Effects of clear-cutting on nitrogen leaching and fine root dynamics in a cool-temperate forested watershed in northern Japan

Fukuzawa, Karibu; Shibata, Hideaki; Takagi, Kentaro; Nomura, Mutsumi; Kurima, Noriko; Fukazawa, Tatsuya; Satoh, Fuyuki; Sasa, Kaichiro

Forest ecology and management, 225(1-3): 257-261

2006-04-15

http://hdl.handle.net/2115/8541

© 2006 Elsevier B.V.

article (author version)

foreco 225(1-3) 257-261.pdf

Hokkaido University Collection of Scholarly and Academic Papers : HUSCAP
Title: Effects of clear-cutting on nitrogen leaching and fine root dynamics in a cool-temperate forested watershed in northern Japan

Names of authors: Karibu Fukuzawa¹*, Hideaki Shibata², Kentaro Takagi³, Mutsumi Nomura³, Noriko Kurima⁴, Tatsuya Fukazawa⁴, Fuyuki Satoh², and Kaichiro Sasa⁵

Complete postal addresses of affiliations:

¹ Graduate School of Agriculture, Hokkaido University, 250 Tokuda, Nayoro, 096-0071, Japan
² Northern Forestry and Development Office, Field Science Center for Northern Biosphere, Hokkaido University, 250 Tokuda, Nayoro, 096-0071, Japan
³ Teshio Experimental Forest, Field Science Center for Northern Biosphere, Hokkaido University, Toikanbetsu, Horonobe 098-2943, Japan
⁴ Graduate School of Engineering, Hokkaido University, N13 W8 kita-ku, Sapporo, 060-8628, Japan
⁵ Southern Forestry and Development Office, Field Science Center for Northern Biosphere, Hokkaido University, N9 W9 kita-ku, Sapporo, 060-8589, Japan

*Full address for correspondence: Graduate School of Agriculture, Hokkaido University, 250 Tokuda, Nayoro, 096-0071, Japan, Tel.: +81-1654-2-4264; Fax: +81-1654-3-7522; E-mail: caribu@exfor.agr.hokudai.ac.jp
Abstract

Stream and soil solution chemistry, fine root biomass and soil nitrogen processing before and after clear-cutting of trees and subsequent strip-cutting of understory vegetation, dwarf bamboo (*Sasa senanensis*), were investigated to understand the effect of these disturbances on biogeochemical processes on forested watershed in northern Japan. Tree-cutting did not cause a significant increase of nitrate (NO\(_3^-\)) concentration in stream water during the growing season after the cutting. Subsequent *Sasa*-cutting caused significant increase of stream NO\(_3^-\) concentration to ca. 15 \(\mu\)mol L\(^{-1}\). There was no significant change of stream pH following both cuttings. NO\(_3^-\) concentration in soil solution increased after both cutting, but the change of concentration was higher (>100 \(\mu\)mol L\(^{-1}\)) after the *Sasa*-cutting than after the tree-cutting. In a riparian conserved area, on the other hand, NO\(_3^-\) in soil solution remained low after tree-cutting, suggesting the riparian area acted as a NO\(_3^-\) sink after the tree-cutting. There was no significant change in total biomass of fine roots after the tree-cutting because of an increase in *Sasa* root biomass despite a decrease in tree roots. The subsequent *Sasa*-cutting caused a 50 % decrease of fine root biomass compared to that in the un-cut *Sasa* site. These results suggested that nitrogen uptake by *Sasa* was very important in preventing nitrogen leaching after tree-cutting, and decline of this nitrogen uptake after *Sasa*-cutting lead to marked NO\(_3^-\) leaching to the stream.

Keywords: Fine root biomass; Nitrate; *Sasa* dwarf bamboo; Soil solution; Stream chemistry
1. Introduction

Clear-cutting disturbs N cycling by hindering nitrogen uptake and/or producing large episodic inputs of fresh litter to soil, which leads to NO$_3^-$ leaching and acidification of stream water (Likens et al. 1970; Vitousek and Melillo, 1979; Swank et al. 2001). However, the magnitude of increase in stream NO$_3^-$ associated with clear-cutting has largely varied among ecosystems, ranging from about 20 μ mol L$^{-1}$ (Swank et al., 2001) to about 1,000 μ mol L$^{-1}$ (Likens et al., 1970).

