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A Multiobjective Proposal for the
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and Jaime A. Ramírez1
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The TEAM benchmark problem 22 is an important optimization problem in electromagnetic design, which can be formulated as a
constrained mono-objective problem or a multiobjective one with two objectives. In this paper, we propose a multiobjective version with
three objectives, whose third objective is related to the quench constraint and the better use of the superconducting material. The formu-
lation proposed yields results that provide new alternatives to the designer. We solved the formulation proposed using the multiobjective
clonal selection algorithm. After that, we selected a particular solution using a simple decision making procedure.

Index Terms—Electromagnetic design, multiobjective optimization, TEAM benchmark problem 22.

I. INTRODUCTION

THE TEAM benchmark problem 22 deals with the opti-
mization of a superconducting magnetic energy storage

(SMES) configuration [1] (see Fig. 1). The objectives are to
maintain a prescribed level for the stored energy on the device
and to minimize the strayed field evaluated along lines and

in Fig. 1, while not violating the quench condition that as-
sures the superconductivity state. A multiobjective version of
this problem has already been solved in [2], where the authors
approach the same problem with two objectives: 1) to minimize
the stray field and 2) to minimize the deviation from the pre-
scribed value for the stored energy .

In fact, given some considerations, almost all mono-objec-
tive optimization problems may be formulated as multiobjective
ones. In the same way, multiobjective problems can be treated
as mono-objective ones, for example, by adopting the weighted
sum of the objectives, although this approach limits the search
for more promising alternatives. Even constraints may be treated
as new objectives [3].

Multiobjective formulations are more flexible to the designer,
which can specify various criteria simultaneously. On the other
hand, the price to be paid for this flexibility in multiobjective
design is a more complex optimization process. Moreover, an
additional decision process must be performed in order to select
which solution will be chosen and eventually built.

We propose, in this paper, a novel multiobjective version for
problem 22. In addition to the two objectives, a third objective
is defined regarding the quench condition and the better use of
the superconducting material.

II. PROPOSED FORMULATION

The quench condition in the problem 22 is given by the lin-
earization of the experimental curve of the material (see Fig. 2).
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Fig. 1. Two-dimensional axisymmetric configuration of the SMES device.

Fig. 2. Critical curve of the material.
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In the three parameters version, the current density is equal to
22.5 A/mm , which gives

(1)

as the inequality constraint for the quench condition.
However, a solution that is quite below the limit is, in fact,

subutilizing the superconducting material, since the current den-
sity could be greater. At the same time, a solution too close to
the critical limit would be dangerous, since any small variation
in the current density could cause the device to break the su-
perconductivity state. The linearization curve is already slightly
below the real curve, but the designer may still specify a safe
limit level

(2)

where is the maximum magnetic flux density in at coil
is the current density in A/mm for the coil and

are a safe slack defined by the designer.
Given this consideration, the new multiobjective formulation

for the problem 22 may be stated as the minimization of the
following objectives:

(3)

-
(4)

(5)

subject to

(6)

where is the magnetic flux density evaluated in each of
the 21 evaluation points for the strayed field along lines and
(see Fig. 1). Energy is the stored energy for the current configu-
ration, and . The objective gives the percentual
deviation from the prescribed value of stored energy [2]. The
finite-element model is used for evaluating the stored energy,
while the field values are calculated using the Biot–Savart law
directly. For the eight -parameter version, we have the additional
geometric constraint

(7)

that is, the superposition of the coils is not permitted.
Observe that the constraint for the quench condition is pre-

served, but the third objective aims at obtaining a solution near
to the limit of the quench condition, considering the prescribed
level . In fact, different operating points are available in the
Pareto solutions achieved, from which the most adequate de-
sign may be selected.

III. METHODOLOGY FOR SOLVING THE

MULTIOBJECTIVE PROBLEM

The objectives (3)–(5) were optimized using the multiobjec-
tive clonal selection algorithm (MOCSA) [4]. This algorithm is
inspired by principles of the immunology and adapted to multi-
objective problems. This section reviews briefly this algorithm.

The MOCSA can be considered an extension of immune-
based algorithms [5], [6] to multiobjective problems. MOCSA
is inspired by the clonal selection theory, which states that those
cells from the adaptive immune system that have greater affinity
measure to a specific antigen will produce more clone cells.
The basic steps used for the definition of the MOCSA opera-
tion are 1) affinity evaluation, 2) cloning, 3) maturation, and,
finally, 4) replacement. The algorithm starts with the generation
of an initial population containing cells. Each cell represents
a randomly generated point in the previously specified search
space. The basic steps are described next.

A. Affinity Evaluation

Each individual is evaluated for all objectives of the problem,
penalizing any violation of the constraints. After that, the solu-
tions are sorted according to the nondominated frontier to which
they belong [4]. This nondominated sorting scheme is similar to
the approach already employed in some multiobjective genetic
algorithms.

B. Cloning

The next step is to generate the same number of clones for all
solutions belonging to the same front, considering that the entire
population has been classified in nondominated fronts. This is
done according to the equation

(8)

For example, all solutions in the first nondominated front
receive clones, those in the second front
receive , and so forth. The clones are exact

copies of the original solution.

C. Maturation

The maturation process consists of the addition of a Gaussian
perturbation to the original solutions, in order to generate small
variations around the original point. This process has the charac-
teristic of performing local refinements in the solutions. Given
that the best solutions receive more clones, the local search is
more intense for the most promising regions.

