

Instructions for use

Title Digital implementation of a multilayer perception based on stochastic computing with learning function

Author(s) Sasaki, Yoshiaki; Muramatsu, Seiya; Nishida, Kohei; Akai-Kasaya, Megumi; Asai, Tetsuya

Citation Nonlinear theory and its applications, IEICE, 13(2), 324-329
https://doi.org/10.1587/nolta.13.324

Issue Date 2022

Doc URL http://hdl.handle.net/2115/85558

Rights Copyright ©2022 The Institute of Electronics, Information and Communication Engineers

Type article

File Information 13_324.pdf

Hokkaido University Collection of Scholarly and Academic Papers : HUSCAP

https://eprints.lib.hokudai.ac.jp/dspace/about.en.jsp

NOLTA, IEICE

Paper

Digital implementation of a multilayer
perceptron based on stochastic computing
with online learning function

Yoshiaki Sasaki 1a), Seiya Muramatsu 1 , Kohei Nishida 2 ,

Megumi Akai-Kasaya 3 ,4 , and Tetsuya Asai 3

1 Graduate School of IST, Hokkaido University

2 Faculty School of Engineering, Hokkaido University

3 Faculty School of IST, Hokkaido University,

Kita 14, Nishi 9, Kita-ku, Sapporo, Hokkaido 060-0814, Japan

4 Department of Chemistry, Graduate School of Science, Osaka University

1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan

a) sasaki.yoshiaki.3s@ist.hokudai.ac.jp

Received October 18, 2021; Revised December 18, 2021; Published April 1, 2022

Abstract: Stochastic Computing (SC)[2] is a probability-based computing method, which

enables the performance of various operations with a small number of logic gates (i.e., low

power) in exchange for high accuracy. Using SC for edge artificial intelligence (AI) integrated

circuits can help circumvent the limitations inherent in the power and area required for edge

AI.

In this study, a three-layered Neural Network (NN) is presented with an online learning function

that introduces pseudo-activation, pseudo-subtraction, and imperfect addition into the SC

framework. This method may expand the options for edge AI integrated circuits using SC.

Key Words: stochastic computing, machine learning, neural networks, edge AI integrated

circuit

1. Introduction
Artificial intelligence (AI) has made remarkable progress in recent years; however, simultaneously,

the cost of sum-of-products operations has substansially increased. In particular, the cost barrier is

significantly large for edge AI integrated circuits because they have significant limitations in terms

of chip area and power consumption. Therefore, edge AI integrated circuits are required to be as

efficient as possible.

Stochastic computing (SC) was first proposed in the 1960s, and is an arithmetic method that

significantly reduces the circuit area by adopting probability (Ref. [1]). It remained obscure for a

considerable time owing to the variability in computational results caused by the nature of probability.

However, recently SCs have been demonstrated to be applicable to various applications such as image

324

Nonlinear Theory and Its Applications, IEICE, vol. 13, no. 2, pp. 324–329 ©IEICE 2022 DOI: 10.1587/nolta.13.324

processing and deep learning, where a certain degree of error is permissible in the calculation results;

therefore, we can expect to benefit from the introduction of SC. Addition and subtraction are difficult

in SC-based operations. In a previous study, edge AI integrated circuits with SC required decoding at

each layer of the layered network, thereby resulting in severely high computational cost. In addition,

there have been no proposals for edge AI integrated circuits with learning functions or the introduction

of arithmetic circuits for learning.

In this study, we propose a novel method for edge AI based on the assumption of the input to the

activation function. Here, we propose a method to realize addition and subtraction without decoding

by assuming the input to the activation function. We also propose a digital implementation of a

three-layer perceptron with a learning function, including a digital implementation of a three-layer

perceptron with a learning function that can learn and infer simple linear regression problems, and

non-linear regression problems.

2. Stochastic computing

2.1 Numeric representation
In SC, a numerical value is represented by the ratio of logical 1s in a bit sequence. When an n-bit value

E is adopted for arithmetic operations, a random n-bit value R is generated for every clock cycle.

