2015). In such cases, CBB is substituted with sodium deoxycholate (DOC), a colorless
100	compound that negatively charges proteins. This form of PAGE is referred to as clear
101	native (CN)-PAGE (Järvi et al. 2011; Wittig and Schägger 2005). However, the use of
102	DOC as an electrophoresis carrier may promote dissociation due to protein-protein
103	interactions, which is not a problem when CBB is used (Witting and Schägger 2005).
104	Thus, an alternative to DOC in CN-PAGE is needed.
105	Amphipols are a new class of amphipathic polymers that enable membrane
106	protein complexes to be solubilized while enhancing their stability in detergent-free
107	solutions (Popot et al. 2011). In particular, amphipol A8-35 has been widely used to
108	stabilize membrane proteins (Popot et al. 2011). In addition, a pioneering study with

109	Chlamydomonas showed that amphipol A8-35 was able to stabilize PSII-LHCII
110	supercomplexes during sucrose density gradient centrifugation (Watanabe et al. 2019).
111	In addition to its stabilizing effect on membrane proteins, amphipol A8-35 can
112	negatively charge protein complexes under conditions of neutral pH due to its
113	negatively charged surface. These characteristics suggest that amphipol A8-35 may be a
114	good alternative to DOC. We recently tested the ability of an amphipol-based CN-PAGE
115	to resolve photosynthetic protein complexes with Physcomitrella (Furukawa et al.
116	2019). In the current study, we demonstrated that the substitution of DOC with
117	amphipol A8-35 improved the stability of the photosynthetic machinery, especially for
118	the PSII-LHCII supercomplexes during CN-PAGE separation. The resolution of
119	amphipol-based CN-PAGE was comparable to that of DOC-based CN-PAGE. Our
120	results strongly suggest that amphipol-based CN-PAGE is a better alternative to DOC-
121	based CN-PAGE with the potential for a wide variety of downstream applications.
122	
123	[Results]
124	Optimization of the ratio of amphipol A8-35 to α -DDM on CN-PAGE
125	The first step of amphipol-based CN-PAGE is the addition of amphipol A8-35
126	instead of DOC to maintain the solubility of the protein complex. Owing to the slow

 $\mathbf{7}$

127	dissociation of amphipols from membrane proteins (Popot et al. 2011), the addition of
128	amphipol A8-35 to the cathode buffer is not necessary during electrophoresis (Furukawa
129	et al. 2019). Since amphipol A8-35 is much more expensive than DOC, it is also cost-
130	effective to avoid the addition of amphipol A8-35 to the cathode buffer. However, no
131	optimization of the A8-35: α -DDM ratio for a given protein sample has yet to be
132	reported.
133	To optimize the A8-35: α -DDM ratio, we evaluated the changes in <i>Arabidopsis</i>
134	photosynthetic machinery band patterns as the amphipol A8-35 concentration varied.
135	The concentration of α -DDM was fixed at 1% to solubilize <i>Arabidopsis</i> thylakoid
136	protein complexes. After electrophoresis, several pigment-protein complexes were
137	observed, including the PSII-LHCII supercomplexes, PSI-LHCI and LHCII (Fig. 1).
138	Band identification was conducted using 2D-SDS-PAGE with silver staining (Fig. S1)
139	according to the band patterns of previous studies (i.e., Järvi et al. 2011; Takabayashi et
140	al. 2011). Although the band patterns were very similar between 1% and 0.5% amphipol
141	A8-35, slight differences were observed. Specifically, the mobility of PSI-LHCI and
142	LHCII trimers showed greater impairment with 0.5% amphipol A8-35 than with 1%
143	amphipol A8-35 (Fig. 1). This impaired mobility suggests that the quantity of amphipol
144	A8-35 bound to the photosynthetic machinery was not saturated when 0.5% amphipol

145	A8-35 was employed. However, when the amphipol A8-35 concentration was lower
146	than 0.25%, apparent differences were present among the band patterns. Specifically,
147	the LHCII trimers and PSI-LHCI bands were poorly resolved. These results demonstrate
148	that amphipol A8-35: α -DDM ratio in a given sample is important for resolving protein
149	complexes by amphipol-based CN-PAGE.
150	Since surfactants and amphipols competitively bind to the protein surface
151	(Popot et al. 2011), a low amphipol A8-35:α-DDM ratio may inhibit the binding of
152	amphipol A8-35 to the surface of the protein. To evaluate this hypothesis, we reviewed
153	changes in the band patterns as the α -DDM concentration increased from 1-4% while
154	the amphipol A8-35 concentration was fixed at 1%. As expected, the resolution
155	worsened as the α -DDM concentration increased (Fig. 2). Finally, we reviewed band
156	patterns as the α -DDM concentration increased with a fixed amphipol A8-35: α -DDM
157	ratio. When the ratio of amphipol A8-35 to α -DDM was fixed, the band patterns
158	presented little variability, even when the α -DDM concentration increased from 1 to 4%
159	(Fig. 3). These results indicated that amphipol A8-35:α-DDM ratio was important for
160	ensuring sufficient resolution when amphipol A8-35 was not added to the cathode
161	buffer. It is noteworthy that the separation pattern of the photosynthetic complexes in
162	amphipol-based CN-PAGE did not significantly worsen even when high concentration

