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We present a complete mitochondrial genomic sequence for the tanaidacean Arctotanais alascensis 
(Richardson, 1899); this is the first complete mitogenome reported from the order Tanaidacea. The 
mitogenome is 13,988 bp long and contains 13 protein coding and two ribosomal RNA genes (as is 
typical for animal mitogenomes), and 21 of 22 transfer RNAs; we did not detect an isoleucine trans-
fer RNA (trnI) gene. The gene order differed markedly from the hypothetical ground pattern for 
Pancrustacea; only four clusters (trnM +  nad2; trnC +  trnY +  cox1 +  trnL2 +  cox2; trnD +  atp8 + 
atp6 +  cox3; trnH +  nad4 +  nad4l) ancestrally present were retained. In a malacostracan phyloge-
netic tree reconstructed from mitogenome data, basal relationships were marginally supported or 
incongruent with the traditional morphology-based classification and the latest phylogenetic 
reconstructions from large transcriptomic datasets. Relationships involving more recent diver-
gences were better supported in our tree, suggesting that complete mitogenome sequences are 
more suitable for phylogenetic analyses within malacostracan orders, presumably including 
Tanaidacea.
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INTRODUCTION

The animal mitochondrial genome (mitogenome) is typi-
cally a single, circular molecule 12–20 kb long and generally 
contains 13 protein coding, two ribosomal RNA (rRNA), and 
22 transfer RNA (tRNA) genes (Boore, 1999; Kilpert and 
Podsiadlowski, 2006). As complete mitogenome sequences 
contain rich phylogenetic information and can be determined 
from specimens in various states of preservation (e.g., long 
preserved in ethanol, fixed in formalin, or mummified), they 
are increasingly widely used in phylogenetic (e.g., Uribe et 
al., 2016; Luchetti et al., 2019; Kim et al., 2020), taxonomic 
(e.g., Nakano et al., 2017), and phylogeographic studies 
(e.g., Bishop et al., 2018; Greig et al., 2018).

With approximately 17,000 described species, the 
superorder Peracarida is the most speciose crustacean sub-
group (Appeltans et al., 2012). The current classification rec-
ognizes one extinct order (Pygocephalomorpha) and 12 
extant orders (Amphipoda, Bochusacea, Cumacea, 
Ingolfiellida, Isopoda, Lophogastrida, Mictacea, Mysida, 
Spelaeogriphacea, Stygiomysida, Tanaidacea, and 
Thermosbaenacea) (Ahyong et al., 2011; Meland et al., 2015; 
Lowry and Myers, 2017). Although a few species attain 
lengths of over 300 mm (e.g., Clarke, 1961; Jamieson et al., 
2013; McClain et al., 2015), most peracarids do not exceed 
10 mm. Their generally small size, as well as limited 
commercial importance, may account for the paucity of 
molecular phylogenetic data compared to the closely related 

Eucarida including crabs, prawns, shrimp, and krills. Com-
plete mitogenome sequences have been determined for 
species only in the peracarid orders Amphipoda, Isopoda, 
and Mysida (Shen et al., 2015a, b).

The peracarid order Tanaidacea contains about 1500 
described species that typically have body lengths of only a 
few millimeters (Kakui, 2016; Anderson, 2020). Tanaid-
aceans inhabit benthic brackish or marine habitats ranging 
in depth from the intertidal zone to the hadal zones at around 
9000 m; as they often attain very high densities (e.g., 
146,000 individuals/m2; Delille et al., 1985), they are eco-
logically important in various shallow- and deep-water eco-
systems (Larsen et al., 2015).

Tanaidaceans have been underrepresented in molecu-
lar analyses. Kakui et al. (2011) reconstructed the higher-
level phylogeny of the four major groups (Apseudoidea, 
Neotanaoidea, Paratanaoidea, and Tanaidoidea) based on 
sequences of the nuclear 18S rRNA gene, and two popula-
tion-genetic studies have been conducted based on the 
mitochondrial cytochrome c oxidase subunit I (cox1) gene 
(Drumm and Kreiser, 2012; Kakui et al., 2020). Here we 
report the first complete mitochondrial genome from a 
tanaidacean, Arctotanais alascensis (Richardson, 1899) 
(Tanaidoidea: Tanaididae), and briefly discuss the utility of 
mitogenomic data in reconstructing malacostracan phylog-
eny.