Subsequently, numerical conversion is performed by comparing E and R with a digital comparator

that outputs logic 1 when R < E, and logic 0 when R ≥ E. The bit sequence X = {X1, X2, ..., XL}
is expressed by the following equation:

p(X = 1) = E/L. (1)

In SC, operations are performed using these converted numbers and various logic circuits. A general

Fig. 1: Conceptual diagram of SC.

digital multiplier comprises a large number of adders; however, in SC, it is possible to realize a

multiplier with only a single AND gate. Assuming that the input bit strings are X1 and X2, and the

output bit string is Y , the relationship between the probability of occurrence of logic 0 and logic 1 at

the input and output of the AND gate is expressed in the following equation:

Y = X1&X2 (2)

p(Y = 1) = p(X1 = 1)× p(X2 = 1). (3)

2.2 Two types of adders
There are two types of additions in SC: weighted and imperfect additions.

First, in the SC framework, the operation using a multiplexer is called weighted addition. In general

digital adders, it is necessary to arrange all adders with the same number of bits as the number of

values to be added together; however, in SC, it is possible to realize n-bit adders (n is an arbitrary

natural number) with a single multiplexer. Let X1 and X2 be the input bit strings, S be the selected

signal, respectively, and Y be the output bit string. The relationship between the probability of the

occurrence of logic 0 and logic 1 at the input and output of the multiplexer is expressed in following

equation:

325

p(Y = 1) = p(X1 = 1)× p(S = 1) + p(X2 = 1)× p(S = 0). (4)

In particular, when the selected signal whose probability of occurrence of logic 0 and logic 1 is 1/2,

we can realize addition with a single multiplexer, such that the output is normalized by a factor of

1/2.

Second, in SC flamework, the operation via OR gate is called imperfect addition. If the input bit

strings are X1 and X2, and the output bit string is Y , the relationship between the probability of

occurrence of logic 0 and logic 1 at the input and output of the OR gate, respectively, is expressed in

the following equation:

p0 = p1p2 + p1(1− p2) + (1− p1)p2

= p1 + p2 − p1p2. (5)

Therefore, when the occurrence of the two inputs p1 and p2 are sufficiently small, the OR gate

operation can be approximated as an addition.

2.3 Differential representation
In general, probability can only represent positive values. However, in the machine learning field,

we are required to handle both positive and negative values. Consequently, we introduce differential

representation here. If the values taken by two bit strings at a certain time are X+ and X−, the

differential representation of the value X to be represented is defined by the following equation:

X ≡ X+ −X−. (6)

3. Previous research
The method presented in Refs. [3],[4] requires a large number of bit registers in the finite-state

machine (FSM), which increases the circuit size of the entire network. In addition, the subtraction,

which is performed as a preprocessing of the activation function, requires a decoding process with

U/D counters. The operation time increases in proportion to the number of layers in the network.

In the method presented in Ref. [5], the summation operation is performed by solely adopting the

decoding process with the U/D counter. The multiplication for each node of the neuron is performed

sequentially, thereby requiring considerable operation time.

4. Proposed three methods
First, we propose pseudo-activation function. Let the input probabilities of the OR gate be p1 and p2
and the output probability be p0; when the two inputs are equal, the following equation is satisfied:

p0 = p1 + p2 − p1p2 = 2p1 − p21. (7)

The above equation demonstrates that nonlinear operations can be realized using OR gates. The

circuit that realizes the activation function using this nonlinearity is presented in Fig. 2. Here, the

independence of the input of the logic gate is maintained by delaying the bit sequence using the D-FF.

From Eq.(7), the input/output of the circuit illustrated in Fig. 2 satisfies the following equation:

Y = g(X) = (2X −X2)2. (8)

We present the input–output relationship when the bit string length is L = 255 in Fig. 3. We deduce

that the threshold of this activation function is approximately 0.5.

Next, we propose a pseudo-subtraction method that mimics synaptic transmission. There are two

types of synapses that transmit information in a neuron: excitatory synapses, which stimulate the

firing of postsynaptic cells, and shunting synapses, which suppress firing. A function that mimics the

behavior of these two types of synapses is shown in following equation:

X = X+ × (1−X−), (9)

326

' 4

4

' 4

4
' 4

4

;

<

&/.

Fig. 2: Activation function with OR gates.

!"#$%&'$%(#

)*

!

"
!

Fig. 3: Input and output of the activation function
g(x) using an OR gate.

where X, X+, and X− corresponds to the output of a synapse, and excitatory synapse, and a shunting

synapse, respectively. All subtractions in the network to perform the subtraction shown in Eq.6 are

replaced by this operation.