163	α -DDM (4%) was used for solubilization (Fig. 3). This strongly suggests that the
164	dissociation of LHCII from PSII by high concentration α -DDM occurs extensively
165	during electrophoresis, which can be prevented by the addition of amphipol A8-35 after
166	solubilization.
167	
168	Optimization of the timing of adding amphipol A8-35 to a solubilized protein
169	sample
170	In a previous study, amphipol A8-35 was added to solubilized protein samples
171	after centrifugation. In this study, we optimized the timing of amphipol A8-35 addition
172	to protein samples. It should be noted that although α -DDM is a mild detergent, it
173	promotes the dissociation of LHCII from PSI-LHC and PSII-LHCII (Järvi et al. 2011).
174	Thus, we hypothesized that the early addition of amphipol A8-35 to a protein sample
175	would reduce the risk of LHCII dissociation.
176	We noted that the photosystems were hardly solubilized by α -DDM when
177	amphipol A8-35 was included in the thylakoid membrane solution. Similarly, the
178	amounts of solubilized photosystems were greatly reduced when A8-35 was added
179	immediately after mixing the samples with α -DDM (Fig. 4a). However, a two minute
180	incubation period, after mixing the thylakoid sample with α -DDM prior to the addition

181	of A8-35, resulted in a considerable amount of solubilized photosystem as when A8-35
182	was added after centrifugation (Fig. 4b). These data strongly suggest that amphipol A8-
183	35 inhibits the solubilization of the membrane protein complexes in thylakoids by α -
184	DDM, unless there is enough incubation time before adding A8-35 to the sample. In
185	addition, we found that the band patterns were similar regardless of whether amphipol
186	A8-35 was added to the protein samples either before or after centrifugation (Fig. 4).
187	These results suggest that LHCII dissociation rarely occurred during the short 5-min
188	centrifugation (Fig. 4).
189	
190	Comparison of the band patterns of Arabidopsis and Physcomitrella thylakoid
190 191	Comparison of the band patterns of <i>Arabidopsis</i> and <i>Physcomitrella</i> thylakoid protein complexes between DOC-based CN-PAGE and amphipol-based CN-PAGE
191	protein complexes between DOC-based CN-PAGE and amphipol-based CN-PAGE
191 192	protein complexes between DOC-based CN-PAGE and amphipol-based CN-PAGE using amphipol A8-35
191 192 193	protein complexes between DOC-based CN-PAGE and amphipol-based CN-PAGE using amphipol A8-35 To compare amphipol-based CN-PAGE using amphipol A8-35 with DOC-
191 192 193 194	protein complexes between DOC-based CN-PAGE and amphipol-based CN-PAGE using amphipol A8-35 To compare amphipol-based CN-PAGE using amphipol A8-35 with DOC- based CN-PAGE, we resolved α-DDM-solubilized <i>Arabidopsis</i> thylakoid protein
191 192 193 194 195	protein complexes between DOC-based CN-PAGE and amphipol-based CN-PAGE using amphipol A8-35 To compare amphipol-based CN-PAGE using amphipol A8-35 with DOC- based CN-PAGE, we resolved α-DDM-solubilized <i>Arabidopsis</i> thylakoid protein complexes using the two methods (Fig. 5). The identification of the resolved bands by

199	methods (Fig. 5). Since free pigments appeared yellow in color, they likely contained
200	more carotenoids than chlorophylls. On the other hand, we found notable differences in
201	the resolution of the PSII-LHCII supercomplexes (Fig. 5). The three PSII-LHCII forms
202	were observed with DOC-based CN-PAGE. The largest PSII-LHCII form was $C_2S_2M_2$.
203	As the number of attached LHCII decreases, the $C_2S_2M_2$ form changes to C_2S_2M and
204	then to C_2S_2 (Caffarri et al. 2009; Pan et al. 2019; Su et al. 2017; van Bezouwen et al.
205	2017; Wei et al. 2016). The most commonly observed PSII-LHCII forms in both
206	methods were $C_2S_2M_2$ and C_2S_2M . In addition, the band intensity of $C_2S_2M_2$ seemed
207	more prominent than that of C_2S_2M on amphipol-based CN-PAGE. In contrast, the C_2S_2
208	band was clearly observed in DOC-based CN-PAGE, whereas this band was hardly
209	observed in amphipol-based CN-PAGE. The greater quantity of C ₂ S ₂ in DOC-based
210	CN-PAGE compared to that of amphipol-based CN-PAGE was likely owing to the
211	dissociation of LHCII from the larger PSII-LHCII forms. These results strongly suggest
212	that LHCII detachment from PSII-LHCII was low when amphipol A8-35 was employed
213	with CN-PAGE.
214	The same trend was observed for CN-PAGE with Physcomitrella thylakoid
215	protein complexes. A PSII-PSI megacomplex, PSII-LHCII supercomplexes, PSI-LHCI,
216	LHCII trimer, and LHCII monomer were resolved (Fig. 6). To identify the resolved

