
 

Instructions for use

Title Empirical Bayes method using surrounding pixel information for number and brightness analysis

Author(s) Fukushima, Ryosuke; Yamamoto, Johtaro; Kinjo, Masataka

Citation Biophysical journal, 120(11), 2156-2171
https://doi.org/10.1016/j.bpj.2021.03.033

Issue Date 2021-06-01

Doc URL http://hdl.handle.net/2115/85665

Rights ©2021. This manuscript version is made available under the CC-BY-NC-ND 4.0 license
http://creativecommons.org/licenses/by-nc-nd/4.0/

Rights(URL) http://creativecommons.org/licenses/by-nc-nd/4.0/

Type article (author version)

Additional Information There are other files related to this item in HUSCAP. Check the above URL.

File Information Biophys. J. 120-11_2156-2171.pdf

Hokkaido University Collection of Scholarly and Academic Papers : HUSCAP

https://eprints.lib.hokudai.ac.jp/dspace/about.en.jsp


 1 / 28 

 

Title 

Empirical Bayes Method Using Surrounding Pixel Information for Number and Brightness Analysis 

 

 

Author Names 

Ryosuke Fukushima1, Johtaro Yamamoto2, 3, Masataka Kinjo3, * 

 

*Correspondence 

E-mail address: kinjo@sci.hokudai.ac.jp 

 

Affiliations 

1Laboratory of Molecular Cell Dynamics, Graduate School of Life Science, Hokkaido University, Kita-21 Nishi-11, 

Kita-ku, Sapporo, Hokkaido 001-0021, Japan 

2Health and Medical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 

Central 6, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8566, Japan 

3Laboratory of Molecular Cell Dynamics, Faculty of Advanced Life Science, Hokkaido University, Kita-21 

Nishi-11, Kita-ku, Sapporo, Hokkaido 001-0021, Japan 

 

  



 2 / 28 

 

Running Title 

EB–MAP estimation for N&B analysis 

 

Keywords 

NEW DEVELOPMENTS IN BIOPHYSICAL TECHNIQUES/10E—Computational Methods & Bioinformatics 

NEW DEVELOPMENTS IN BIOPHYSICAL TECHNIQUES/10H—Optical Spectroscopy: CD, UV-VIS, 

Vibrational, Fluorescence 

PROTEINS/1E—Protein Assemblies 

 

Techniques 

Bioinformatics 

Fluorescence 

Light Microscopy & Super Resolution Imaging 

 

Abstract 

Number and brightness (N&B) analysis is useful for monitoring the spatial distribution of the concentration and 

oligomeric state of fluorescently labeled proteins in cells. N&B analysis is based on the statistical analysis of 

fluorescence images by using the method of moments (MoM). Further, N&B analysis can determine the particle 

number and particle brightness, which indicate the concentration and oligomeric state, respectively. However, the 

statistical accuracy and precision are limited in actual experiments with fluorescent proteins, owing to low 

excitation and the limited number of images. In this study, we applied maximum likelihood (ML) estimation and 

maximum a posteriori (MAP) estimation coupled with the empirical Bayes (EB) method (referred to as EB–MAP). 

In EB–MAP, we constructed a simple prior distribution for a pixel to utilize the information of the surrounding 

pixels. To evaluate the accuracy and precision of our method, we conducted simulations and experiments and 

compared the results of MoM, ML, and EB–MAP. The results showed that MoM estimated the particle number 

with many outliers. The outliers hampered the visibility of the spatial distribution and cellular structure. In contrast, 

EB–MAP suppressed the number of outliers and improved the visibility notably. The precision of EB–MAP was 

better by an order of magnitude in terms of particle number and 1.5 times better in terms of particle brightness 

compared with those of MoM. The proposed method (EB–MAP–N&B) is applicable to studies on fluorescence 

imaging, and would aid in accurately recognizing changes in the concentration and oligomeric state in cells. Our 

results hold significant importance because quantifying the concentration and oligomeric state would contribute to 

the understanding of dynamic processes in molecular mechanism in cells.  

 

Statement of Significance 

Quantifying the concentration and oligomeric state of molecules would provide valuable information about 

molecular mechanisms; however, it is challenging to quantify them in cells. N&B analysis characterizes the 

concentration and oligomeric state of fluorescently labeled molecules by statistically analyzing fluorescence images. 

Although 30 years have passed since the reporting of this theory, only a few solutions have been reported to 

improve its accuracy and precision at a fundamental level. Therefore, we propose empirical Bayes–maximum a 

posteriori (EB–MAP) estimation, which utilizes the surrounding pixel information. We demonstrated the accuracy 

and precision of EB–MAP to be markedly better than those of the conventional method.  
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Introduction 

Fluorescence imaging reveals the localization and distribution of fluorescently labeled molecules in cells. The 

concentration of molecules is strongly related to the progress of chemical reactions in cells, and the reactions 

regulate cellular functions. Thus, quantifying the concentration would yield valuable information about the 

regulations and the functions of cells. However, changes in the fluorescence intensity of images are caused by 

changes in the concentration and brightness of a single particle. Thus, with the exception of single molecule 

detection, it is challenging to quantify the concentration of fluorescent molecules from only the fluorescence images. 