The response of N cycling to cutting varies among sites, depending on a variety of factors that stimulate N mineralization and inhibit N loss (Vitousek and Melillo, 1979; Vitousek et al., 1982). The different biotic (including vegetation and microorganisms) and abiotic (climate, geology, hydrology and so on) factors create different responses of N cycling to clear-cutting.

In forest ecosystems in northern Japan, dense dwarf bamboo (*Sasa senanensis* and *Sasa kurilensis*) grows as understory vegetation. Although it has been well established that *Sasa* often inhibit forest regeneration and succession (Noguchi and Yoshida, 2004), the role of *Sasa* on biogeochemical cycles has not been well-clarified. In particular, nutrient uptake of *Sasa* has not been quantified due to the technical difficulties in field investigation. Since fine root dynamics are closely related to nutrient uptake and detritus supply in soil, the investigation of fine root dynamics, especially of *Sasa*, is important when understanding the change of nutrient uptake of vegetation after the clear-cutting in Japanese forested ecosystems.
In northern Japan, trees are mainly cut when there is a snowpack for ease of the logging operation. As a result, *Sasa* is protected from disturbance. *Sasa* is often strip-cut to allow for seedlings plantations after cutting. These disturbance regimes affecting *Sasa* would cause unique characteristics of ecosystem response after clear-cutting and *Sasa* strip cutting.

The purpose of this study was to clarify the effects of clear-cutting and subsequent removal of *Sasa* on N leaching in cool-temperate forested watershed with dense *Sasa* understory vegetation. We expected the decrease of N uptake by plants would be compensated with an increase of *Sasa* growth after tree-cutting. More specifically, our research questions were: (1) How does NO$_3^-$ concentration in stream and soil solution respond to clear-cutting and subsequent *Sasa* strip-cutting? (2) Do clear-cutting and *Sasa*-cutting alter fine root biomass of tree species and *Sasa*?

2. Materials and methods

2.1 Site description

The study was conducted in a cool-temperate forested watershed (8ha) in Teshio Experimental Forest of Hokkaido University in northern Japan (45° 03’ N, 142° 06’ E). Prior to clear-cutting, predominant overstory species were fir (*Abies sachalinensis*), birch (*Betula ermanii* and *Betula platyphylla var. japonica*) and Mongolian oak (*Quercus mongolica var. grosserrata*) (Koike et al., 2001). The forest floor was covered with dense understory vegetation, dwarf bamboo (mainly *Sasa senanensis* at
flat area and partly *Sasa kurilensis* at steep riparian slope). Bedrock is sedimentary rock of the Cretaceous period. Soil is gleyic Cambisols (FAO, 1988) and Typic Dystrochrepts (USDA Soil Taxonomy, 1994), with about 10cm of O horizon, 20 cm of A horizon and about 30cm of B horizon. Mean annual air temperature was 5.6 °C while mean annual precipitation was 1,170 mm, of which 30 % was snow. Inorganic N deposition was ca. 5 kgN ha\(^{-1}\) yr\(^{-1}\) in the studied watershed (unpublished data).

2.2 Clear-cut and Sasa strip-cut treatment

From January to March 2003, all trees were clear-cut in the entire watershed except for the riparian area and slope (about 13 m width from stream). *Sasa* were conserved as a result of the cutting treatment in the snowpack season. Logs were transported outside of the basin and detritus (including shoots, twigs and leaves) were left in the basin. In October 2003, *Sasa* were strip-cut into 4 m rows by crushing and spreading. The area with the *Sasa* strip-cut was ca. 50 % of the total tree-cut area in the watershed. Larch seedlings were then immediately planted in the *Sasa* strip-cut line.

