

Instructions for use

Title Smart hardware architecture with random weight elimination and weight balancing algorithms

Author(s) Ali, Emiliano J.; Amemiya, Yoshiki; Akai-Kasaya, Megumi; Asai, Tetsuya

Citation Nonlinear theory and its applications, IEICE, 13(2), 336-342
https://doi.org/10.1587/nolta.13.336

Issue Date 2022

Doc URL http://hdl.handle.net/2115/85561

Rights Copyright ©2022 The Institute of Electronics, Information and Communication Engineers

Type article

File Information 13_336.pdf

Hokkaido University Collection of Scholarly and Academic Papers : HUSCAP

https://eprints.lib.hokudai.ac.jp/dspace/about.en.jsp

NOLTA, IEICE

Paper

Smart hardware architecture with

random weight elimination and weight

balancing algorithms

Emiliano J. Ali 1a), Yoshiki Amemiya 1 , Megumi Akai-Kasaya 1 ,2 , and

Tetsuya Asai 1

1 Graduate School of Information Science and Technology, Hokkaido University

Kita 14, Nishi 9, Kita-ku, Sapporo, Hokkaido 060-0814, Japan

2 Graduate School of Science, Department of Chemistry, Osaka University

1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan

a) ali.emiliano.3c@ist.hokudai.ac.jp

Received October 18, 2021; Revised December 18, 2021; Published April 1, 2022

Abstract: Reducing the number of connections in hardware artificial neural networks, as

compared with their software counterparts, can result in a drastic reduction in costs, because

the reduction translates into utilizing fewer devices. This paper presents the demonstration of

a method, by using simulations, to halve the amount of weights in a network while minimizing

the accuracy loss. Additionally, the appropriate considerations for translating these simulation

results to hardware networks are also detailed.

Key Words: hardware neural networks, random weight elimination, unsupervised learning,

smart architecture, weight balancing.

1. Introduction
With recent advancements in artificial neural networks, the increasing complexity of the challenges

at hand results in a notable increase in the number of neurons and layers involved in the networks.

Although this might not be a significant issue when software networks are considered, because even

though an increased number of neurons and weights affect the processing speed, the cost does not

increase proportionally. However, when considering analog neural networks that must be implemented

in hardware, the concern grows.

In hardware neural networks, the weight values are usually represented using conductance val-

ues that are strictly positive (e.g., in crossbar arrays with sense amplifier configurations,such as the

schematic illustrated in Fig.1-A).Therefore, we are required to implement differential weights result-

ing in the duplication of weights of their software counterpart.

On this basis, determining a way to reduce the number of connections in a network while trying to

maintain the highest processing accuracy possible is potentially key to producing economically and

computationally efficient hardware artificial neural networks.

This study addressed this problem by adopting two algorithms named Weight Elimination and

336

Nonlinear Theory and Its Applications, IEICE, vol. 13, no. 2, pp. 336–342 ©IEICE 2022 DOI: 10.1587/nolta.13.336

Weight Balancing,resulting in, what we called, a Smart Hardware Architecture [1] [2] represented

in Fig.1-B. This can effectively halve the weights in a hardware network with minimal losses in

processing accuracy. Here, an unsupervised learning algorithm with a well-known dataset utilizing

a simple perceptron architecture, and a supervised Deep-Belief Network (DBN) configuration, are

tested.

Additionally, because the calculations are performed in software simulations, the considerations

required to translate this architecture into hardware are also introduced and implemented in the

simulation to represent the system accurately. Notably, the influence on the amplifier error due to

the addition of a conductance (g0 in Fig.1) used for biasing the operational amplifier input.

Fig. 1. Schematics of hardware ANN pre and post weight elimination.

2. Methodology

To indicate how the reduction in the number of connections is performed, two individual algorithms

must be explained. Firstly, the Weight Balancing Algorithm (WB) is detailed; the purpose of this

algorithm is to create an equivalent of hardware differential weights into software. Subsequently,

the Random Weight Elimination (RWE) algorithm is shown; this is the main method that enables

the reduction of the number of weights in the network. Additionally, we describe how the amplifier

error is affected by the g0 conductance and how to determine a value that minimizes this error while

maintaining the power consumption as low as possible.

