Nanophase Separation in Immiscible Double Network Elastomers Induces Synergetic Strengthening, Toughening, and Fatigue Resistance

Zheng, Yong; Kiyama, Ryuji; Matsuda, Takahiro; Cui, Kunpeng; Li, Xueyu; Cui, Wei; Guo, Yunzhou; Nakajima, Tasuku; Kurokawa, Takayuki; Gong, Jian Ping

Chemistry of Materials, 33(9), 3321-3334
https://doi.org/10.1021/acs.chemmater.1c00512

2021-05-11

This document is the Accepted Manuscript version of a Published Work that appeared in final form in Chemistry of materials, copyright © American Chemical Society after peer review and technical editing by the publisher. To access the final edited and published work see insert ACS Articles on Request author-directed link to Published Work, see https://pubs.acs.org/articlesonrequest/AOR-FNC7AYNJK8FIST8877CG.

article (author version)

There are other files related to this item in HUSCAP. Check the above URL.

Supporting Information.pdf
Supporting Information

Nanophase-Separation in Immiscible Double-Network Elastomers
Induces Synergetic Strengthening, Toughening, and Fatigue-Resistance

Yong Zheng\(^1\), Ryuji Kiyama\(^1\), Takahiro Matsuda\(^2\), Kunpeng Cui\(^4\), Wei Cui\(^3\), Xueyu Li\(^3\), Yunzhou Guo\(^1\), Tasuku Nakajima\(^2,3,4*)\(^*\), Takayuki Kurokawa\(^2,3\), and Jian Ping Gong\(^2,3,4*)\(^*\)

\(^1\)Graduate School of Life Science, Hokkaido University, Sapporo 001-0021, Japan

\(^2\)Faculty of Advanced Life Science, Hokkaido University, Sapporo 001-0021, Japan

\(^3\)Global Station for Soft Matter, Global Institution for Collaborative Research and Education (GI-CoRE), Hokkaido University, Sapporo 001-0021, Japan

\(^4\)Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Sapporo 001-0021, Japan

*Corresponding author: tasuku@sci.hokudai.ac.jp; gong@sci.hokudai.ac.jp
Table S1. Mechanical properties of DN elastomers and gels.

