Title	Solid-State Electrochemical Protonation / Redox reaction induced Control of Physical Properties of SrCoOx and SrFeOx [an abstract of dissertation and a summary of dissertation review]
Author(s)	楊, 倩
Citation	北海道大学. 博士(工学) 甲第15074号
Issue Date	2022-03-24
Doc URL	http://hdl.handle.net/2115/85276
Rights(URL)	https://creativecommons.org/licenses/by/4.0/
Туре	theses (doctoral - abstract and summary of review)
Additional Information	There are other files related to this item in HUSCAP. Check the above URL.
File Information	Qian_Yang_abstract.pdf (論文内容の要旨)

学 位 論 文 内 容 の 要 旨 博士の専攻分野の名称 博士(工学) 氏名 楊 倩 学 位 論 文 題 名

Solid-State Electrochemical Protonation / Redox reaction induced Control of Physical Properties of $SrCoO_x$ and $SrFeO_x$

(固体電気化学的プロトン化/酸化還元反応による $SrCoO_x$ および $SrFeO_x$ の物理的性質の制御)

Transition metal oxides (TMOs) have been widely studied thus far due to their controllable physical properties by controlling the oxygen content. For example, strontium cobalt oxide ($SrCoO_x$) has been extensively studied because its physical properties are dramatically changed; $SrCoO_{2.5}$ (Co^{3+}) with brownmillerite (BM) crystal structure is brown colored antiferromagnetic insulator, $SrCoO_3$ (Co^{4+}) with perovskite structure is black colored ferromagnetic metal, and $H_xSrCoO_{2.5}$ (Co^{2+}) (x = 1, 1.5, and 2) is colorless-transparent weak ferromagnetic insulator [1,2]. Thus, $SrCoO_x$ would be a good candidate active material of a nonvolatile memory device if the oxygen content is modulated electrically while keeping the solid state.

In 2016, Katase *et al.* reported a solid-state electrochemical redox device based on $SrCoO_x$ [3]. Using NaTaO₃ nanopillar film as the electrolyte, the authors reversibly oxidized/reduced $SrCoO_{2.5}/SrCoO_3$ by applying ± 3 V at room temperature. However, the authors did not observe the formation of protonated $H_xSrCoO_{2.5}$, probably due to the strong alkalinity of NaTaO₃ nanopillar film. On the other hand, in 2017, Lu *et al.* reported protonation of $SrCoO_{2.5}$ into $H_xSrCoO_{2.5}$ by using residual water in the ionic liquid as the electrolyte [2]. Thus, neutral water would be better to protonate $SrCoO_x$.

In order to realize the electrochemical protonation of $SrCoO_{2.5}$ while keeping solid-state, I choose a mesoporous amorphous $12CaO\cdot7Al_2O_3$ (CAN)[4] film as the solid electrolyte. CAN contains ultrapure water in the mesopores (40 vol.%) and shows the electrical conductivity of $2.2 \times 10^{-9} \text{ S cm}^{-1}$, which is 4% of that of ultrapure water ($5.5 \times 10^{-8} \text{ S cm}^{-1}$)[4] at room temperature. Then, I used an oxide ion conductor yttria-stabilized zirconia (YSZ) single-crystal as the solid electrolyte. I fabricated $SrCoO_{2.5}$ films on the YSZ substrate and performed the electrochemical redox treatment of $SrCoO_{2.5}$ film at $300 \, ^{\circ}C$ in air. In order to expand this all solid redox method on other materials, finally, I tested $SrFeO_x$ active layer because it also exhibits a clear phase transition like $SrCoO_x$. This thesis is mainly composed of the following sections:

In chapter 1, the background and purpose of this research are explained.

In chapter 2, experimental methods are introduced.

In chapter 3, I report on unusually large thermopower change from +330 $\mu V~K^{-1}$ to -185 $\mu V~K^{-1}$ of

brownmillerite $SrCoO_{2.5}$ [5]. I measure the thermopower of $SrCoO_{2.5}$ epitaxial films grown on several lattice-mismatched substrates at room temperature in the air. Although the differences of the electronic structure and the oxidation states among the samples are extremely small, the thermopower obviously changed from $+330 \,\mu\text{V} \,\,\text{K}^{-1}$ to $-185 \,\mu\text{V} \,\,\text{K}^{-1}$ with a slight increase of lattice and/or absorbed oxygen in the $SrCoO_{2.5}$ films, clearly demonstrating the effectiveness of thermopower to analyze the electronic structure and the oxidation states of TMOs.

In chapter 4, I report on solid-state electrochemical protonation of $SrCoO_{2.5}$ into $H_xSrCoO_{2.5}$ (x = 1, 1.5 and 2) [6]. I demonstrate a solid-state electrochemical protonation of $SrCoO_{2.5}$ using mesoporous amorphous CAN film as the solid electrolyte. The crystalline phase discretely changed from $SrCoO_{2.5}$ to $HSrCoO_{2.5}$, $H_{1.5}SrCoO_{2.5}$, and $H_2SrCoO_{2.5}$ through formation of an intermediate phase of $H_{1.25}SrCoO_{2.5}$. The $H_{1.5}SrCoO_{2.5}$ was colorless-transparent and showed weak ferromagnetism.

In chapter 5, I report on macroscopic visualization of the fast electrochemical reaction of $SrCoO_x$ oxygen sponge [7]. $SrCoO_x$ epitaxial films with various oxidation states were prepared by the electrochemical oxidation of $SrCoO_{2.5}$ film. Steep decrease of both resistivity and the absolute value of thermopower of electrochemically oxidized $SrCoO_x$ epitaxial films indicated the columnar oxidation firstly occurred along with the oxidation direction and then spread perpendicular to the oxidation direction. Further, I directly visualized the phenomena using the conductive AFM.

In chapter 6, I report on solid-state electrochemical redox control of the optoelectronic properties for SrFeO_x thin films [8]. I fabricated SrFeO_{2.5} film on the YSZ substrate and modulated the oxygen content by the electrochemical redox treatment. The phase gradually changed from SrFeO_{2.5} to SrFeO_{2.5+x}, and SrFeO_{3-x}. The color of the film changed from yellowish-transparent to dark brown. Although as-grown SrFeO_{2.5} film showed high resistivity ($\rho \ge 10^1 \ \Omega$ cm), the ρ dramatically decreased ($\sim 10^{-2} \ \Omega$ cm) when oxidized. Simultaneously, the thermopower decreased dramatically from +200 μ V K⁻¹ to $\sim 10 \ \mu$ V K⁻¹.

In chapter 7, the above researches are summarized.

In a word, the present results of solid-state electrochemical redox treatment of $SrCoO_x$ and $SrFeO_x$ would provide a design concept for future TMOs-based solid-state multifunctional memory devices.

References

- [1] H. Jeen et al., Nat. Mater. 12, 1057 (2013).
- [2] N. Lu et al., Nature 546, 124 (2017).
- [3] T. Katase et al., Adv. Electron. Mater. 2, 1600044 (2016).
- [4] H. Ohta et al., Nat. Commun. 1, 118 (2010).
- [5] Q. Yang et al., ACS Appl. Electron. Matter. 2, 2250 (2020).

- [6] Q. Yang et al., ACS Appl. Electron. Mater. 3, 3296 (2021).
- [7] Q. Yang et al., Adv. Mater. Interfaces 6, 1901260 (2019).
- $[8] \ Q. \ Yang\ et\ al., J.\ Appl.\ Phys.\ 129, 215303\ (2021).$