217	bands, we	performed 2D-Cl	N/SDS-PAGE	followed by	v silver staining	(Fig. S2).

amphipol-based CN-PAGE, a notable difference was observed between these methods
(Fig. 6). Two PSII-LHCII bands were clearly observed with DOC-based CN-PAGE,
whereas one PSII-LHCII band was clearly observed with amphipol-based CN-PAGE.

Although the overall band patterns were similar between DOC-based CN-PAGE and

whereas one i sit-lifeti band was clearly observed with ampirpor-based CN-IAOL

222 The additional PSII-LHCII band found in the DOC-based CN-PAGE had a lower

223 molecular weight, which suggests that LHCII partially dissociated from PSII-LHCII.

224 The low molecular weight form of PSII-LHCII may have possibly been C₂S₂M.

225 However, the PSII-LHCII supercomplex forms in *Physcomitrella* have not yet been

226 fully elucidated. Therefore, we were unable to identify the low molecular weight form

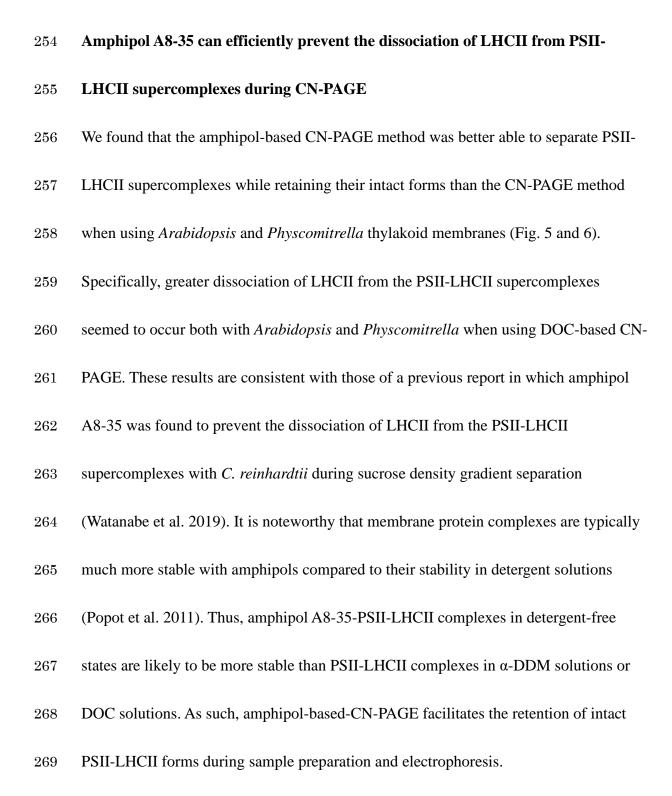
of PSII-LHCII as C₂S₂M in this study. These results indicated that amphipol A8-35 was

superior to DOC when preventing LHCII dissociation from PSII-LHCII in CN-PAGE.

- 229 Furthermore, these data strongly suggest that majority of the PSII-LHCII in vivo forms
- 230 C₂S₂M₂ in *Arabidopsis* and *Physcomitrella*. The other forms of PSII-LHCII are likely to
- have emerged as a result of the dissociation of LHCII from PSII during sample

232 preparation and electrophoresis.

233


218

234 [Discussion]

235 The ratio of amphipol A8-35 to α-DDM in a sample is important to resolve

236 membrane protein complexes

237	In this study, we optimized amphipol-based CN-PAGE protocols. Since amphipol A8-35
238	is negatively charged, amphipol A8-35-bound membrane protein complexes can migrate
239	during electrophoresis at neutral pH. On the other hand, CBB and DOC must be added
240	to the cathode buffer for BN-PAGE and DOC-based CN-PAGE, respectively. This
241	difference is based on the chemical properties of amphipol A8-35. Amphipol A8-35
242	tightly and noncovalently binds to the hydrophobic surfaces of membrane protein
243	complexes and shows an extremely slow dissociation rate (Popot et al. 2011). Owing to
244	this property, amphipol A8-35 was not added to the cathode buffer during
245	electrophoresis. However, amphipol A8-35 dissociates from membrane proteins in the
246	presence of competing surfactants, such as α -DDM. This is likely the reason why using
247	a proper amphipol A8-35: a-DDM ratio is important to achieve good protein complex
248	resolution (Figs 1-3).
249	If a sufficient amount of amphipol A8-35 is added to the cathode buffer, the
250	amphipol A8-35:α-DDM ratio in the loading sample may not be important. However,
251	the economic cost of amphipol-based CN-PAGE is much higher when using amphipol
252	A8-35 in the cathode buffer.