Third, we propose summation utilized by OR gates. As aforementioned, there are two types of

additions in SC. In the previous studies, weighted addition has been mainly adopted; however, when

weighted addition is used for the summation operation, the output is normalized to 1/n, according to

the number of inputs n. In the previous research, to input normalized values to activation function,

decording for addition is required. In other words, addition significantly increased the circuit area

and calculation time. In contrast, imperfect adders have a small circuit area and do not normalize

the output. In addition, when the input probabilities are both small, imperfect addition can be

approximated to general addition. Accordingly, we decided to introduce an imperfect adder into the

MLP based on SC.

5. Implementation of multilayer perceptron (MLP) with SC

5.1 Proposed network and comparison to the previous research
In this study, we propose a three-layer network with SC. The number of neurons in the input layer

is NX , the number of neurons in the hidden layer is NV , and the number of neurons in the output

layer is NY . Let neurons in each layer be Xk(k = 0, 1, ..., NX − 1),Vj(j = 0, 1, ..., NV − 1), and

Yi(i = 0, 1, ..., NY − 1), the weight from the input layer to the hidden layer is Wj,k, and the learning

rate is Wi,j . The learning method is stochastic gradient descent, and the learning rate is η. We

implement the MLP with SC by employing the three methods described above. The forward operation

of the three methods is represented by the following equation:

h+
j = OR

NX−1∑
k=0

(w+
j,k ∗Xk), h

−
j = OR

NX−1∑
k=0

(w−
j,k ∗Xk), Vj = g(h+

j ∗ (1− h−
j)),

h+
i = OR

NV −1∑
j=0

(W+
i,j ∗ Vj), h

−
i = OR

NV −1∑
j=0

(W−
i,j ∗ Vj), Yi = g(h+

i ∗ (1− h−
i)),

where OR
∑

is defined as the sum operation via imperfect addition. In addition, we introduced

a learning function based on the stochastic gradient descent method by performing differentiation

on the error function with the proposed method. Hence the block diagram of the MLP with SC is

illustrated in Fig. 4. Here, a 9-bit UD counter is adopted as a decoder to match the bit string length

(L = 255), and an 8-bit register is used to store the weights. In addition, an 8-bit LFSR was used

as a random-number generator for encoding. Compared to the previous research, the proposed MLP

has the capability of learning. In addition, it has a time advantage in forward calculation. Compared

to the previous research in Ref. [4], the proposed MLP performes the sum-of-products operation in

parallel (i.e., no decoding is required for the sum operation). In other words, the cost, namely time,

decreases in proportion to the total number of neurons in the network. Compared to the previous

research in Ref. [5], the introduction of the pseudo-subtraction eliminates the need for decoding,

which was required for differential representation.

327

!"##$%&'()$*!! "!

"# $!
%

"" & "!

"# $!
' "" & "!

""

$($#
% "# & ""

$($#
' "# & ""

%(
"#

+(,-&.*/0(1(2"/%

!/320324!"##$%"

#$,/#"%152/*(1$

!%/%678"

$%,/#"%1

&# &(

/32032 '()$*

!#$!
)

#($#
)

"#""

"# & """" & "!

&(
) *"#&#

) *""

+(,- .*/0(1(2"/%

!!"##$%4"%032"

#$,/#"%152/*(1$

!%/%678"

$%,/#"%1

Fig. 4: Block diagram of MLP with SC.

5.2 Assessment of Learning
By simulating the proposed MLP on C++, we trained MLP to perform various logic operations,

linear regression problems, and nonlinear regression problems. The parameters used for training and

settings of teacher and train data are shown in Table I, and the results are shown in the Fig. 5.

Table I: MLP parameters and settings of teacher and train data.

Type Linear regressions Nonlinear regressions

Teach label y = x y = 1
2x y = cos(x) y = sin(x)

Number of training data 100 256

Number of test data 256 25

Network size 9-32-8 9-128-8

Learning rate 0.3

Stream length 255

��

���

����

����

����

����

�� ��� ���� ���� ���� ����

! "#$%

&
"
#
$%

(a) y=x

��

���

����

����

����

����

�� ��� ���� ���� ���� ����

! "#$%

&
"
#
$%

(b) y=1/2x

��

���

����

����

����

����

�� ��� ���� ���� ���� ����

! "#$%

&
"
#
$%

(c) y=cos(x)

��

���

����

����

����

����

�� ��� ���� ���� ���� ����

! "#$%

&
"
#
$%

(d) y=sin(x)

Fig. 5: Results of training for the proposed MLP based on C++ simulation.