MATERIALS AND METHODS

One individual of Arctotanais alascensis, 4.9 mm in body 
length, was collected from the intertidal zone at Oshoro, Hokkaido, 
Japan on 22 March 2016, kept alive in an aquarium until 20 May 
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2016, and fixed and preserved in absolute ethanol. This fixed spec-
imen was dissected to remove the gut contents, and DNA was then 
extracted with a Nucleospin Tissue XS kit (TaKaRa Bio, Japan). 
Fragments of the exoskeleton were deposited in the Invertebrate 
Collection of the Hokkaido University Museum, Sapporo (catalog 
number ICHUM 6176).

Whole-genome shotgun sequencing (2 ×  150 bp) was per-
formed on a DNBSEQ-G400 platform (MGI Tech, China) at Bioen-
gineering Lab Co., Ltd., Japan. A total of 43,198,954 paired-end 
reads (309,150,206 bp) were assembled in NOVOPlasty 3.7.2, 
using a published cox1 sequence from the species as the seed 
(GenBank LC322249; Tanabe et al., 2017) and a default k-mer 
value of 39 (Dierckxsens et al., 2017).

Based on an obtained contig of 13,988 bp, a pair of primers 
was designed to confirm ambiguously determined sites at both 
ends of the sequence: forward primer ArcF (GTCCTCATAA-
CAACCCTTTACGAGTGGTTT; positions 13631–13660) and 
reverse primer ArcR (TAGTCTAGGAAAGTGTTTGCTGTGCCTACC; 
positions 65–36). PCR amplification conditions using KOD FX Neo 
polymerase (Toyobo, Japan) were 2 min at 94°C; 45 cycles of 94°C 
for 2 min and 68°C for 30 s; and 68°C for 2 min. PCR products were 
separated on a 2% agarose gel, excised with a scalpel, and purified 
with a MagExtractor PCR & Gel Clean up kit (Toyobo, Japan) 
according to the manufacturer’s instructions. Purified products 
were directly sequenced by using a BigDye Terminator Kit ver. 3.1 

and an ABI 3730 Genetic Analyzer (Thermo Fisher Scientific, USA).
Genome annotation was performed on the MITOS webserver 

(Bernt et al., 2013). Upstream and downstream regions detected for 
each protein-coding gene (PCG) were translated with the inverte-
brate mitochondrial code; start codons were determined from recip-
rocal BLASTP (Altschul et al., 1990) and searches against the 
Conserved Domain Database (Lu et al., 2020), and downstream 
stop codons were identified manually. A circular map of the mitoge-
nome was generated with the CGView Server (Grant and Stothard, 
2008) and edited in Adobe Illustrator CS6. The secondary structure 
of the putative control region was predicted with CentroidFold (Sato 
et al., 2009). The mitochondrial genome obtained was deposited in 
the International Nucleotide Sequence Database through the DNA 
Data Bank of Japan, under the accession number LC597489.

A phylogenetic analysis of malacostracan crustaceans was 
conducted that included the sequences of 13 protein-coding and 
two rRNA genes from A. alascensis, homologous sequences from 
another 83 malacostracan species (11 stomatopods, 34 decapods, 
three euphausiaceans, 35 peracarids), and two outgroup taxa (a 
thecostracan and a copepod) (see Supplementary Table S1). The 
nucleotide dataset for each rRNA gene was aligned by using the 
“Q-INS-i” strategy (Katoh and Toh, 2008) in MAFFT ver. 7 (Katoh 
and Standley, 2013). The amino-acid dataset for each PCG was 
aligned by using the “Auto” strategy in MAFFT ver. 7, which was 
then used to guide an alignment of coding nucleotides using the 