270	Our findings that the C_2S_2 M_2 was the major form of the PSII-LHCII on
271	amphipol-based CN-PAGE (Figs 5 and S1) strongly suggest that PSII-LHCII should be
272	essentially a $C_2M_2S_2$ in vivo, and other forms are likely to emerge owing to the
273	dissociation of LHCII from PSII during the experimental procedure. Accordingly,
274	amphipol-based CN-PAGE can be a useful tool to reveal the dynamics of the PSII-
275	LHCII supercomplexes in response to environmental changes.
276	
277	Potential applications of amphipol-based CN-PAGE
278	Previous reports have shown that amphipols typically enhance protein stability but do
279	not interfere with protein function (Popot et al. 2011). These properties permit a wide
280	variety of applications using amphipols, including protein structural and functional
281	analyses. In addition, BN-PAGE and DOC-based CN-PAGE can separate protein
282	complexes while retaining their structure and function, allowing for a wide variety of
283	downstream applications using these methods (Wittig et al. 2006; Wittig and Schägger
284	2005). Specifically, BN-PAGE and CN-PAGE have often been used to separate
285	membrane protein complexes with mild detergents, including α -DDM and digitonin.
286	Here, we found that amphipol-based CN-PAGE can be applied to separate membrane
287	protein complexes solubilized by α -DDM and digitonin (Fig. S3). It is noteworthy that

288	digitonin is the only known detergent that can retain the PSI-LHCI-LHCII complex
289	after solubilization (Järvi et al. 2011). Due to these advantages, amphipol-based CN-
290	PAGE is likely to have wide-ranging applications. In particular, the advantage of CN-
291	PAGE over BN-PAGE is that CBB does not interfere with spectroscopic and pigment
292	analyses. Since these analyses are important for understanding photosystem properties,
293	CN-PAGE with amphipol A8-35 is preferable to BN-PAGE. In addition, given the
294	stabilizing effect of amphipol A8-35, structural and functional analyses following
295	amphipol-based CN-PAGE may yield better results than those of either DOC-based BN-
296	or CN-PAGE. Nonetheless, further studies are needed to verify the potential of
297	amphipol-based CN-PAGE.
298	
299	[Materials and Methods]
300	Plants and growth conditions
301	Arabidopsis thaliana ecotype Columbia plants were grown in soil for 6 weeks at 23°C
302	with a 14:10 h (light:dark) photoperiod that employed 70 μmol photons $m^{-2}~s^{-1}.$
303	Protonemata from Physcomitrella patens were cultured for 4 days on a layer of
304	cellophane overlaid on BCDAT (BCD medium supplemented with 1 mM CaCl2 and
305	5 mM di-ammonium [+]-tartrate) that was solidified with 0.8% (w/v) agar at 25°C under

306 continuous light conditions (40 μ mol photons m⁻² s⁻¹), following the methodology of 307 Furukawa et al. (2019).

308

309	Separation of thylakoid protein complexes by CN-PAGE
310	Arabidopsis thylakoid membrane isolation followed the methodology of Järvi et al.
311	(2011). Physcomitrella thylakoid membrane isolation was performed according to the
312	methodology of Furukawa et al. (2019). Unless otherwise noted, the thylakoid
313	membranes were solubilized with 1% α -DDM in a solubilization buffer (50 mM
314	imidazole/HCl, pH 7.0, 20% glycerol) with 10 mM sodium fluoride and a protease
315	inhibitor cocktail for plant cell lysate (Sigma, St. Louis, MO, USA) at 4°C and
316	centrifuged at 22,500 \times g for 5 min at 4°C.
317	For amphipol-based CN-PAGE, amphipol A8-35 was added to the supernatants
318	at a final concentration of 1%. The supernatants with amphipol A8-35 were separated on
319	4-13% polyacrylamide gradient gels at 4°C using anode (50 mM imidazole/HCl, pH
320	7.0, 4°C) and cathode buffers (50 mM Tricine and 15 mM imidazole/HCl, pH 7.0, 4°C),
321	according to the methodology of Furukawa et al. (2019). Amphipol A8-35 was not
322	added to the cathode buffer of amphipol-based CN-PAGE. For DOC-based CN-PAGE,
323	0.05% DOC and 0.02% α -DDM were added to the cathode buffer following the