2.3 Stream water and soil solution

Stream water was sampled at the weir located at the outlet of the watershed every two weeks during 2002-2004. Soil solution was sampled using tension-lysimeters with ceramic porous cups at 10, 20, and 40 cm depth at the clear-cut area (un-cut *Sasa*) and riparian slope area on the same date as the stream water collection.
After the measurement of pH using a glass electrode, water samples were filtered through a 0.7 μm GF/F filter and kept below 4 °C prior to further chemical analysis. Ion concentrations of major anions (Cl⁻, NO₃⁻, SO₄²⁻) and cations (Na⁺, NH₄⁺, K⁺, Mg²⁺, Ca²⁺) were analyzed using ion chromatography (DX-500, Dionex Inc., USA) after the additional filtering with a 0.2 μm membrane filter. Dissolved inorganic carbon (DIC) was analyzed using a total carbon analyzer (TOC-5000, Shimadzu Inc., Japan). HCO₃⁻ concentration was calculated from the DIC concentration and pH (Buurman et al., 1996).

2.4 Fine root biomass

Fine Roots (< 5mm) were collected from surface soil (0-15 cm depth) using a soil auger in June, September, and October of 2003 and October of 2004, washed using water to exclude soil material, dried (70 °C) and weighed to determine the fine root biomass at three plots; the cut Sasa and un-cut Sasa sites in the cut watershed, and control site (no clear-cutting) near the cut watershed. Sampled roots were discriminated by vegetation (Sasa and trees) and diameter (<0.5 mm, 0.5-5 mm). Fine root biomass was quantified for trees and Sasa separately with different diameters.

2.5. N mineralization and nitrification rate

Since Sasa was strip-cut in fall, the analysis of nitrogen processing in soil during the dormant season is important in understanding N leaching to the stream after the
strip-cutting. Net N mineralization and nitrification rate during the dormant period were determined using the *in situ* buried-bag method as mentioned below. Soils of 0-15 and 15-30 cm depth were collected at the same three plots for fine root investigation (cut *Sasa*, un-cut *Sasa*, and the control site) in October 2004, one year following the strip-cut of *Sasa*. Soils were sieved (2 mm) and roots and coarse organic matter were discarded. The fresh soil (10 g) was extracted using 2M KCl (50 mL). NH$_4^+$ and NO$_3^-$ in the extracted solution were analyzed using an auto analyzer (AACS-4, BL-TEC Inc., Japan). For net N mineralization and nitrification measurements, soils were packed into vinyl bags and buried again for incubation *in situ*. The buried bags were sampled in May 2005 when snow disappeared. Net ammonification and net nitrification rate were calculated as the difference of NH$_4^+$ and NO$_3^-$ pool between before and after *in situ* incubation, respectively.

3. Results and Discussion

3.1 Stream water chemistry

Before tree-cutting, mean NO$_3^-$ concentration in stream water was very low (< 1.0 μ mol L$^{-1}$). After tree-cutting, it remained at a low level, and there was no discernible difference in NO$_3^-$ concentration in stream water before and after the clear-cutting of trees. Just after the *Sasa*-cutting, however, stream NO$_3^-$ concentration began to increase and the mean concentration in 2004 was significantly higher (P<0.001) than that in 2003 (Fig. 1), suggesting that the *Sasa*-cut treatment induced NO$_3^-$ leaching to
the stream. Stream NO$_3^-$ concentration peaked (15 μmol L$^{-1}$) during the next snow-melting period (March 2004) and had subsequent higher values during the 2004 growing season compared to that observed before strip-cutting of Sasa. NH$_4^+$ in stream water was almost below the detection limit. The stream pH was almost neutral, and concentrations of HCO$_3^-$ and major cations were relatively high during entire study period with 6.76 (±0.36 SD) for pH, 368 (±308 SD) μmol L$^{-1}$ for HCO$_3^-$, and 53 (±28 SD) μmol L$^{-1}$ for Ca$^{2+}$, respectively. There were no significant change in the pH and concentrations of HCO$_3^-$ and cations in stream water after both cuttings (data are not shown) despite an increase in stream NO$_3^-$ concentration after Sasa-cutting (Fig. 1), indicating that the ecosystem had enough capacity to neutralize protons produced through NO$_3^-$ production in soil even after Sasa-cutting.