Continuously observing the changes in fluorescence intensity allows for the deconstruction of the fluorescence 

intensity into two factors.  

Fluorescence fluctuation spectroscopy (FFS) (1–3) is a general term for methods that analyze the temporal and 

spatial fluctuations in fluorescence intensity; it also provides useful information on factors such as concentration, 

oligomeric state, and rate of diffusion. Fluorescence correlation spectroscopy (FCS) (4) is a well-known method 

based on the statistical analysis of temporally correlated fluctuations caused by diffusing particles. The measurement 

type of this method is a single-spot measurement, typically achieved using confocal fluorescence microscopy. 

Fluorescent particles freely diffuse and pass through the confocal volume (i.e., measurement volume) created by 

microscopy. Microscopy records the fluctuation in fluorescence intensity over time, and the fluctuation is described 

as an autocorrelation function. Typically, the weighted least squares method determines the parameters of the 

autocorrelation function. However, with the exception of several reports (5, 6), FCS could obtain single-spot 

information.  

Number and brightness (N&B) analysis (7) is another method based on the statistical analysis of temporally 

independent fluctuations in photon-counting images. In this method, images are typically obtained using confocal 

laser scanning microscopy. This microscopy method successively counts photons within a given sampling time while 

scanning and recording the counts as an image consisting of pixels. Iterative scanning produces a sequence of images, 

and the temporal fluctuation at each pixel position is analyzed based on the method of moments (MoM). Let us define 

an imaging duration as the period between a sampling and the next sampling at a pixel position. Under typical 

measurement conditions, the sampling time for a single pixel is less than several tens of microseconds, and the 

imaging duration is between hundreds of milliseconds to seconds for images of a sufficiently large size. This imaging 

duration is sufficient for fluorescent particles to pass through the confocal volume, and the temporal fluctuations 

become independent, unlike those in FCS because of the long imaging duration. In MoM, the first and second raw 

moments are estimated; moments are characteristic values of the probability distribution. The first moment is the 

sample average, and the second is an element constituting sample variance. The estimator consisting of the moments 

gives the particle number and particle brightness (7–10). The particle number reflects the concentration, whereas the 

particle brightness reflects the fluorescence intensity of a single particle. The fold change in particle brightness can be 

used to infer the oligomeric state. In the dimerization of two monomers into a dimer (Fig. 1), the fluorescence 

intensities of the monomers and the dimers are the same. In contrast, the numbers of particles are different, i.e., 2 

and 1 for the monomers and the dimers, respectively. A dimer carries two fluorescent proteins; thus, the particle 

brightness of a dimer is twice that of a monomer.  

FCS is a single-spot measurement, whereas N&B analysis is a two-dimensional imaging-based measurement. The 

N&B analysis determines the particle number and particle brightness at each pixel position, and reveals their 

distribution as an image. Thus, N&B analysis is advantageous for monitoring the wide spatial range in cells. However, 
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the conventional method estimates the particle number and particle brightness with low accuracy and precision in a 

practical experiment with fluorescent proteins. Theoretically, a measurement with high excitation and an analysis 

with a large number of images yield accurate and precise estimation; however, they cause photobleaching and have 

low time-resolution in an actual experiment. If photobleaching occurs, MoM underestimates the particle number 

and overestimates the particle brightness. Under undesired conditions, such as low excitation and small number of 

images, the particle number and particle brightness are sometimes estimated negatively, and outliers of particle 

number appear often. In this report, we consider the estimation of the particle number and particle brightness in the 

absence of photobleaching.  

In this study, we evaluated the performance of three different approaches, namely, MoM estimation, maximum 

likelihood (ML) estimation, and maximum a posteriori (MAP) estimation coupled with the empirical Bayes (EB) 

method (hereinafter referred to as EB–MAP). Regarding MoM, Qian and Elson reported a basic theory for N&B 

analysis in 1990, and Digman et al. applied it to laser scanning microscopy in 2008. However, little research has 

been conducted on devising solutions to improve the accuracy and precision of N&B analysis at a fundamental level, 

although it has been 30 years since the introduction of this theory. Furthermore, the application of ML estimation 

and EB–MAP to N&B analysis has not been studied before. In the estimation using MoM, we adopted two-detector 