324	methodology of Järvi et al. (2011). Native Mark Unstained Protein Standard (Thermo
325	Fisher Scientific, Rockford, IL, USA) was used as a marker of molecular size.
326	
327	2D-SDS-PAGE followed by immunoblot analysis and silver staining
328	Proteins in the CN-PAGE gel strip were denatured in a solubilization buffer (1% SDS
329	and 50 mM DTT) for 30 min at 25°C and separated on a 14% acrylamide gel containing
330	4 M urea using the Laemmli system following the methodology of Furukawa et al.
331	(2019). Silver staining was performed using the Pierce Silver Stain kit (Thermo Fisher
332	Scientific, _Rockford, IL, USA), according to the manufacturer' s protocol. Precision
333	Plus Protein All Blue Standards (Bio-Rad, Hercules, CA, USA) was used as a marker of
334	molecular size. The separated proteins were transferred to a PolyScreen polyvinylidene
335	fluoride membrane (PerkinElmer Life Sciences, MA, USA). The PsaD, PsbB, and
336	Lhcb2 subunits were detected using specific antibodies and a Western Lightning Plus-
337	ECL kit (PerkinElmer Life Sciences). All antibodies, including anti-PsaD (AS09 461),
338	anti-PsbB (AS04 038), and anti-Lhcb2 (AS01 003) were purchased from Agrisera
339	(Vännäs, Sweden).
340	

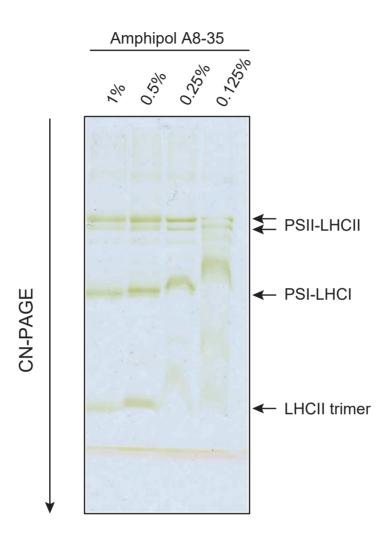
[Funding]

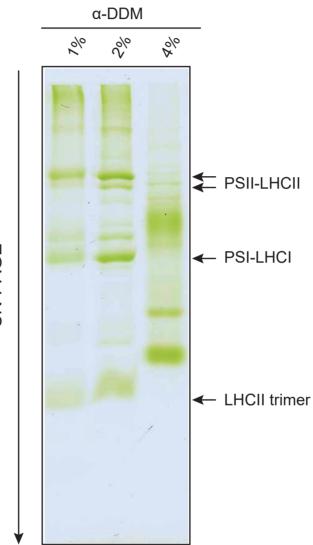
342	This work was supported by a Grant-in-Aid for Scientific Research from the Japan
343	Society for the Promotion of Science [grant number: 17K07691 to A. Takabayashi and
344	grant number: 16H06554 to R. Tanaka].
345	
346	[Disclosures]
347	Conflicts of interest: The authors declare no conflicts of interest.
348	
349	[References]
350	Blankenship, R.E. (2010) Early Evolution of Photosynthesis. Plant Physiol. 154: 434-
351	438.
352	
353	Caffarri, S., Kouril, R., Kereiche, S., Boekema, E.J. and Croce, R. (2009) Functional
354	architecture of higher plant photosystem II supercomplexes. EMBO J. 28: 3052-3063.
355	
356	Caffarri, S., Tibiletti, T., Jennings, R.C. and Santabarbara, S. (2014) A comparison
357	between plant photosystem I and photosystem II architecture and functioning. Curr.
358	Protein Pept. Sc. 15: 296-331.
359	
360	Croce, R. and van Amerongen, H. (2014) Natural strategies for photosynthetic light
361	harvesting. Nat. Chem. Biol. 10: 492-501.
362	
363	Furukawa, R., Aso, M., Fujita, T., Akimoto, S., Tanaka, R., Tanaka, A., et al. (2019)
364	Formation of a PSI-PSII megacomplex containing LHCSR and PsbS in the moss
365	Physcomitrella patens. J. Plant Res. 132: 867-880.
366	
367	Gao, J.L., Wang, H., Yuan, Q.P. and Feng, Y. (2018) Structure and Function of the
368	Photosystem Supercomplexes. Front. Plant Sci. 9.
369	