<table>
<thead>
<tr>
<th></th>
<th>E (MPa)</th>
<th>λ_b (mm/mm)</th>
<th>σ_b (MPa)</th>
<th>λ_y (mm/mm)</th>
<th>σ_y (MPa)</th>
<th>W_b (MJ m$^{-3}$)</th>
<th>T (kJ m$^{-2}$)</th>
<th>φ_{1st} (vol%)</th>
<th>T_g (°C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>DN-0 elastomer</td>
<td>0.15</td>
<td>6.0</td>
<td>2.6</td>
<td>-</td>
<td>-</td>
<td>4.8</td>
<td>-</td>
<td>20.4</td>
<td>-34.6</td>
</tr>
<tr>
<td>DN-0.1 elastomer</td>
<td>0.14</td>
<td>8.5</td>
<td>1.6</td>
<td>4.8</td>
<td>1.4</td>
<td>9.5</td>
<td>2.0</td>
<td>4.5</td>
<td>-34.7</td>
</tr>
<tr>
<td>DN-0.5 elastomer</td>
<td>0.43</td>
<td>6.6</td>
<td>2.0</td>
<td>3.5</td>
<td>2.3</td>
<td>8.9</td>
<td>6.2</td>
<td>4.1</td>
<td>-</td>
</tr>
<tr>
<td>DN-0.9 elastomer</td>
<td>0.91</td>
<td>9.0</td>
<td>2.8</td>
<td>3.0</td>
<td>3.1</td>
<td>19.5</td>
<td>8.2</td>
<td>2.8</td>
<td>-36.2</td>
</tr>
<tr>
<td>DN-1.0 elastomer</td>
<td>1.83</td>
<td>6.4</td>
<td>3.5</td>
<td>3.1</td>
<td>4.3</td>
<td>22.0</td>
<td>10.8</td>
<td>5.1</td>
<td>-33.9</td>
</tr>
<tr>
<td>S_2N elastomer</td>
<td>0.08</td>
<td>13.2</td>
<td>0.4</td>
<td>-</td>
<td>-</td>
<td>1.9</td>
<td>0.5</td>
<td>-</td>
<td>-35.0</td>
</tr>
<tr>
<td>DN-0 gel</td>
<td>0.06</td>
<td>4.8</td>
<td>0.6</td>
<td>-</td>
<td>-</td>
<td>0.6</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>DN-0.1 gel</td>
<td>0.08</td>
<td>4.0</td>
<td>1.0</td>
<td>3.4</td>
<td>1.1</td>
<td>1.4</td>
<td>0.2</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>DN-0.5 gel</td>
<td>0.10</td>
<td>3.1</td>
<td>1.4</td>
<td>3.0</td>
<td>1.6</td>
<td>1.1</td>
<td>0.3</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>DN-0.9 gel</td>
<td>0.11</td>
<td>3.0</td>
<td>1.4</td>
<td>2.8</td>
<td>1.6</td>
<td>1.2</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>DN-1.0 gel</td>
<td>0.14</td>
<td>3.0</td>
<td>2.1</td>
<td>3.0</td>
<td>2.1</td>
<td>1.6</td>
<td>0.4</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Young’s modulus (E), elongation ratio and nominal stress at yielding (λ_y and σ_y, respectively), elongation ratio, nominal stress and input energy density at break (λ_b, σ_b and W_b, respectively), fracture energies characterized by trouser-shaped tearing (T) and glass transition temperature (T_g) are summarized. The volume ratio of first network in DN elastomer φ_{1st} is calculated from $\varphi_{1st} = \left(\frac{h_{1st}}{h_{DN}} \right)^3$, where h_{1st} and h_{DN} are the thickness of dried first network and DN elastomer, respectively.
Figure S1. (A) Swelling comparison of S1N prepared with and without electrolyte component in second monomer solution (4.7 M MEA in organic solvent NMF). S1N-0 and S1N-0.1 represent S1N synthesized without any AMPS and with 10% AMPS in feed monomer concentration, respectively. (B) Digital photo of DN-0.1 elastomer.
Figure S2. SAXS results of DN gels. (A) 2D SAXS patterns and (B) corresponding 1D scattering intensity profiles of DN gels prepared with various f_{AMPS} molar ratios ranging from 0 to 1.0. No phase-separated structure is formed in these DN-f_{AMPS} gels.
Figure S3. Domain spacing d_0 and $FWHM/q_{peak}$ of DN-f_{AMPS} elastomers plotted as functions of f_{AMPS} molar fraction.
Figure S4. Reswelling of DN-1.0 elastomer in NMF. (A) Two swelling processes and (B) corresponding three-dimensional swelling ratios. Processes (i) and (ii) denote direct swelling of DN-1.0 gel and reswelling of dried DN-1.0 elastomer both in NMF, respectively. (C) Tensile curves of DN-1.0 gels for Processes (i) and (ii). Reswelling ratio and tensile behavior of DN-1.0 elastomer are identical to those of corresponding original DN-1.0 gel, confirming that phase separation does not damage double-network structure.
Figure S5. DSC thermograms of DN elastomers generated at 10 K min$^{-1}$. All DN elastomers show same glass-transition temperature T_g around $-35 \, ^\circ C$, corresponding to glass transition of nonpolar PMEA. The testing sample was pre-equilibrated at $-70 \, ^\circ C$ for 10 min and then was heated at a rate of 10 K/min, and measurement was performed from -70 to 160 °C using air as a reference.