N&B (TD–N&B) analysis, which reduces the effect of afterpulse and dead time reported previously (11). The ML 

determines the parameters by maximizing the likelihood function. The MAP estimation is a Bayesian approach, and 

utilizes prior distribution in addition to the likelihood function. The advantages of ML and Bayesian approaches have 

been reported in several studies. Strey investigated the least squares method and ML for the autocorrelated time trace 

originating from the Ornstein–Uhlenbeck process (12). He reported that using the least squares method in FCS causes 

systematic deviation from the true parameters. Jazani et al. reported such a deviation in FCS using Bayesian 

non-parametrics (13). Regarding the fluorescence lifetime measurement, Santra et al. investigated the least squares 

method, ML, and the related methods, and reported robustness of ML (14, 15). In the N&B analysis, a simple 

assumption (detailed later, before Eq. 3) enables the description of the probability distribution of photon counts based 

on Neyman type A distribution. Shenton evaluated the asymptotic efficiency of an MoM estimator (16), and Shenton 

and Bowman investigated the bias and variance of MoM and ML with a sample size of 100 (17). These reports 

suggested that the estimations of ML are more precise than those of MoM. However, ML sometimes estimates the 

particle number and particle brightness as infinity and 0, respectively, although their parameter space is limited on the 

intervals over 0 and below infinity; these estimates are known as boundary estimates (18, 19).  

To avoid such parameters, we applied MAP estimation. The prior distribution acts as a regularization term and 

prevents the boundary estimates. We assumed that the distribution of the particle number at a pixel and the 

surrounding pixels follows lognormal distribution. Then, we applied the EB method to determine the parameters of 

the distribution. Finally, we demonstrated the feasibility of our methods by simulations and experiments on an 

enhanced green fluorescent protein (EGFP) solution and the cells expressing EGFP tandem-oligomers.  
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THEORY 

Photon-counting model 

Single detector 

We constructed a double-detector system for single-color imaging by coupling a half mirror. In our single-detector 

system, the saturation of the photon count in the avalanche photodiode is severe if the fluorescence intensity is higher 

than 500 kHz. To extend the applicability of our method, we included the half mirror and reduced the fluorescence 

intensity of the detector. First, we describe a theory for photon counting by a single detector, and then extend the 

theory to double detectors.  

A semiclassical description of photon counting was made by Mandel (20). Here, we make assumptions based on 

the theory of photon counting histogram (PCH) (21). Let 𝐼𝑡(𝑡) be the instantaneous light intensity of a detector at 

time 𝑡, and 𝑇 be the sampling time. The light intensity at a sampling time is given by the integral from 𝑡 to 𝑡 + 𝑇 of 

𝐼𝑡(𝑡). Here, we assume that the sampling time is sufficiently short compared with the residence time of the diffusing 

particles in the confocal volume. This assumption indicates that the number of particles does not change during the 

sampling time, and thus enables to track the number of particles at the moment of sampling. Under this assumption, 

the light intensity during the sampling time is given by 𝐼𝑡𝑇, and the probability distribution for observing 𝑊 

photons during sampling by a single detector is given by rewriting Mandel’s formula (21, 22):  

 

𝑃(𝑊|𝜂) = ∫ Poi(𝑊|𝜂𝐼0)𝑃(𝐼0)d𝐼0

∞

0

, (1) 

 

where 𝜂 denotes the detection efficiency of the detector; 𝐼0 is the integrated light intensity (𝐼0 = 𝐼𝑡𝑇); 𝑃(𝐼0) is the 

probability distribution for 𝐼0; Poi(𝑊|𝜂𝐼0) is a Poisson distribution given as follows: 

 

Poi(𝑊|𝜂𝐼0) =
(𝜂𝐼0)

𝑊

𝑊!
exp(−𝜂𝐼0). (2) 

 

We simply assume that the intensity fluctuation depends only on the changes in the number of particles, and the 

fluctuation follows Poisson distribution. The probability distribution for observing 𝑊 photons is given by Neyman 

type A distribution as follows:  

 

Ney(𝑊|𝜈, 휀) = ∑Poi(𝑊|휀𝑍)Poi(𝑍|𝜈)

∞

𝑍=0

, (3) 

 

where 𝜈 denotes the particle number (0 < 𝜈), a parameter of the Poisson distribution characterizing the fluctuation 

in the instantaneous number of particles in the confocal volume; 𝑍 is a hidden variable and a realized outcome of the 

Poisson distribution; 휀 denotes particle brightness (0 < 휀), an average photon count from a single particle within a 

sampling time; and 휀/𝑇 represents the particle brightness in Hz. Calculating the probabilities using Eq. 3 is difficult 

because it contains an infinite series; however, the following recursive formula is available (23, 24):  

 



 6 / 28 

 

Ney(𝑊|𝜈, 휀) = {

exp[𝜈{exp(−휀) − 1}] , (𝑊 = 0),

1

𝑊
𝜈휀 exp(−휀) ∑

휀𝑊−𝑙−1

(𝑊 − 𝑙 − 1)!