5.3 Power evaluation
Next, we evaluate the power consumption of the MLP proposed in this thesis. In the evaluation,

we assumed minimnist as the training set. Therefore, the number of neurons in each layer was set

to NX = 197, NV = 64, NY = 10. Table II illustrates the estimated power consumption of the

proposed MLP by using the Synopsys design compiler. From Table II, when we use proposed MLP

with training, power consumption is approximately 7.5 times higher than that of the case without

training. The significant increase in power consumption is primarily owing to the large number

of multipliers required for training, and more efficient learning circuits are required to reduce the

power consumption. Next, for comparison to the previous research depicted in Ref. [5], which has a

learning function, the scaled power values with scaling laws applied are presented in Table II. However,

328

because the supply voltage was not mentioned in Ref. [5], it was assumed to be an estimated value.

The number of neurons in the proposed MLP framework is larger than those used in the previous

research. Moreover, owing to the implementation of multi-layer back propagation, the computation

for learning is more complicated; nevertheless, the power consumption remains approximately 2.5

times of value mentioned in Ref. [5]. In addition, the computation time has been reduced in the

proposed MLP framework, which has increased proportionally to the number of neurons owing to

sequential multiplication in the previous research.

Table II: Power evaluation of the proposed MLP.

This work Ref. [5] This work (scaled)

Evaluation method Synopsys design compiler actural measured scaled

Technology UMC 0.18 µm 1P6M CMOS 0.6 µm

Function Learning and Inference Inference Learning and Inference

Network Configuration 197 - 64 - 10 50 neurons 197 - 64 - 10

Supply Voltage 1.8 V 5 V (estimated)

Frequency 100 MHz 30 MHz

Dynamic Power 57.4 mW 4.45 mW ——– ——–

Static Power 32.9 mW 7.66 mW ——– ——–

Total Power 90.3 mW 12.1 mW 330 mW 836 mW

6. Conclusion
In this study, as a method for introducing SC to MLP, we first proposed an area-efficient activation

function, focusing on the nonlinearity of OR gates. Next, we proposed a subtractor that mimics the

synaptic transmission of neural circuits without requiring decoding in the middle of the operation; in

addition we proposed a summation operation that utilizes imperfect addition by assuming threshold

processing using the activation function. Using the proposed method, we implemented a digital

MLP based on SC. The implemented MLPs were adopted to learn and infer linear and nonlinear

regression problems. We demonstrated the feasibility of using SC-based edge AI integrated circuits.

In the future, it will be crucial to search for more power-efficient learning circuits and appropriate

parameters for learning more complex datasets. In addition, SCs will generally require low-power and

area-efficient encoders, decoders, and memory elements.

7. Acknowledgment

This study was supported in part by JSPS KAKENHI (Grant No. 18H05288), Japan.

References
[1] Yoshiaki Sasaki, Kohei Nishida, and Tetsuya Asai,“ Learning device, subtraction circuit, and

activation function circuit,” Japanese patent application No.2021-118326.

[2] B.R. Gaines,“ Stochastic computing systems,”Adv. Informat. Sys. Sci., pp.37-172, Springer,

1969.

[3] B.D. Brown and H.C. Card,“Stochastic neural computation I. Computational elements,” IEEE

Trans. Comput., vol.50, no.9, pp.891-905, Sept. 2001, DOI: 10.1109/12.954505.

[4] Shigeo Sato, Ken Nemoto, Shunsuke Akimoto, Mitsunaga Kinjo, and Koji Nakajima,“ Imple-

mentation of a new neurochip using stochastic logic,” IEEE Trans. Neural Netw., vol.14, no.5,

Sept. 2003, DOI:10.1109/TNN.2003.816341.

[5] Naoya Onizawa, Kazumichi Matsumiya, and Takahiro Hanyu,“Energy-efficient brainware LSI

based on stochastic computation,” IEICE Fundamentals Review, vol.11, no.1, pp.28-39, July.

2017, DOI:10.1587/essfr.11.1 28.

329