Figure S6. Rescaled yielding stretch ratio $\lambda_y \lambda_s$ of DN gels and elastomers plotted as functions of f_{AMPS}. In regimes I and II, DN elastomers did not show any and showed obvious phase separation, respectively.
Figure S7. Comparison of rescaled energy-dissipation behaviors of DN-0.1 elastomer and corresponding gel, as studied by cyclic tensile tests. (A, B) Sequential loading–unloading cycles for DN-0.1 (A) gel and (B) elastomer. (C) Rescaled loading–unloading cycles for DN-0.1 gel and corresponding elastomer. (D–F) Rescaled (D) irreversible dissipation (W_{irr}), (E) reversible hysteresis (W_{re}), and (F) irreversible ratio ($W_{\text{irr}}/W_{\text{total}}$) for DN-0.1 elastomer. For comparison, data for DN-0.1 gel are also shown. The cyclic loading-unloading is performed with a strain rate of 0.14 s$^{-1}$ and without waiting time between cycles.
Figure S8. Comparison of rescaled energy-dissipation behaviors of DN-0.5 elastomer and corresponding gel, as studied by cyclic tensile tests. (A, B) Sequential loading–unloading cycles for DN-0.5 (A) gel and (B) elastomer. (C) Rescaled loading–unloading cycles for DN-0.5 gel and corresponding elastomer. (D–F) Rescaled (D) irreversible dissipation (W_{irr}), (E) reversible hysteresis (W_{re}), and (F) irreversible ratio ($W_{\text{irr}}/W_{\text{total}}$) for DN-0.5 elastomer. For comparison, data for DN-0.5 gel are also shown. The cyclic loading-unloading is performed with a strain rate of 0.14 s$^{-1}$ and without waiting time between cycles.
Figure S9. Crack propagation length c as a function of the number of cycles N with different applied stretch ratio λ_{max} for DN-1.0 and DN-0.1 elastomers. (A) For DN-1.0 elastomer, the crack propagation length c initially increases fast, but crack growth slows down soon to a much slower crack propagation rate with increasing cycle N. The average crack propagation rate at steady state dc/dN is the slope of c versus N plot taken after 5000th cycles where the crack propagation reaches steady state. (B) For DN-0.1 elastomer, the crack propagation length c increases at a stable rate from initial stage. At $\lambda_{\text{max}} < 2.38$, the dc/dN is taken after 5000th cycles. At $\lambda_{\text{max}} > 2.38$, dc/dN is taken after 200th cycles.
Figure S10. Experimental set-up and characterizing the energy release rate G for DN-1.0 elastomer. (A) Schematic of the experimental set-up. (B) The loading-unloading curves to λ_{max} with increasing cycle N. The curves drop greatly at the beginning of the cycles and reach a steady state after thousands of cycles. (C) The area under the unloading curve shown by the blue hatch represents the elastic strain energy density $W_e(\lambda_{\text{max}})$. (D) Evolution of $W_e(\lambda_{\text{max}})$ and (E) σ_{max} with cycle N. The $\lambda_{\text{max}}=1.52$ and 2.04 are shown as examples. The $W_e(\lambda_{\text{max}})$ drops greatly at the beginning cycles and reaches a steady state after 2000 cycles. $W_e(\lambda_{\text{max}})$ at the 5000th cycle is used to estimate the energy release rate G by $G = W_e(\lambda_{\text{max}}) \times H_0$.
Figure S11. Characterizing the energy release rate G for DN-0.1 elastomer. (A) The loading-unloading curves to λ_{max} with increasing cycle N. The curves drop greatly at the beginning of the cycles and reach a steady state after thousands of cycles. (B) The area under the unloading curve shown by the blue hatch represents the elastic strain energy density $W_e(\lambda_{\text{max}})$. (C) Evolution of $W_e(\lambda_{\text{max}})$ and (D) σ_{max} with cycle N. The $\lambda_{\text{max}}=1.62$ and 2.73 are taken as examples. The $W_e(\lambda_{\text{max}})$ drops greatly at the beginning cycles and reaches a steady state after 2000 cycles. $W_e(\lambda_{\text{max}})$ at the 5000th cycle is used to estimate the energy release rate G by $G = W_e(\lambda_{\text{max}}) \times H_0$.