𝑊−1

𝑙=0

Ney(𝑙|𝜈, 휀), (𝑊 ≥ 1).
 (4) 

 

Double detectors 

We extend the equations obtained above to a double-detector system. The light intensity is separated by a half mirror 

and detected by two photon detectors. Let 𝐼1 and 𝐼2 be integrated light intensities in detector 1 and 2, respectively. 

The probability distribution for observing 𝑋 and 𝑌 photons at detector 1 and 2, respectively, is given as follows 

(22): 

 

𝑃(𝑋, 𝑌|𝜂1, 𝜂2) = ∫ ∫ Poi(𝑋|𝜂1𝐼1)Poi(𝑌|𝜂2𝐼2)𝑃(𝐼1, 𝐼2)
∞

0

d𝐼1

∞

0

d𝐼2, (5) 

 

where 𝜂1 and 𝜂2 denote the detection efficiency of detector 1 and 2, respectively. Under the same assumptions as 

those for Eq. 3, the probability distribution for observing 𝑋 and 𝑌 photons is given by 

 

𝑃(𝑋, 𝑌|𝜈, 휀, 𝑝) = ∑Poi(𝑋|휀𝑝𝑍)Poi(𝑌|휀(1 − 𝑝)𝑍)Poi(𝑍|𝜈)

∞

𝑍=0

 

= Bin(𝑋, 𝑌|𝑝)Ney(𝑊|𝜈, 휀), 

(6) 

 

where 𝑝 represents a fraction of light intensity reaching detector 1, 𝑊 is equal to 𝑋 + 𝑌, and Bin(𝑋, 𝑌|𝑝) is a 

binomial distribution given by 

 

Bin(𝑋, 𝑌|𝑝) =
(𝑋 + 𝑌)!

𝑋! 𝑌!
𝑝𝑋(1 − 𝑝)𝑌. (7) 

 

The recursive formula similar to Eq. 4 is given by (see Supporting Material for derivation) 

 

𝑃(𝑋,  𝑌|𝜈, 휀, 𝑝) =

{
  
 

  
 

exp[𝜈(exp[−휀] − 1)] , (𝑋 = 0, 𝑌 = 0),

1

𝑌
𝜈휀(1 − 𝑝) exp[−휀] ∑

{(1 − 𝑝)휀}𝑌−𝑚−1

(𝑌 − 𝑚 − 1)!  
𝑃(0,  𝑚|𝜈, 휀, 𝑝)

𝑌−1

𝑚=0

, (𝑋 = 0, 𝑌 ≥ 1),

1

𝑋
𝜈휀𝑝 exp[−휀] ∑

{(1 − 𝑝)휀}𝑌−𝑚

(𝑌 −𝑚)!  

𝑌

𝑚=0

∑
(𝑝휀)𝑋−𝑙−1

(𝑋 − 𝑙 − 1)!
𝑃(𝑙,  𝑚|𝜈, 휀, 𝑝)

𝑋−1

𝑙=0

, (𝑋 ≥ 1, 𝑌 ≥ 0).

 (8) 

 

Single detector affected by dead time  

Dead time is a non-ideal property of a photon detector that causes loss of photon count. Dead time is a time period 

after photon detection during which detectors cannot detect any photons. Underestimation of particle brightness 

without correction for dead time has been reported (11, 25). Let 𝜏 be the dead time, and 𝛿 = 𝜏/𝑇. The probability 

distribution for observing 𝑊  photons on a dead-time-affected detector is given as follows for 𝑊 < 1/𝛿 (see 
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Supporting Material for derivation):  

 

𝑃(𝑊|𝜈, 휀, 𝛿) = ∑ 𝐴𝑚(𝑊, 𝛿)Ney(𝑊 +𝑚|𝜈, 휀)

∞

𝑚=0

, (9) 

 

where the function 𝐴𝑚(𝑊, 𝛿) is given by 

 

𝐴𝑚(𝑊, 𝛿) = (
𝑊 +𝑚
𝑊

) ∑ (−1)𝑘−𝑚 (
𝑊

𝑘 −𝑚
)𝛿𝑘 [(1 −

𝑚

𝑘
)(𝑊 − 1)𝑘 +

𝑚

𝑘
𝑊𝑘]

𝑊+𝑚

𝑘=𝑚

. (10) 

 

Double detectors affected by dead time 

For a double-detector system, let 𝜏1 and 𝜏2 be the dead time for detectors 1 and 2, respectively, and let us define 

𝛿1 = 𝜏1/𝑇  and 𝛿2 = 𝜏2/𝑇 . The joint probability distribution for observing 𝑋  and 𝑌  photons on a 

dead-time-affected detector is given as follows for 𝑋 < 1/𝛿1  and 𝑌 < 1/𝛿2  (see Supporting Material for 

derivation):  

 

𝑃(𝑋, 𝑌|𝜈, 휀, 𝑝, 𝛿1, 𝛿2) = ∑∑𝐴ℎ(𝑋, 𝛿1)𝐴𝑚−ℎ(𝑌, 𝛿2)𝑃(𝑋 + ℎ, 𝑌 +𝑚 − ℎ|𝜈, 휀, 𝑝)

𝑚

ℎ=0

∞

𝑚=0

. (11) 

 

In this study, we assumed that higher terms of the infinite series, such as 3 ≤ 𝑚, are negligible.  