D. Replacement

The entire population, consisting of the original solutions and
their maturated clones, is classified again into nondominated
fronts. The first front is stored in an external memory popu-
lation. Through the iterative cycles, every new update of the
memory population employs a niching technique to avoid the
storage of very similar solutions. The niching is applied to both
the space of parameters and the space of objectives, as suggested
in [7].

A percent of the best individuals, i.e., the less dominated ones,
is selected for the next iteration. Hence, solutions (with

) are directly selected for the next iteration. The remaining
solutions are eliminated and new randomly generated ones are
introduced for completing the population, thus maintaining a
constant population size .
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Fig. 3. Pareto solutions found by MOCSA in the space of objectives.

E. Summary of the Algorithm

The previous steps are summarized in the following algo-
rithm.

The MOCSA algorithm
Step 1. Initialize the population of antibodies.
Step 2. While (Stop criterion is not met) do:

2.1- Evaluate antibodies;
2.2- Perform nondominated sorting;
2.3- Cloning and maturation;
2.4- Evaluation of the maturated clones;
2.5- Perform nondominated sorting again
over all solutions (original solutions and
their clones);
2.6- Selection and storing;
2.7- Suppression over the external memory
population using niching scheme;
2.8- Replacement and diversity generation.

IV. RESULTS

A. Three-Parameter Version

First, we present results for the three-parameter version and
for . In the three parameters version, MOCSA determined
171 estimatives of the Pareto set with a total of 2 932 func-
tion calls. The estimated three-dimensional (3-D) Pareto front
is shown in Fig. 3. The 3-D space of objectives consists of the
estimated value for the strayed field , the percentual de-
viation from the prescribed value for energy, and the proximity
to the quench limit. Fig. 4 illustrates the obtained solutions in
the space of parameters. Table I shows the optimal solutions for
each objective determined from the Pareto estimatives.

After a set of Pareto solutions is found, the designer must de-
cide which solution will be selected. The decision-making stage
is very particular for each problem and many sophisticated deci-
sion-making techniques are available in the literature [8]. Nev-
ertheless, we use the following criteria for the decision-making
stage.

Fig. 4. Pareto solutions in the space of parameters.

TABLE I
INDIVIDUAL OPTIMA

1) We eliminate the solutions that have mT and
%, which means an energy outside the range

.
2) After that, we select from the remaining solutions the one

that corresponds to the smallest volume of material:
.

Using these criteria, we get the final selected solution

(9)

at which mT, MJ, and
T. The volume of material is 2.7665 m .

For comparison, the best solution from [1] is

(10)

at which mT, MJ,
T, and the volume of material is 3.6446 m .

B. Eight-Parameter Version

Now, we analyze the full version of the problem, in which the
dimensions of both coils and the applied current densities are
optimized. The MOCSA was applied again in order to find esti-
matives of the Pareto set, but a different approach is employed.
With the aim of reducing the computational cost of the overall
optimization process, we utilize the following strategy.

• Initialize a counter for the function calls, e.g., .
• The MOCSA runs over the electromagnetic solver until

is equal to 2 000 and all function evaluations are
stored.

• After that, the electromagnetic solver is turned off and a
radial basis function approximation is generated with the
data stored.

• All subsequent evaluations are performed by the approx-
imated model.
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The data gathered during the initial phase have very inter-
esting characteristics. Since MOCSA presents a diversity gen-
eration mechanism (random generation of new solutions), the
search space is uniformly sampled. On the other hand, due to
the maturation process, the most promising regions identified
present a higher density of samples, allowing the generation of
a more refined approximation.

The initial phase of the optimization process is used to sample
the search space in a more intelligent way. After that, the approx-
imation provides the evaluation of the points. The radial basis
approximation is given by

(11)

where is the input point, and its evaluated output. The
model is given by the linear combination of nonlinear radial
basis functions , centered at . Here, we employ the mul-
tiquadric function as the radial basis function

(12)

The employment of this approach, particularly multiquadric-
based approximations, is a very successful approach in electro-
magnetic design [9].

In order to alleviate the complexity of the model generation,
we utilize locally approximated models generated with samples
from the data that are closer to the point we need to evaluate.

Using this methodology, MOCSA found 246 estimatives of
the Pareto set, and consumed a total of 20 306 function calls,
from which only the first 2000 involved calls to the electromag-
netic solver.

Similarly to the three-parameter version, we adopt the fol-
lowing criteria for decision-making.

1) We eliminate the solutions that have mT and
%, which means an energy outside the range
MJ.

2) After that, we select from the remaining solutions the one
that corresponds to the smallest volume of material:

.
The solution obtained is shown in Table II and compared to

the solution from [1].
The multiobjective approach adopted here has the benefit

of finding many alternative designs for the problem, including
many different operating points for the superconducting ma-
terial. Having all the alternatives in hand, the designer may
proceed to a final stage of selection and analysis of the solutions
in order to determine which is the most adequate.

V. CONCLUSION

A novel multiobjective proposal for the SMES design in the
problem 22 has been presented which aims at obtaining solu-
tions that are near the limit of the quench condition, but still
considering a safety level established by the designer. In fact, the

TABLE II
FINAL SOLUTION OBTAINED AFTER DECISION MAKING

third objective represents a criterion to select amongst solutions
that satisfy the quench condition at different operating points.
This introduces a new perspective to a well-known and quite
explored benchmark problem in electromagnetic optimization.

Finally, the three-objective version is a more complex multi-
objective problem. We expect it may be useful for testing mul-
tiobjective algorithms in electromagnetic design.
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