Fig. 1. Map of the mitogenome of Arctotanais alascensis. Transfer RNA genes are labeled with their one-letter amino acid codes. Genes 
on the reverse (–) strand are in parentheses. CR, putative control region; PCG, protein coding gene.
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program tranalign (https://www.bioinformatics.nl/cgi-bin/emboss/
tranalign). Alignment-ambiguous sites were removed with Gblocks 
ver. 0.91b (Castresana, 2000) in NGPhylogeny.fr (Lemoine et al., 
2019) under the “relaxed” parameters described in Talavera and 
Castresana (2007). Optimal substitution models were determined 
for different genes and codons (see Supplementary Table S2) 
under the corrected AIC (Akaike information criterion) option in Par-
titionFinder 2.1.1 (Lanfear et al., 2017), using a greedy algorithm 
(Lanfear et al., 2012). The data matrices for the individual genes 
were then concatenated into a single alignment 11,412 characters 
long in SequenceMatrix ver. 1.8 (Vaidya et al., 2011). A partitioned 
maximum-likelihood (ML) analysis was conducted in IQ-TREE ver. 
1.6.12 (Nguyen et al., 2015; Chernomor et al., 2016); nodal support 
values were obtained from an ultrafast bootstrap analysis of 1000 
pseudoreplicates under the “bnni” option (Hoang et al., 2018). The 
resulting ML tree was edited and drawn by using FigTree v1.4.4 
(Rambaut, 2020).

RESULTS AND DISCUSSION

The mitogenome of Arctotanais alascensis was 13,988 
bp long (accession number LC597489). Sequencing of PCR 
products obtained with primers ArcF/ArcR determined a 
320 bp fragment corresponding to positions 13,678–13,988 
and 1–9 in the 13,988 bp contig resulting from shotgun 
sequencing, confirming the complete, circular nature of the 
A. alascensis mitogenome.

We also obtained a second, longer (ca. 800 bp) frag-
ment with primers ArcF/ArcR that we could not reliably 
sequence due to the presence of homopolymer regions, 
presumably resulting in polymerase slippage. This might 
indicate heteroplasmy (the presence of more than one type 
of mitogenome) in the sequenced specimen of A. alascensis, 
a condition previously reported for several other pancrusta-

Table 1. Annotated genes in the mitochondrial genome of 
Arctotanais alascensis and their characteristic features. Negative 
values for the intergenic region (IGR) indicate an overlap between 
genes. CR denotes the putative control region.

Gene
Position Length  

(bp)

Codon
Anticodon Strand IGR

from to Start Stop

trnE 53 115 63 ttc –

trnW 115 177 63 tca – –1

nad1 198 1115 918 TAC TAG – 20

trnR 1110 1165 56 tcg – –6

trnL1 1166 1228 63 tag – 0

rrnS 1230 1741 512 – 1

trnN 1866 1928 63 gtt – 124

trnS1 1930 1982 53 tct + 1

cob 1981 3024 1044 AAT TAG – –2

trnT 3030 3095 66 tgt – 5

nad5 3251 4750 1500 TTC TAG + 155

trnF 4749 4808 60 gaa + –2

trnH 4808 4868 61 gtg – –1

nad4 4859 6181 1323 TTT TAG – –10

nad4l 6172 6477 306 CTC TAG – –10

trnP 6469 6534 66 tgg – –9

nad6 6525 6995 471 CTA TAA + –10

rrnL 7005 7586 582 – 9

CR 7587 7970 384 + 0

trnV 7971 8035 65 tac – 0

trnQ 8037 8100 64 ttg – 1

trnS2 8101 8161 61 tga + 0

trnM 8162 8229 68 cat + 0

nad2 8233 9192 960 TTC TAA + 3

trnC 9191 9243 53 gca – –2

trnY 9243 9305 63 gta – –1

cox1 9308 10870 1563 ATG TAA + 2

trnL2 10852 10914 63 taa + –19

cox2 10915 11580 666 ATA TAA + 0

trnD 11588 11638 51 gtc + 7

atp8 11641 11790 150 ATG TAA + 2

atp6 11787 12452 666 ATG TAA + –4

cox3 12513 13328 816 AAC TAG + 60

trnA 13292 13345 54 tgc + –37

nad3 13352 13687 336 CTA TAA + 6

trnK 13692 13756 65 ttt + 4

trnG 13764 13825 62 tcc + 7

cean species (e.g., Kuhn et al., 2008; Magnacca and Brown, 
2010; Rodríguez-Pena et al., 2020). We cannot, however, 
rule out other possibilities, including a nuclear origin for the 
longer fragment.