370	Järvi, S., Suorsa, M., Paakkarinen, V. and Aro, E.M. (2011) Optimized native gel
371	systems for separation of thylakoid protein complexes: novel super- and mega-
372	complexes. Biochem. J. 439: 207-214.
373	
374	Kouril, R., Dekker, J.P. and Boekema, E.J. (2012) Supramolecular organization of
375	photosystem II in green plants. Biochim. Biophys. Acta Bioenerg. 1817: 2-12.
376	
377	Neilson, J.A.D. and Durnford, D.G. (2010) Structural and functional diversification of
378	the light-harvesting complexes in photosynthetic eukaryotes. Photosynth. Res. 106: 57-
379	71.
380	
381	Nelson, N. and Junge, W. (2015) Structure and energy transfer in photosystems of
382	oxygenic photosynthesis. Annu. Rev. Biochem. 84: 659-683.
383	
384	Pan, X., Cao, P., Su, X., Liu, Z. and Li, M. (2019) Structural analysis and comparison of
385	light-harvesting complexes I and II. Biochim. Biophys. Acta Bioenerg 148038.
386	
387	Popot, J.L., Althoff, T., Bagnard, D., Baneres, J.L., Bazzacco, P., Billon-Denis, E., et al.
388	(2011) Amphipols From A to Z. Annu. Rev. Biophys. 40: 379-408.
389	
390	Su, X.D., Ma, J., Wei, X.P., Cao, P., Zhu, D.J., Chang, W.R., et al. (2017) Structure and
391	assembly mechanism of plant C ₂ S ₂ M ₂ -type PSII-LHCII supercomplex. Science 357:
392	815-820.
393	
394	Takabayashi, A., Kurihara, K., Kuwano, M., Kasahara, Y., Tanaka, R. and Tanaka, A.
395	(2011) The oligomeric states of the photosystems and the light-harvesting complexes in
396	the Chl b-less mutant. Plant Cell Physiol. 52: 2103-2114.
397	
398	van Bezouwen, L.S., Caffarri, S., Kale, R.S., Kouril, R., Thunnissen, A.M.W.H.,
399	Oostergetel, G.T., et al. (2017) Subunit and chlorophyll organization of the plant
400	photosystem II supercomplex. Nat. Plants 3.
401	
402	Watanabe, A., Kim, E., Burton-Smith, R.N., Tokutsu, R. and Minagawa, J. (2019)
403	Amphipol-assisted purification method for the highly active and stable photosystem II
404	supercomplex of Chlamydomonas reinhardtii. FEBS Lett. 593: 1072-1079.

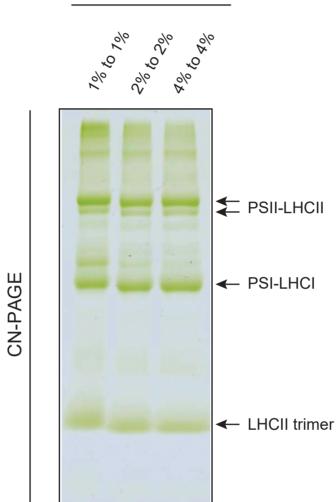
406 407 408	Wei, X.P., Su, X.D., Cao, P., Liu, X.Y., Chang, W.R., Li, M., et al. (2016) Structure of spinach photosystem II-LHCII supercomplex at 3.2 angstrom resolution. <i>Nature</i> 534: 69-74.
409	бу /т.
410	Wittig, I., Braun, H.P. and Schägger, H. (2006) Blue native PAGE. Nat. Protoc. 1: 418-
411	428.
412	
413	Wittig, I. and Schägger, H. (2005) Advantages and limitations of clear-native PAGE.
414	Proteomics 5: 4338-4346.
415	
416	
417	[Figure legends]
418	Fig. 1 Changes in the band pattern of amphipol-based CN-PAGE with amphipol
419	A8-35. Arabidopsis thylakoid protein complexes were solubilized by 1% α -DDM. After
420	centrifugation, amphipol A8-35 was added to the supernatants for final concentrations
421	of 1%, 0.5%, 0.25%, and 0.125%. The samples were separated by 4-13% acrylamide
422	gels. No amphipol A8-35 was added to the cathode buffer.
423	
424	Fig. 2 Changes in the band pattern of amphipol-based CN-PAGE as the
425	concentration of a-DDM varied. Arabidopsis thylakoid protein complexes were
426	solubilized by 1%, 2%, and 4% α -DDM. After solubilization, amphipol A8-35 was
427	added to the supernatants at a final concentration of 1%. The samples were loaded and
428	separated by 4-13% acrylamide gels. No amphipol A8-35 was added to the cathode
429	buffer.

431	Fig. 3 The changes in the band pattern of the amphipol-based CN-PAGE with the
432	same ratio of amphipol A8-35 to a-DDM. Arabidopsis thylakoid protein complexes
433	were solubilized by 1%, 2%, and 4% α -DDM. After solubilization, amphipol A8-35 was
434	added to the supernatants for final concentrations of 1%, 2%, and 4%, respectively. The
435	ratio of amphipol A8-35 to α -DDM was the same among the samples. The samples were
436	loaded and separated by 4-13% acrylamide gels. No amphipol A8-35 was added to the
437	cathode buffer.
438	
439	Fig. 4 Band patterns of amphipol-based CN-PAGE when amphipol A8-35 was
440	added to the samples either before or after centrifugation. Arabidopsis thylakoid
441	protein complexes were solubilized by 1% α -DDM. (a) Immediately after mixing the
442	samples with α -DDM, amphipol A8-35 was added to the supernatants either before or
443	after centrifugation. (b) After mixing with α -DDM and the subsequent incubation for 2
444	min, amphipol A8-35 was added to the supernatants either before or after centrifugation.
445	The samples were loaded into and separated by 4-13% acrylamide gels. No amphipol
446	A8-35 was added to the cathode buffer.