 

Maximum likelihood estimation 

Double-detector model 

The ML determines parameters by maximizing a likelihood function. We assume independent 𝐼 time observations. 

In the N&B analysis, independent observations are realized if the imaging duration is sufficiently longer than the 

residence time of the fluorescent particles in the confocal volume. The likelihood function is given as follows, with 

𝒙 = (𝑥1, 𝑥2, … , 𝑥𝐼) and 𝒚 = (𝑦1, 𝑦2, … , 𝑦𝐼):  

 

ℒ(𝒙, 𝒚|𝜈, 휀, 𝑝) =∏𝑃(𝑥𝑖 , 𝑦𝑖|𝜈, 휀, 𝑝)

𝐼

𝑖=1

. (12) 

 

We numerically estimate the maximum point on the natural logarithm of the likelihood function by using the 

Newton–Raphson method. This is an iterative method and requires the first and second derivatives of the 

log-likelihood function. The first derivatives with respect to the parameters are given by,  

 

∂ logℒ

𝜕𝜈
(𝒙, 𝒚|𝜈, 휀, 𝑝) = −𝐼 +

1

𝜈휀
𝑆1(𝒙 + 𝒚, 𝜈, 휀), (13) 
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∂ logℒ

𝜕휀
(𝒙, 𝒚|𝜈, 휀, 𝑝) =

1

휀
𝑆0(𝒙 + 𝒚) −

1

휀
𝑆1(𝒙 + 𝒚, 𝜈, 휀), (14) 

∂ logℒ

𝜕𝑝
(𝒙, 𝒚|𝜈, 휀, 𝑝) =

1

𝑝
𝑆0(𝒙) −

1

1 − 𝑝
𝑆0(𝒚), (15) 

 

where  

 

𝑆0(𝒘) ≔∑𝑤𝑖

𝐼

𝑖=1

, (16) 

𝑆1(𝒘, 𝜈, 휀) ≔∑
(𝑤𝑖 + 1)Ney(𝑤𝑖 + 1|𝜈, 휀)

Ney(𝑤𝑖|𝜈, 휀)

𝐼

𝑖=1

, (17) 

 

𝒘 = (𝑤1, 𝑤2, … ,𝑤𝐼), and 𝑤𝑖 = 𝑥𝑖 + 𝑦𝑖 (𝑖 = 1, 2,… , 𝐼). Setting the first derivatives to zero gives 

 

𝜈휀 =
1

𝐼
∑(𝑥𝑖 + 𝑦𝑖)

𝐼

𝑖=1

, (18) 

�̂� =
∑ 𝑥𝑖
𝐼
𝑖=1

∑ (𝑥𝑖 + 𝑦𝑖)
𝐼
𝑖=1

. (19) 

 

Substituting 휀 = �̅�/𝜈 (�̅� =
1

𝐼
∑ 𝑥𝑖 + 𝑦𝑖
𝐼
𝑖=1 ) into the probability distribution and the log-likelihood function gives a 

univariate likelihood function. The first and second derivatives with respect to 𝜈 are given by, 

 

∂ logℒ

∂𝜈
(𝒙, 𝒚|𝜈,

�̅�
𝜈 , 𝑝) = −𝐼 −

𝐼�̅�

𝜈
+ (

1

𝜈
+
1

�̅�
) 𝑆1 (𝒙 + 𝒚, 𝜈,

�̅�

𝜈
), (20) 

∂2 logℒ

∂𝜈2
(𝒙, 𝒚|𝜈,

�̅�
𝜈 , 𝑝)

=
𝐼�̅�

𝜈2
−
1

𝜈
(
2

𝜈
+
1

�̅�
) 𝑆1 (𝒙 + 𝒚, 𝜈,

�̅�

𝜈
) + (

1

𝜈
+
1

�̅�
)
2

𝑆2 (𝒙 + 𝒚, 𝜈,
�̅�

𝜈
)

− (
1

𝜈
+
1

�̅�
)
2

𝑆3 (𝒙 + 𝒚, 𝜈,
�̅�

𝜈
), 

(21) 

 

where  

 