The genomic annotation on the MITOS webserver iden-
tified 13 PCGs and two rRNAs, as is typical in animal mitoge-
nomes, but among the 22 tRNAs identified, there was no 
tRNA for isoleucine (trnI) (Fig. 1; Table 1). The lack of one 
tRNA has been reported in some other peracarid crusta-
ceans (e.g., Kilpert and Podsiadlowski, 2006; Bauzà-Ribot 

Fig. 2. Secondary structure of the putative control region in the 
mitogenome of Arctotanais alascensis, predicted with CentroidFold 
(inference engine =  “McCaskill (BL)”, weight of base pairs =  “2^2”). 
Numbers represent positions in the 13,988-bp sequence.

Downloaded From: https://bioone.org/journals/Zoological-Science on 31 May 2021
Terms of Use: https://bioone.org/terms-of-use	Access provided by Hokkaido University



270 K. Kakui and Y. Kano

Fig. 3. Comparison of gene order between Arctotanais alascensis and the hypothetical ancestral Pancrustacean (Boore et al., 1998). Solid 
and dashed lines connect corresponding genes and gene clusters with and without inversions, respectively. Gray shading denotes genes on 
the reverse (–) strand. CR, putative control region. Transfer RNA genes are labeled with their one-letter amino acid codes.

Fig. 4. Maximum-likelihood (ML) phylogeny for malacostracan crustaceans, based on mitogenome sequences (11,412 characters from 13 
protein coding and two rRNA genes). Numbers near nodes are ultrafast bootstrap values (uBS).
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et al., 2009). The putative control region (CR) was detected 
at positions 7587–7970, flanked by rrnaL and trnV (Fig. 1). 
This was the longest (384 bp) continuous non-coding region 
in the A. alascensis mitogenome, characterized by high AT 
content (78.12%) and predicted to form multiple stem-loop 
structures (Fig. 2), similar to those in spiny lobsters (Qian et 
al., 2011).

The mitogenome of A. alascensis differed markedly in 
gene order from the hypothetical ground pattern for Pan-
crustacea (Boore et al., 1998), retaining only four ancestral 
clusters (trnM +  nad2; trnC +  trnY +  cox1 +  trnL2 +  cox2; 
trnD +  atp8 +  atp6 +  cox3; trnH +  nad4 +  nad4l) (Fig. 3). 
Further studies on gene order in other tanaidaceans will 
help elucidate the evolution of the mitochondrial genome in 
Pancrustacea.

In the ML tree (Fig. 4), Amphipoda, Mysida, Isopoda, 
Euphausiacea, and Stomatopoda form robust clades, each 
with 100% ultrafast bootstrap support (uBS). Many of their 
internal nodes also received 100% uBS, suggesting that 
complete mitogenome sequences are most reliable for phy-
logenetic reconstruction within malacostracan orders, pre-
sumably including Tanaidacea. On the other hand, basal 
malacostracan relationships are only marginally supported 
or incongruent with the traditional morphology-based clas-
sification (Ahyong et al., 2011) and phylogenetic reconstruc-
tions based on large transcriptomic datasets (Schwentner et 
al., 2018). Arctotanais alascensis forms a moderately sup-
ported clade with Mysida (87% uBS) in Peracarida, whereas 
Schwentner et al. (2018) found Tanaidacea to be more 
closely related to Isopoda than to Mysida or Amphipoda, 
with near-maximum support values, a result that is congru-
ent with the morphology-based phylogeny (e.g., Siewing, 
1963).

Whether suitable for higher-level phylogeny or not, addi-
tional mitogenome sequences will greatly contribute to the 
understanding of internal relationships within the order 
Tanaidacea. Mitogenomic data also allow the design of PCR 
primers for taxon-specific markers for use in phylogeo-
graphic and taxonomic studies.
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