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Abstract: Recently, there has been considerable research on nonvolatile analog devices for

artificial intelligence (AI); however, it focuses on all-coupled neural networks. In contrast,

polymer wire-type synaptic devices, which can be expected to be arbitrarily wired similar to

a biological neural network, have already been proposed and demonstrated. In this study, we

model a polymer wire synaptic device based on the results of previous research, and demonstrate

an example of applying simple perceptron (AI) to the model. The results of our study show

that it is possible to predict effective methods of using polymer wire synaptic elements in AI.

Key Words: analog ai, nonvolatile analog devices, organic polymers, three-dimensional ai

devices

1. Introduction
We are at the dawn of the Internet of things (IoT) era, with various household items becoming

Internet-connected. In the widespread use of IoT, it is necessary to process data on edge machines to

reduce the communication load with cloud artificial intelligence (AI), process data, and make decisions

only on edge machines when rapid responses are required. To meet these objectives, there is a growing

demand for edge AI computing. Research has focused on dedicated AI hardware with lower power

consumption, smaller size, and faster data processing because the power and space available for edge

machines are limited.

Recently, two-dimensional (2D) crossbar models have been extensively studied for AI-specific hard-

ware. These models have a planar structure with many synaptic elements that can hold the resistance

value, changed by the application of voltage, for a long time[1]. Such a model can be considered an

all-coupled neural network with synaptic elements as weights in the neural network. However, when

implementing neighborhood joins, such as convolution, in a 2D crossbar model, preparing all the joins

in advance results in waste [2]. The field of neuromorphology, which closely mimics neural structures,
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has the potential to solve this problem.[3]

2. Concept of Brain-type Devices

Conductive bridging RAM (CBRAM) is a synaptic device that has recently received significant at-

tention [4] [5]. When a voltage is applied between the electrodes, the CBRAM generates conductive

filaments in the insulating layer, as shown in Fig. 1(a). Inspired by this phenomenon, we sought to

control the location of conductive filament generation by passing the current from point to point, as

shown in Fig. 1(b), rather than from surface to surface. If we regard conductive filaments as wires

in CBRAM, we can realize arbitrary wiring. We also devised a brain-type device that mimics the

structure of an actual brain by integrating CBRAMs in three dimensions, as shown in Fig. 1(c). In

an actual neuron, the signals that are received by dendrites travel down axons, and are transmitted

to the next neuron, with the efficiency of transmission controlled by synapses. In contrast, in brain-

type devices, the wiring of conductive filaments is a weighted conduction path, corresponding to the

dendrites, axons, and synapses of a neuron. In other words, this synaptic device mimics the structure

of a nerve more closely. For example, we have already reported a synaptic device made of conductive

polymer wires that was grown via electropolymerization in a solution (polymer wire synaptic device)

[6] [7].

This study aims to predict the problems that occur when learning AI with polymer wire synaptic

devices. To achieve this, polymer wire synaptic devices need to be modeled and simulated, and then,

applied to AI. In this study, a 2D simulator for a polymer wire synaptic device and implemented

AI was created. In the future, we will create a three-dimensional (3D) simulator based on this 2D

simulator.

Fig. 1. (a) Schematic of a typical CBRAM. (b) Schematic of the proposed
CBRAM. (c) Brain-type device. (d) Diagram of our simulator.

3. Development of Simulation Model of PEDOT:PSS Wire Growth

3.1 Basic principle
A CBRAM simulator based on the study “Evolving conductive polymer neural networks on wetware,”

[6] was created. In that study, a conductive polymer polystyrene sulfonate (PSS) wire was grown via

electropolymerization by using a 3,4-ethylenedioxythiophene (EDOT) monomer solution, with PSS

as a dopant, as a precursor solution, and by applying a square-wave AC potential to an electrode

immersed in the solution. This CBRAM can be quickly reset and reconstituted by washing it away.

When a square-wave AC voltage is applied to this CBRAM, a conductive polymer wire grows from

the anode along the potential gradient, generated between the electrodes, when the AC voltage is

switched. To incorporate these features into the simulation, we simplify them into a form of “trans-

forming the place where the most current flowed in the quantized solution space into a conductive
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polymer wire.” Fig. 1(d) shows the overall view of the simulator. In this simulator, the real space

is quantized, potential nodes are set up, and resistors are placed between the potential points. High

resistance resistors correspond to the solutions, while low resistance resistors correspond to the con-

ductive polymers. This network circuit, comprising potential nodes and resistors, corresponds to

one CBRAM. The conductive polymer wires were grown using the following procedure: 1○ apply-

ing voltage and grounding to the potential nodes corresponding to the electrodes; 2○ calculating the

potential of each potential node using the nodal method of the network circuit; 3○ calculating the

current value flowing through each resistor; and 4○ changing the resistance of one resistor with the

maximum current value (from the calculated current value) from high to low resistance. The growth

of the conductive polymer wire was represented by repeating the calculation of each current value

and updating the resistance at the maximum current location.