𝑆2(𝒘, 𝜈, 휀) ≔∑
(𝑤𝑖 + 1)(𝑤𝑖 + 2)Ney(𝑤𝑖 + 2|𝜈, 휀)

Ney(𝑤𝑖|𝜈, 휀)

𝐼

𝑖=1

, (22) 

𝑆3(𝒘, 𝜈, 휀) ≔∑{
(𝑤𝑖 + 1)Ney(𝑤𝑖 + 1|𝜈, 휀)

Ney(𝑤𝑖|𝜈, 휀)
}

2𝐼

𝑖=1

. (23) 
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For the initial value of 𝜈(0), the 𝑘-th iteration process of the Newton–Raphson method (𝑘 = 0,1,2,…) is given by, 

 

𝜈(𝑘+1) = 𝜈(𝑘) −

∂ logℒ
∂𝜈

(𝒙, 𝒚|𝜈,
�̅�
𝜈
, 𝑝)

∂2 log ℒ
∂𝜈2

(𝒙, 𝒚|𝜈,
�̅�
𝜈
, 𝑝)

. (24) 

 

 

Dead-time-affected double-detector model 

The likelihood function for a dead-time-affected photon count is given by, 

 

ℒ(𝒙, 𝒚|𝜈, 휀, 𝑝, 𝛿1, 𝛿2) =∏𝑃(𝑥𝑖 , 𝑦𝑖|𝜈, 휀, 𝑝, 𝛿1, 𝛿2)

𝐼

𝑖=1

. (25) 

 

In the dead-time-affected model, the relationship between 𝜈 and 휀, similar to Eq. 18, was not obtained; thus, we use 

the Newton–Raphson method for two variables to find the maximum of the likelihood function. The first and second 

derivatives of the log-likelihood function are calculated from the probability distribution for the dead-time-affected 

photon count and the first and second derivatives of this probability distribution. The first and second derivatives are 

obtained by taking the derivative of Eq. 11. We assumed a constant dead time of 50 ns (𝛿1 = 𝛿2 = 7.82 × 10
−3). 

The first and second derivatives of the probability distribution for an ideal photon count are given by, 

 

∂𝑃

𝜕𝜈
(𝑋, 𝑌|𝜈, 휀, 𝑝) = −𝑃(𝑋, 𝑌|𝜈, 휀, 𝑝) +

𝑋 + 1

𝜈휀𝑝
𝑃(𝑋 + 1, 𝑌|𝜈, 휀, 𝑝), (26) 

∂𝑃

𝜕휀
(𝑋, 𝑌|𝜈, 휀, 𝑝) =

𝑋 + 𝑌

휀
𝑃(𝑋, 𝑌|𝜈, 휀, 𝑝) −

𝑋 + 1

휀𝑝
𝑃(𝑋 + 1, 𝑌|𝜈, 휀, 𝑝), (27) 

∂2𝑃

𝜕𝜈2
(𝑋, 𝑌|𝜈, 휀, 𝑝)

= 𝑃(𝑋, 𝑌|𝜈, 휀, 𝑝) −
(2𝜈 + 1)(𝑋 + 1)

𝜈2휀𝑝
𝑃(𝑋 + 1, 𝑌|𝜈, 휀, 𝑝)

+
(𝑋 + 1)(𝑋 + 2)

𝜈2휀2𝑝2
𝑃(𝑋 + 2, 𝑌|𝜈, 휀, 𝑝), 

(28) 

∂2𝑃

𝜕𝜈𝜕휀
(𝑋, 𝑌|𝜈, 휀, 𝑝)

= −
𝑋 + 𝑌

휀
𝑃(𝑋, 𝑌|𝜈, 휀, 𝑝) +

(𝑋 + 𝑌 + 𝜈휀)(𝑋 + 1)

𝜈휀2𝑝
𝑃(𝑋 + 1, 𝑌|𝜈, 휀, 𝑝)

−
(𝑋 + 1)(𝑋 + 2)

𝜈휀2𝑝2
𝑃(𝑋 + 2, 𝑌|𝜈, 휀, 𝑝), 

(29) 
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∂2𝑃

𝜕휀2
(𝑋, 𝑌|𝜈, 휀, 𝑝)

=
(𝑋 + 𝑌)(𝑋 + 𝑌 − 1)

휀2
𝑃(𝑋, 𝑌|𝜈, 휀, 𝑝) −

2(𝑋 + 𝑌)(𝑋 + 1)

휀2𝑝
𝑃(𝑋 + 1, 𝑌|𝜈, 휀, 𝑝)

+
(𝑋 + 1)(𝑋 + 2)

휀2𝑝2
𝑃(𝑋 + 2, 𝑌|𝜈, 휀, 𝑝). 