2.1 Weight Balancing

When a neural network is implemented in hardware, the weights are represented as the difference

between two positive conductance values. However, the weights of software neural networks are a

mere number with no physical significance; they are not comprised of a positive and negative value

combination.

In this regard, in order to compare a normal learning algorithm with no weight elimination and

another algorithm that only deals with either the positive or the negative component of the weight,

we are required to find to determine how to divide the software weight numbers into positive and

negative splits.

Therefore, the Weight Balancing algorithm was developed as a solution. In this algorithm, we

create an auxiliary matrix (called Rating matrix onward) that represents the magnitude of the shift

of each individual weight value in relation to the combined weight. This matrix will be set with

random values within a range for our case since our starting point is a software neural network, but

in principle this matrix can be designed according to the initial network’s weight values (if the nature

of the network is known beforehand).

In the case of hardware neural networks this matrix is simply the representation of the balance

between the positive and negative weight values. For example, if we have a weight of 10, this can be

represented by an infinite number of possibilities. The number could be represented as the combination

of a positive weight of 11 and a negative weight of 1 (which would be represented with a rating of

0.1), or a positive weight of 1000 and a negative weight of 990 (with a rating of 99). In both cases,

337

the total weight is still 10; but when eliminating either of the weights, the shift in the network is

different when going from 10 to 1000 or to -1. An example of a rating matrix is illustrated in Fig.2.

Fig. 2. Example of Rating matrix construction and weight separation.

After the matrix is constructed, the following operations are performed on the weight values:

1. The original weight value wij is multiplied by 1+rij where rij is the rating for the ith/jth element.

This new value is called wrij and is stored in a new matrix called WR.So, wrij = wij ∗ (1+ rij)

2. Another matrix is created with the counterpart of this newly rated matrix, multiplying wij by

rij . This value is called urij and is stored in a matrix called UR.This is then: urij = wij ∗ rij

3. The matrices WR and UR are split into their positive and negative values, yielding four

matrices,refered to as P,N,p and n, corresponding to the positive and negative values of WR

and the positive and negative values of UR respectively.

4. By subtracting n from P; and N from p, we obtain the total positive and negative matrices,

noted as P̄ and N̄ : P̄ = P − n and N̄ = p−N . Subsequently, we are left with the final result:

W = P̄ − N̄

After this process we end up with two matrices, as in the example illustrated in Fig.2; we have

strictly positive matrix and strictly negative matrices that, when added, result in the original weight

matrix that the process started with.

2.2 Random Weight Elimination algorithm

The Random Weight Elimination (RWE) algorithm is, as its name reflects, the elimination of either

the positive or negative component of each weight in a random manner after WB. In a software

network, this does virtually nothing, but in a hardware network, since each weight is constructed

via the difference of two conductance values, the RWE reduces the complexity and size of the network

by eliminating one of the components of the differential weight (halving the amount of devices needed

to construct a network).

This process is remarkably simple; we start with the matrices resulting from the WB algorithm, and

before performing any learning in the network, we eliminate one of the components for each weight

(either positive or negative), and then subtract the matrices to yield a new starting weight matrix.

However, solely doing this would not suffice; it is required to perform a restriction during the

learning process. This restriction does not allow the initial weights to decrease in absolute value to

mimic a physical conductance, implying that , for example, if a weight solely has its negative part, it

cannot become more positive because its positive component has been eliminated.

Even though this last assumption can be discussed depending on the device (since, for example,

memristors can reduce their conductance [3]), in our case, the target hardware device is based on

material electropolymerization [4], thus making it impossible to reduce the conductance once it has

been increased.

The combination of these two processes, applying RWE to the network pre-learning and the restric-

tion of weights during the machine learning operations, yields a software network that can mimic a

hardware network with half of its components, and which its constructing devices’ conductance can

not be reduced.

338

2.3 RWE dependances

The RWE algorithm results are mainly influenced by two variables, the network size and the rating

matrix composition (for the case of non-decremental conductance devices). For bigger networks,

there is a smaller accuracy drop between the original and that with eliminated weights. The hypothesis

is that bigger networks allow for additional weights to compensate the aforementioned strictly positive

or negative restriction.