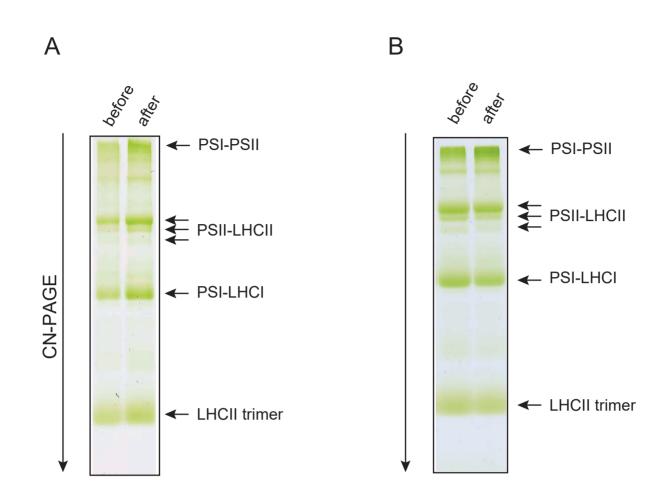

448	Fig. 5 Arabidopsis thylakoid protein complexes resolved by DOC-based and
449	amphipol-based CN-PAGE. Arabidopsis thylakoid protein complexes were solubilized
450	by 1% α -DDM and resolved by the DOC-based (A) and amphipol-based (B) CN-PAGE.
451	After solubilization, amphipol A8-35 was added to the supernatants at a final
452	concentration of 1% (B). The samples were loaded and separated by 4-13% acrylamide
453	gels. The cathode buffer of the DOC-based CN-PAGE contained 0.05% DOC and
454	$0.02\% \alpha$ -DDM. No amphipol A8-35 was added to the cathode buffer for amphipol-
455	based CN-PAGE.
456	

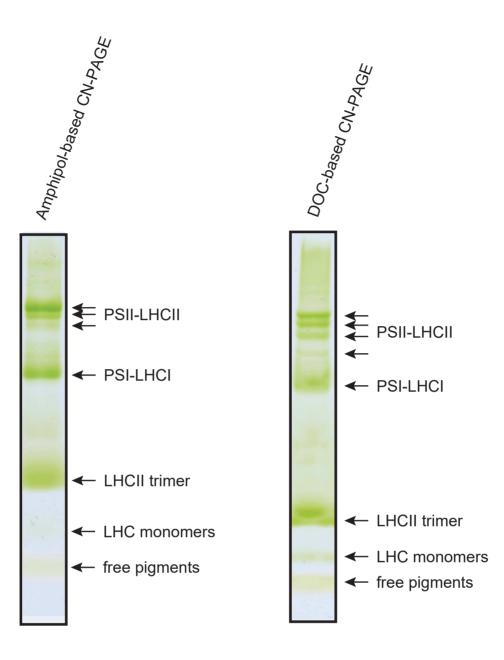

Fig. 6 Physcomitrella thylakoid protein complexes resolved by amphipol-based and 457

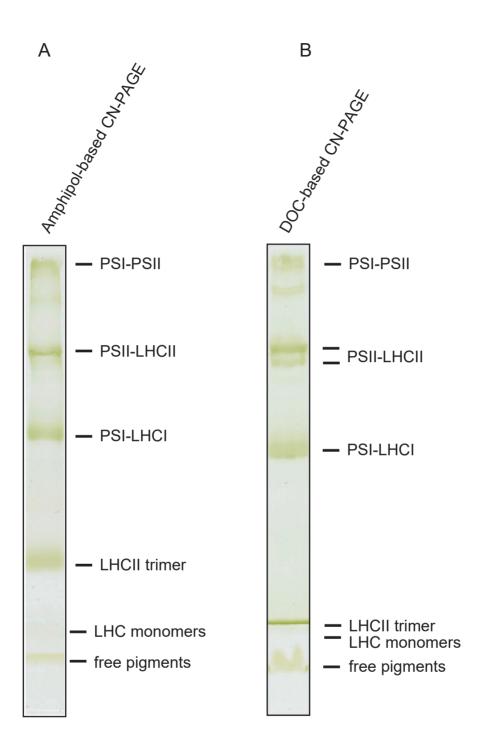
DOC-based CN-PAGE. Physcomitrella thylakoid protein complexes were solubilized 458