3.2 Soil solution chemistry

Although the tree-cutting did not induce an increase in stream N leaching (Fig. 1), NO$_3^-$ concentration in soil solution increased to a maximum of about 30 μmol L$^{-1}$ after the tree-cutting of 2003, showing that the elimination of nutrient uptake by trees enhanced nitrification in the soil. In 2004, after the Sasa-cutting, there was a further increase in NO$_3^-$ concentration in the solution (Fig. 2), suggesting that the Sasa-cut treatment promoted further nitrification in soil.

In the slope area surrounding the riparian zone, there was no increase in NO$_3^-$
concentration in 2003 after tree-cutting, suggesting N is retained in the riparian area by
plant uptake and denitrification in this anaerobic environment. However after the
strip-cut of *Sasa*, NO$_3^-$ concentration in soil solution in the riparian slope increased and
reached a similar level as was observed in stream water. (Fig. 1 and 2).

3.3 Fine root dynamics

Sasa root biomass in surface soil increased, while tree root biomass decreased after the
tree-cutting (Fig. 3). As a result, *Sasa* made up 95% of the fine root biomass in the
clear-cut area compared with 50% of *Sasa* in the control (uncut) area, indicating that
fine root production of *Sasa* was stimulated by tree-cutting. The *Sasa*-cut treatment
resulted in a 50% decrease in fine root biomass compared to that of the un-cut *Sasa* site
(Fig. 4). These results show that N uptake by understory vegetation buffered N
leaching after tree-cutting, however, N leaching after *Sasa*-cutting was due to a
reduction of vegetative uptake.

3.4 N mineralization and nitrification

Net nitrification rate during the dormant period in surface soil (0-15 cm) in the cut *Sasa*
plot and un-cut *Sasa* plot were 104 (±153 SD) and 0.5 (±1.2 SD) μg N kg soil$^{-1}$ d$^{-1}$,
respectively, although there was no significant difference due to the large spatial
heterogeneities (Fig. 5). In deeper soil, there was no difference in net N mineralization and nitrification between the cut Sasa and the un-cut Sasa site. In the cut Sasa plot, large input of fresh leaves and culms of Sasa with low C/N ratio might enhance N mineralization and nitrification in surface soil. Input of root detritus due to Sasa-cutting also might contribute to the N mineralization and nitrification by providing a labile source of organic material (Tripathi et al., 2005). Since the trees were cut in winter, there was not a large input of fresh litter from deciduous tree species. So the results of the buried bag experiment show that net nitrification was stimulated even in the dormant period by the Sasa-cutting rather than the tree-cutting, supporting that Sasa-cutting enhanced the NO$_3^-$ leaching to the stream (Fig. 1 and 5).

3.5 Role of understory vegetation on N retention

Our results show that N leaching was prevented after tree-cutting due to Sasa N uptake, while NO$_3^-$ was leached from the soil to the stream after Sasa-cutting due to a decrease of N uptake by Sasa. Previous studies have indicated the importance of nitrogen uptake by sprouting trees or recovered herbaceous vegetation as a means of preventing nitrogen leaching after disturbance (Boring et al., 1988, Vitousek and Melillo, 1979, Likens et al., 1970). Weston and Attiwill (1996) also indicated that uptake of N by regrowing vegetation was essential in reducing NO$_3^-$ concentration in soil water after the clearfelling in old-aged Eucalyptus regnans forests. In this study, it was suggested
that the increased N was taken up by understory vegetation roots just after tree-cutting in this Sasa dominated ecosystems. To show the N retention by Sasa quantitatively, the N leaching from soil was roughly estimated in each year after the cutting. Assuming that (i) mean concentration of NO$_3^-$ in deeper soil solution (40cm) was 10 and 106 μmol L$^{-1}$ after tree-cutting (with Sasa) and after subsequent Sasa strip-cutting, respectively (Fig. 2) and (ii) water discharge from soil was 500 mm during growing season in both year (based on the mean stream discharge during 2003-2004, unpublished data), the N leaching from soil was 0.7 and 7.4 kgN ha$^{-1}$, respectively. These N leaching correspond to about 1-2 times of current atmospheric N deposition, implying that those values would not be large relative to the rest of ecosystem N cycling.