For the rating matrix, maximum ratings smaller than 1% result in virtually no partition and thus

hold no significance for the algorithm, but high ratings result in a comparably high dispersion between

the original and post-elimination weight values, hindering the learning accuracy. To set the optimal

values for the rating matrix (in our case an optimal range for the random values), an analysis of

the network must be performed. This implies that before using RWE, simulations to determine an

optimal rating matrix must be done according to the network/dataset. Once the rating matrix is

designed, the RWE algorithm can be applied. It is important to mention again that this holds true

only for simulation of non-decremental conductance networks like the ones mentioned in Section 2.2.

If a network with variable conductance (where the value can increase or decrease within a range)

is simulated, the rating matrix does not affect the learning significantly since the absolute

value of the weights can decrease due to the nature of the device.

2.4 Amplifier error

Since our focus is on hardware neural networks, we must consider the addition of the aforementioned

resistor (denoted as g0 in Fig.1). The addition of this conductance results in an error due to the

amplifier ”miscalculating” the output, implying that the expected output and the real amplifier output

differ.

Utilizing the sense amplifier, we expect to obtain a digital high when the weighted sum of the positive

input is higher than the weighted sum of the negative input, and a digital low when the opposite occurs.

Thus, the expected equation that the amplifier should implement is Vo = H

[

∑n

i=1
Vi

(

gi+ − gi−

)

]

Where Vo is the output voltage, Vi is the ith input voltage, gi+ is the positive component of the ith

weight, gi− is the negative component of the ith weight and H is the transfer function of the amplifier.

With the addition of the auxiliary conductance, instead of implementing this function, the amplifier

performs the following computation:

Vo = H

{

[1

g0 +
∑n

i=1
gi+

]

n
∑

i=1

Vigi+ −

[1

g0 +
∑n

i=1
gi−

]

n
∑

i=1

Vigi−

}

(1)

By comparing the outputs of these two equations when varying the input voltages and the values

of g0, we can measure the error induced in the sense amplifier due to the addition of the resistor.

However, before this calculation, it is important to detect how much amplifier error is acceptable for

our RWE algorithm. Thereafter, the appropriate value of g0 can be set. For this purpose,an artificial

error was introduced during the learning process using the RWE algorithm. F or example, if the error

is set to 0.5, every neuron in the network has a 50% of yielding an incorrect output (opposite to the

expected output).

In a network with binary units, a 50% error chance in every unit is virtually random; therefore,

an analysis was performed for an error rate between 0 and 0.5. The results of these analyses are

illustrated in Fig.3.

In our case, an error of 0.0025 was determined to be the maximum admissible, this is due to higher

error rates yielding low-quality images as a result. It is worth mentioning that this analysis was

performed on the MNIST dataset; however, it should be performed on the desired dataset to check

how much error is admissible in that case.

339

Fig. 3. Curves for Machine Learning accuracy vs amplifier error rate. In blue,
accuracy without amplifier error, in orange, accuracy with error introduced.
A)Machine Learning accuracy variance in relation to the error rate in the
amplifier, B)Zoom in for the same curve of A.

2.4.1 Determination of G0

After deciding the admissible error rate, we are required to find a way to control this error rate. To

this end, we refer to equation 1 and determine a correlation between the value of g0 and the amplifier

error (this would be the error of an individual neuron).

Since this conductance value depends directly on the range of the conductances involved in the

network, the analysis was performed between various conductance ranges, and a conclusion was drawn

afterwards. The results are presented in Fig.4.

Fig. 4. Curves for g0 determination. A) Curve for maximum conductance in
the network = 100 µS, B) Curve for maximum conductance in the network =
100 nS, C) Curve for maximum conductance in the network = 100 pS

In this figure we can observe that for all conductance ranges, the optimal g0 to achieve the desired

error rate can be estimated as 100 times the maximum conductance value. If we have a system for

which the maximum conductance can be expressed as GMAX , the optimal g0 to achieve a 0.25%

amplifier error is g0 ≈ 100 GMAX

If a smaller error rate is desired, a larger conductance can be selected at the cost of increasing the

power consumption.

3. Results

3.1 Autoencoder results

To test the effectiveness of the algorithm, we start by testing the reconstruction accuracy between a

simple autoencoder with no RWE and an autoencoder with RWE. The autoencoders are sized 784 x

3136 and trained with the MNIST digits dataset, and the outputs of each network can be observed

in Fig.5-A. We can observe that with half of the weights in the network, the reconstruction accuracy

slightly decreased from 97.39% to 96.98%, which is an acceptable result since these autoencoders will

be utilized mainly for pre-training deeper networks.