(30) 

 

For the initial values of 𝜈(0) and 휀(0), the 𝑘-th iteration process of the Newton–Raphson method (𝑘 = 1,2,3,…) is 

given by, 

 

(𝜈
(𝑘+1)

휀(𝑘+1)
) = (𝜈

(𝑘)

휀(𝑘)
) −

(

 

∂2 log 𝐿

∂𝜈2
∂2 log 𝐿

𝜕𝜈𝜕휀
∂2 log 𝐿

𝜕𝜈𝜕휀

∂2 log 𝐿

∂휀2 )

 

−1

(

∂ log 𝐿

𝜕𝜈
∂ log 𝐿

𝜕휀

), (31) 

 

where logℒ is the abbreviated form of logℒ (𝒙, 𝒚|𝜈, 휀, 𝑝, 𝛿1, 𝛿2). 

 

Maximum a posteriori estimation 

In ML, the estimates are sometimes on the boundary of the parameter space, which are known as boundary estimates 

(18, 19). In our N&B analysis, although the parameter space of 𝜈  and 휀  is 0 < 𝜈 < ∞  and 0 < 휀 < ∞ , 

respectively, the maximum point of the log-likelihood is sometimes given by 𝜈 of infinity and 휀 of 0 (see Fig. S3.3 

in Supporting Material). Some studies have reported that boundary estimates are obtained via analyses using a 

statistical model that contains hidden variables, and appear on a small sample size (18). In fact, N&B analysis has a 

hidden variable 𝑍 for the number of particles at the moment of a sampling. The boundary estimates appeared well in 

an analysis with a small frame number or low particle brightness (see Fig. S3.1 in Supporting Material). To avoid the 

estimates, we applied MAP estimation. A MAP estimate is given by maximizing the product of the likelihood 

function and prior distribution. The prior distribution is a probability distribution, which characterizes the uncertainty 

of the parameters before observations. The prior distribution prevents the estimates from moving to the boundary.  

In this study, we assumed lognormal distribution as the prior distribution to represent the similarity in particle 

number between a pixel and the surrounding eight pixels. For N&B analysis, the assumption of similarity would be 

realistic, because of two reasons. (a) Diffraction limit: diffraction prevents a microscope from imaging the light 

emitted from a point light source. Even if the particle number changes sharply between a pixel and the surrounding 

eight pixels, the change would be alleviated. (b) Overlap of confocal volume during sampling: to maintain the 

lateral resolution, a pixel size smaller than the resolution is recommended. Confocal laser scanning microscopy 

scans the pixel size within a sampling time. During scanning, the illuminated area overlaps between the adjacent 

pixels if the confocal volume has a radius as large as the pixel size. We simply consider a fraction of the overlap in 

the x–y plane. In our measurement, we used an excitation wavelength of 488 nm and a numerical aperture of 1.2; 

further, we theoretically calculated the radius of the Airy disk (lateral resolution) as 248 nm. We set a pixel size of 

146 nm and estimated the radius of the confocal volume as 214 nm by using FCS (see Materials and Methods in 

Supporting Material). The overlap fraction of the illuminated area can be calculated by 𝜋𝑟2/(𝜋𝑟2 + 2𝑠𝑟), where 𝑟 

is the radius of the confocal volume and 𝑠 is the pixel size (see Supporting Material for derivation). In our 
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measurement, this fraction is 0.697, suggesting that the illuminated area does not change markedly in the adjacent 

pixels. To determine the parameters of the lognormal distribution, we applied the EB method to a pixel by using the 

surrounding eight pixels. The EB method is described later. 

 

Double-detector model 

We assumed that the prior distributions of the particle number 𝜈 and particle brightness 휀 are independent, and are 

given by lognormal and uniform distributions from 0 to ∞, respectively. The joint posterior distribution is given by 

 

𝑃(𝜈, 휀|𝒙, 𝒚, �̂�, �̂�, �̂�) ∝ ℒ(𝒙, 𝒚|𝜈, 휀, �̂�)LN(𝜈|�̂�, �̂�)Uni(휀), (32) 

 

where �̂� is an estimate for 𝑝. We assumed that 𝑝 can be approximated as a constant independent of the pixel 

position and measurements, and can be estimated prior to the measurements by using Eq. 19 (�̂� = 0.5665). The same 

assumption is used in the following. Further, �̂� and �̂� are estimates given by the EB method; LN and Uni represent 

the lognormal and uniform distributions, respectively. We estimated the maximum of the joint posterior distribution 

using the Newton–Raphson method as before. Taking the logarithm of both sides on Eq. 32 and the derivative of the 

log-posterior distribution gives the equations required for the Newton–Raphson method. The first and second 

derivatives of logℒ (𝒙, 𝒚|𝜈, 휀, �̂�) and log LN(𝜈|�̂�, �̂�) are given by Eq. 13 and 14, and  

 