3.2 Setting various values in the simulation
To make the simulator resemble the actual PEDOT:PSS wire growth, we chose two different values.

The first value is the dispersion value given to the resistor corresponding to the solution. The principle

of “transforming the place where the most current flowed in the quantized solution space into a

conductive polymer wire” was insufficient for selecting the diagonal resistor as the maximum current

location. This is because this simulator does not perform the shortest path search when updating from

high to low resistance. Therefore, the resistance value has a random variance such that the diagonal

direction is chosen as the maximum current point. To select the optimal variance, simulations were

performed, wherein the ratio of high resistance to low resistance was set to 100:1 in a region with

potential nodes of vertical : horizontal = 90 : 65, and the resistance was updated 500 times using

different variances. Fig. 2 shows a gray-scale representation of the resistance of the simulated area.

The normalization of shading is based on the upper limit of the variance for high resistance values.

The whiter the color, the higher the resistance value (solution); the blacker the color, the lower the

resistance value (conductive polymer or electrode element). The black blocks at both ends of the

figure are pre-set electrode elements. Fig. 2(a) shows the results when variance ±10 % is given. Figs.

2(b), (c), and (d) show variances of ±20 %, ±30 %, and ±40 %, respectively. These figures show that

the shade of white in the solution region changes by changing the dispersion of the resistance value.

From these results, we chose ±30 %, which provides a dispersion close to the spatial distribution of

the real PEDOT:PSS wires.

!"# !$# !%# !&#

Fig. 2. Simulation results with different variances: (a) ±10 %; (b) ±20 %;
(c) ±30 %; (d) ±40 %.

The second value is the ratio of high resistance to low resistance. This resistance ratio changes

the conductive polymer wire growth. To select the optimal resistance ratio, we set the variance

to ±30 %, and updated the resistance value 500 times with different resistance ratios. Fig. 3(a)

shows a high:low resistance ratio of 10:1. Figs. 3(b), (c), and (d) depict ratios of 100:1, 1000:1, and

10000:1, respectively. Based on these results, we selected a resistance ratio of 100:1, which provides a

distribution close to the spatial distribution of the actual PEDOT:PSS wires.

The other setting values listed below are tentative because they do not affect the overall shape of

the simulation. First, we explain the value of the high resistors when measuring AI weights. The

conductance value from the applied node to the ground node was used as the AI weight value. This
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Fig. 3. Simulation results with different resistance ratios: (a) 10:1; (b) 100:1;
(c) 1000:1; (d) Resistance ratio 10000:1.

allows us to express that the weights increase as the conductive polymer wire grows. However, when

the resistance ratio was set to 100:1 for the weight measurement, the variation in weight values owing

to wire growth was excessively small, and the initial placement of the electrodes had a significant

effect on the size of the weight values. To address this problem, we set the value of the high resistors

to 10000 Ω when measuring the weights for learning; consequently, the variation of the weight values

owing to wire growth became large, allowing learning to take place.

Next, we explain the rounding of digits for the weight values in AI learning. The weight values

change, albeit minutely, with each polymer update, even if the conductive polymer wire is not cross-

linked. We round minute values to stabilize the size relationship between the weights. In the simple

perceptron using the simulator, rounding the AI learning weight values to the fourth decimal place

further stabilized the learning.

Because it is evident that the resistance value of the electrode part resistor is negligible compared

to that of the solution and conductive polymer, it was set to 0.0001 Ω. The variance of the resistance

between the polymer and electrode resistors was set to ±10 %; further, a supply voltage of 10 V along

with an input and output resistance of 10 Ω were set.

4. Implementing AI (Neural Networks) in the Simulator

We now specify how the electrodes are set up, the degree to which conductive polymer wires are grown

in one epoch, how the weight values are handled, and how the weights are calculated for the simulation

of learning. First, we explain how to set up the electrodes. To simplify the structure, the electrodes

were placed on the left and right sides of the simulator, with the left side as the working electrode and

the right side as the counter electrode. Next, we discuss the degree to which the conductive polymer

wire grows in one epoch. When updating weights in AI learning, although we can increase a certain

weight w in this simulator, we cannot increase it by a specific value such as ∆w. This is because the

simulator is a complex network circuit, and we cannot estimate the change when we change the value

of a single resistor. Therefore, we set the growth of the conductive polymer wire to be performed in

one epoch, once for each weight. Next, we explain how to handle the weight values for AI learning.

As mentioned in the previous section, because the conductance value from the applied node to the

ground node is used for the weight value, this value can only increase as the wire grows. However,

the AI learning weights repeatedly increase or decrease until training is completed. To reflect this,

we prepared positive (w+) and negative (w−) values, and expressed one weight w as w = w+ − w−.