Although our results show that Sasa-cutting caused significant increase of NO$_3^-$ leaching to the stream, there are still some uncertainties in understanding the cause of the seven month delayed response. Further detailed studies involving the analysis of water flow-pass and residence time of N in the groundwater (Ohte et al., 2003) are necessary to address these uncertainties.

4. Conclusion

Our results show that the remaining Sasa prevented N leaching after the clear-cutting of trees by inducing N uptake by Sasa, but Sasa cutting promoted N leaching due to a reduction in N uptake by Sasa. Understory vegetation played a role to buffer the
effects of tree clear-cutting on N leaching to the stream in this northern Japanese ecosystem.

Acknowledgements

This study was conducted as a part of project “CC-LaG (Carbon Cycle and Larch Growth) experiment” in Teshio Experimental Forest of Hokkaido University. We are grateful to staff at Teshio Experimental Forest of Hokkaido University for sample collection and support in this field study. We also would like to thank Dr. Sheila F. Christopher for correcting English and helpful comments.

References

Figure captions

Fig. 1: Temporal fluctuation of NO$_3^-$ concentration in stream water before and after clear-cutting of trees and subsequent *Sasa* strip-cutting. Solid and open arrow denote the period of clear-cutting of trees and *Sasa* strip-cutting, respectively.

Fig. 2: Temporal fluctuation of NO$_3^-$ concentration in soil solution before and after clear-cutting of trees and subsequent *Sasa* strip-cutting. Solid and open arrow denote the period of clear-cutting of trees and *Sasa* strip-cutting, respectively. Bars indicate SD (n=4 for cut area, 3 for riparian slope, respectively)

Fig. 3: Temporal fluctuation of fine root biomass in control site and clear-cut site (un-cut *Sasa*) after clear-cutting of trees. Bars indicate SD of whole fine root biomass (n=6-8).

Fig. 4: Surface soil (0-15cm) fine root biomass of trees and *Sasa* in each diameter class in the cut *Sasa*, un-cut *Sasa* and control (uncut) site one year following *Sasa*-cut treatment. Bars indicate SD (n=3-8). Different alphabets denote statistical significance ($P<0.05$) of total biomass among treatments (Scheffe’s multiple comparisons).

Fig. 5: Net ammonification and nitrification in soil in cut *Sasa*, un-cut *Sasa* and control
(uncut) site one year following *Sasa*-cut treatment. Bars indicate SD (n=6).
Fig. 1

Nitrate concentration (μmol L⁻¹)

Date

Fig. 2

Nitrate concentration (μmol L$^{-1}$)

Cut area

- 10 cm
- 20 cm
- 40 cm

Riparian slope

Date

Fig. 3

Cut (un-cut Sasa)

Control

Fine root biomass (g m$^{-2}$)

Date

1-May 2003 1-Sep 1-Jan 1-May 2004 1-Sep

Tree (0.5-5 mm)
Tree (<0.5 mm)
Sasa (0.5-5 mm)
Sasa (<0.5 mm)
Fine root biomass (g m$^{-2}$)

- Control
- un-cut Sasa
- cut Sasa

Legend:
- Tree 0.5–5mm
- Tree <0.5 mm
- Sasa 0.5–5 mm
- Sasa <0.5 mm

Fig. 4
Fig. 5

Net ammonification and nitrification rate (μgN kg soil \(^{-1}\) d\(^{-1}\))

0-15 cm

- Control
- Uncut Sasa
- Cut Sasa

15-30 cm

- Control
- Uncut Sasa
- Cut Sasa