340

Fig. 5. A) MNIST digit reconstruction example output, normal autoencoder
(up) and autoencoder with RWE (down). B) General schematic of the networks
trained using supervised MLP and DBN

3.2 Deep Belief Network results

In this section, the objective is to utilize autoencoders to provide the initial weights for a Deep Belief

Network (DBN) [5]. In such a network, each layer is pre-trained with RWE, and the final weight values

are utilized as the initial weights of the DBN which is then subjected to supervised learning. We can

observe the basic schematic of the trained DBNs in Fig.5-B. This study trained the networks using

different parameters for optimization and layer size. The results of the different tests are summarized

in Table I.

Table I. Learning accuracy results for DBN compared to MLP for sev-
eral structures, GD represents a Gradient Descent Optimizer while A rep-
resents an Adam Optimizer.A)784x1568x784x784x10, B)784x784x784x784x10,
C)784x784x600x300x10, D)784x500x300x200x10

Structure Network type GD Accuracy A Accuracy Structure Network type GD Accuracy A Accuracy

A MLP 11.78% 89.8% B MLP 11.75% 80.08%

A DBN 66.46% 97.60% B DBN 65.94% 97.37%

Structure Network type GD Accuracy A Accuracy Structure Network type GD Accuracy A Accuracy

C MLP 11.35% 68.86% D MLP 11.23% 20.01%

C DBN 66.05% 97.27% D DBN 65.62% 96.96%

4. Conclusions
In conclusion, the Weight Balancing and Random Weight Elimination algorithms were explained and

tested with two different problems, an autoencoder reconstruction problem and a DBN supervised

learning problem with successful results.

In the autoencoder case, a slight decrease in reconstruction accuracy was observed; however, this

drop was diminished proportionally to the size of the network. This implies that when the number

of connections involved in the network was higher, it was less sensitive to the RWE algorithm. On

this basis, this method could be promising when considering already big networks in need of space

reduction (in the case of hardware).

Regarding the DBN results, because this data-set had already been studied in detail, there are

several solutions with higher accuracy than those achieved in these tests, but the important result was

the improvement observed when applied to deeper networks. In our tests, when utilizing a relatively

deep network, the accuracy for a normal fully connected MLP was observed to be approximately

11% when using a Gradient Descent Optimizer and improved to approximately 66% when using the

DBN pre-trained with RWE. Regarding the Adam Optimizer, the accuracy of the MLP was highly

dependent on the number of neurons. However, with the DBN, we observed accuracies closer to 97%

even with a substantially reduced number of weights in the network. This result is the most important

because it indicated a good result for reducing the number of connections in a deep fully-connected

network.

Although it is required to test this algorithm with more datasets to check how much of an improve-

ment could be achieved as a general result, we believe that it is at least promising for reducing the

size and cost of hardware neural networks by halving (or even further reduction) the weights in deep

neural networks.

341

References
[1] Asai T., “Fixed-Weighting-Code Learning Device” International Patent WO/2018/168293 is-

sued September 20, 2018.

[2] Hida I., Ueyoshi K., Takamaeda-Yamazaki S., Ikebe M., Motomura M., and Asai T., “Sign-

invariant unsupervised learning facilitates weighted-sum computation in analog neural-network

devices,” Proc. of NOLTA 2017, pp. 82–82, December 2017.

[3] T. Prodromakis and C. Toumazou, “A review on memristive devices and applications,” Proc. of

17th IEEE International Conference on Electronics, Circuits and Systems 2010, pp. 934–937,

December 2010. DOI: 10.1109/ICECS.2010.5724666.

[4] Akai-Kasaya M., Hagiwara N., Hikita W., Okada M., Sugito Y., Kuwahara Y., and Asai

T., “Evolving conductive polymer neural networks on wetware,” Japanese Journal of Applied

Physics vol . 59, no. 6, May 2020. DOI:10.35848/1347-4065/ab8e06.

[5] Pinaya, W., Gadelha, A., Doyle, O. et al, “Using deep belief network modelling to characterize

differences in brain morphometry in schizophrenia,” Scientific Reports vol. 6, no. 1, pp. 1–9 ,

December 2016. DOI: 10.1038/srep38897

342