Finally, we explain the method for calculating the weights for AI learning. We used OpenBLAS to

calculate the nodal method for the networked circuit. In the execution of the program, we found that

it takes the considerable amount of time to calculate the values of all potential nodes of the network

circuit using the nodal method. Therefore, the weight calculation method was modified to reduce the

number of calculations for the nodal method. That is, instead of determining the conductance values

between the electrodes of a working electrode and counter electrode, all the working electrodes and

one counter electrode were used to calculate the potential. The current flowing into each working

electrode, which was calculated using each potential and input resistance, was used to calculate the

conductance value between each electrode. This made it possible to obtain multiple conductance

values for a single simulator using a single-nodal method calculation.
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4.1 Simple perceptron
We used the simple perceptron [8] as an AI implementation. The teacher data were an AND function

with two inputs. The bias term was set to −1. A sign function was used as the activation function.

When the two inputs are X1 and X2, the weights of each are w1 and w2, respectively, and the weight

of the bias term is w0. The output function to obtain output Y is expressed as follows:

y′ = (w+
1 − w−

1 )X1 + (w+
2 − w−

2 )X2 − (w+
0 − w−

0 ) (1)

Y =

{
1(y′ > 0)

0(y′ ≤ 0)
(2)

For the learning method, we used batch learning. Because it is a two-input AND function, the number

of teacher data points is four. Because the activation function is a sign function, the amount of weight

update ∆w is expressed as follows:

∆w =
4∑

k=0

(TrainingDatak −Outputk) ∗ (Y ) (3)

When ∆w is positive, w+ increases; when ∆w is negative, w− increases to the electrode corresponding

to its unsigned weight value, and conductive polymer wire growth is performed once. Learning was

completed when all inference results matched the teacher data.

The results of learning the AND function with a simple perceptron using the simulator are shown in

Fig. 4. Here, white represents the solution, and black represents the conductive polymer or electrode.

The scale of the simulator is height 190 × width 110. The blocks on the left side are the working

poles, corresponding to W+
1 , W−

1 , W+
2 , W−

2 , W+
0 , and W−

0 from the top. The block on the right-

hand side is the counter electrode. The learning process was completed in 323 epochs. The weighted

values are w+
0 = 0.007, w−

0 = 0.005, w+
1 = 0.005, w−

1 = 0.003, w+
2 = 0.010, and w−

2 = 0.008. It was

demonstrated that the learning of the AND function with two inputs was complete; hence, we can

conclude that AI learning implementing a simple perceptron was successful.

Fig. 4. Results of AND function learning with a simple perceptron using the
simulator.

5. Considerations
5.1 Differences between PEDOT:PSS wire growth and simulator
Although we have imitated the PEDOT:PSS wire growth, the simulation of the growth process is still

problematic. PEDOT:PSS wires are solids in a liquid, and behave as if they are attracted by electric

charges. Additionally, the PEDOT:PSS wires shrank, and before cross-linking occurs, the force of

attraction between the charges stretches the shrunken part, resulting in instant cross-linking. Because

the simulation does not reproduce the movement of the wire, owing to this attraction and stretching

of the frizz during cross-linking, the simulation cannot foresee the problems of the PEDOT:PSS wire.

Furthermore, the simulation cannot foresee the problem of the wires becoming tangled owing to the

attraction of the PEDOT:PSS wires when they are made 3D.

383



5.2 Simulation using for learning
In the region where multiple electrodes were concentrated on the left side of Fig. 4 in the simple

perceptron, multiple cross-links between the electrodes occurred. This is because the resistance of

the electrodes is lower, and coupling to an already cross-linked electrode can be a shortcut. However,

the cross-linking between electrodes is not a problem for AI learning. Because the weight values

were measured between the working and counter electrodes, the weight values, including the effect of

cross-linking, were only calculated and did not affect the AI learning.

In some trials, it took thrice as many epochs as the learning epoch, as shown in Fig. 4. In such

cases, the overall percentage of low resistance increased. In the case of complex AI learning, the

percentage of low resistance is expected to increase even more, which may lead to the limit of the

differential. To handle this, we need to place the targeted conductive polymer back into the solution,

desorb the targeted conductive polymer to reduce the conductance value, or reset everything when

the percentage of conductive polymers in the solution reaches a certain level.

6. Conclusions
In this study, we show the creation of a simulator based on PEDOT:PSS wires and the possibility

of AI learning using a simulator. We modeled and simulated the growth of a PEDOT:PSS wire as a

simple process for transforming the most current flowing place in the quantized solution space into a

conductive polymer wire. We also implemented simple AI learning using this simulator. However, we

determined that some phenomena cannot be reproduced by this simulator; further, issues related to

the limitation of the differential in weights became apparent. In future research, it will be necessary

to discuss how to handle such problems in PEDOT:PSS wires. Additionally, we intend to create a 3D

simulator based on the 2D simulator, and predict the problems that may occur when the PEDOT:PSS

wire is structured in 3D.
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