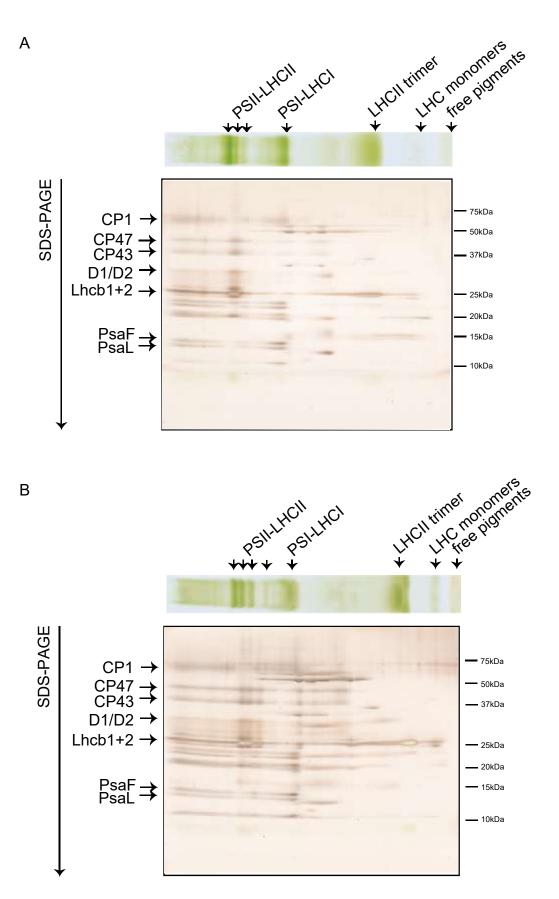

- by 1% DDM and resolved by and amphipol-based (A) and DOC-based (B) CN-PAGE. 459
- After solubilization, amphipol A8-35 was added to the supernatants at a final 460
- 461 concentration of 1% (A). The samples were loaded and separated by 4-13% acrylamide
- gels. The cathode buffer of the DOC-based CN-PAGE contained 0.05% DOC and 462
- 4630.02% α-DDM. No amphipol A8-35 was added to the cathode buffer for amphipol-

464 based CN-PAGE.






CN-PAGE


The ratio of A8-35 to α -DDM

Kameo et al.

Fig. S1 2D-CN/SDS-PAGE of *Arabidopsis* **protein complexes in thylakoid membranes followed by silver staining.** The amphipol-based (a) and DOC-based (b) CN-PAGE gel strips (Fig. 5) were soaked in 1% SDS and 50 mM DTT solution for 30 min. Proteins in the gel strips were resolved by SDS-PAGE using a 14% acrylamide gel containing 6 M urea and visualized by silver staining.

Kameo et al.

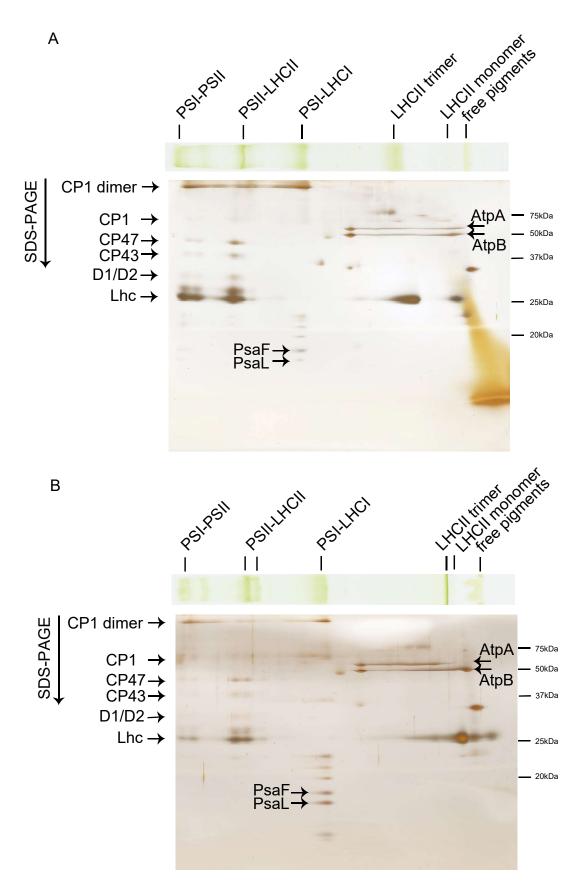
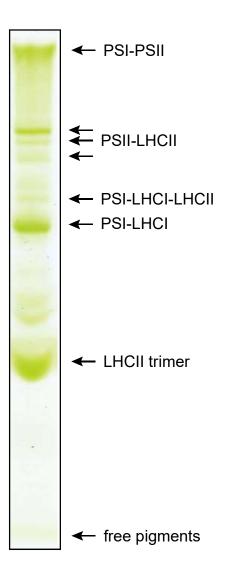



Fig. S2 2D-CN/SDS-PAGE followed by silver staining using the amphipol-based
and DOC-based CN-PAGE gel strips for separation of *Physcomitrella* protein
complexes in thylakoid membranes. The amphipol-based (A) and DOC-based (B)
CN-PAGE gel strips (Fig. 6; upper) were soaked in 1% SDS and 50 mM DTT solution
for 30 min. Proteins in the gel strips were resolved by SDS-PAGE using a 14%
acrylamide gel containing 4 M urea and were visualized by silver staining.

Fig. S3 Amphipol-based CN-PAGE of *Arabidopsis* **protein complexes in thylakoid membranes solubilized by digitonin.** *Arabidopsis* protein complexes in thylakoid membranes were solubilized by 1% digitonin and resolved by amphipol-based CN-PAGE using 4-13% acrylamide gels.