∂2 logℒ

𝜕𝜈2
(𝒙, 𝒚|𝜈, 휀, �̂�) = −

1

𝜈2휀
𝑆1(𝒙 + 𝒚, 𝜈, 휀) +

1

𝜈2휀2
𝑆2(𝒙 + 𝒚, 𝜈, 휀) −

1

𝜈2휀2
𝑆3(𝒙 + 𝒚, 𝜈, 휀), (33) 

∂2 logℒ

𝜕𝜈𝜕휀
(𝒙, 𝒚|𝜈, 휀, �̂�) = −

1

𝜈휀2
𝑆2(𝒙 + 𝒚, 𝜈, 휀) +

1

𝜈휀2
𝑆3(𝒙 + 𝒚, 𝜈, 휀), (34) 

∂2 logℒ

𝜕휀2
(𝒙, 𝒚|𝜈, 휀, �̂�) = −

1

휀2
𝑆0(𝒙 + 𝒚) +

1

휀2
𝑆2(𝒙 + 𝒚, 𝜈, 휀) −

1

휀2
𝑆3(𝒙 + 𝒚, 𝜈, 휀), (35) 

∂ log LN

∂ν
(𝜈|�̂�, �̂�) = −

1

𝜈
−
log 𝜈 − �̂�

�̂�2𝜈
, (36) 

∂2 log LN

𝜕𝜈2
(𝜈|�̂�, �̂�) =

1

𝜈2
+
log 𝜈 − �̂� − 1

�̂�2𝜈2
. (37) 

 

For the initial values of 𝜈(0) and 휀(0), the 𝑘-th iteration process of the Newton–Raphson method (𝑘 = 1,2,3,…) is 

given by Eq. 31 by replacing logℒ with log𝑃(𝜈, 휀|𝒙, 𝒚, �̂�, �̂�, �̂�).  

 

Dead-time-affected double-detector model 

The joint posterior distribution is given by 

 

𝑃(𝜈, 휀|𝒙, 𝒚, �̂�, 𝛿1, 𝛿2, �̂�, �̂�) ∝ ℒ(𝒙, 𝒚|𝜈, 휀, �̂�, 𝛿1, 𝛿2) LN(𝜈|�̂�, �̂�)Uni(휀). (38) 

 

To find the maximum of the posterior distribution, we used the Newton–Raphson method for two variables as done 

previously. The first and second derivatives of the log-posterior distribution are given by those of the log-likelihood 

and log-prior distribution, which are given by Eq. 25, 36, and 37. The iteration process of the Newton–Raphson 

method is given by Eq. 31 by replacing logℒ with log𝑃(𝜈, 휀|𝒙, 𝒚, �̂�, 𝛿1, 𝛿2, �̂�, �̂�). 
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Empirical Bayes Method 

Lognormal prior model 

As mentioned above, we assumed that the particle number distributions of a pixel (center pixel) and the surrounding 

eight pixels are given by identical lognormal distributions. The parameter of the lognormal distribution is a 

hyperparameter, and we estimated the hyperparameters 𝜇  and 𝜎  for predicting the center pixel by using the 

surrounding eight pixels. In this study, we estimated the hyperparameters using the EB method (26, 27); this method 

determines the hyperparameters by maximizing the marginal likelihood. To find the maximum point, we used the 

expectation maximization (EM) algorithm (26, 27). We simply write the joint posterior distribution on the 

surrounding pixels with 𝜈1:𝐽 = (𝜈1, 𝜈2… , 𝜈𝐽) and 휀1:𝐽 = (휀1, 휀2… , 휀𝐽) as follows:  

 

𝑃(𝜈1:𝐽, 휀1:𝐽|𝒙1:𝐽, 𝒚1:𝐽, �̂�, 𝜇, 𝜎) =
1

ℳ
∏[ℒ(𝒙𝑗 , 𝒚𝑗|𝜈𝑗 , 휀𝑗 , �̂�)LN(𝜈𝑗|𝜇, 𝜎)Uni(휀𝑗)]

𝐽

𝑗=1

, (39) 

 

where the subscript 𝑗 represents the addresses between the surrounding pixels, subscript 1: 𝐽 represents the vector 

of the addresses (in this study, 𝐽 = 8). The photon count observations at each pixel are assumed to be conditionally 

independent given 𝜇 and 𝜎. For MoM and ML, photon count observations at each pixel are assumed to be 

independent. ℳ is the marginal likelihood given by 

 

ℳ(𝒙1:𝐽, 𝒚1:𝐽|�̂�, 𝜇, 𝜎) = ∫ ∫ ∏[ℒ(𝒙𝑗 , 𝒚𝑗|𝜈𝑗 , 휀𝑗 , �̂�)LN(𝜈𝑗|𝜇, 𝜎)Uni(휀𝑗)]

𝐽

𝑗=1

d𝜈1:𝐽

∞

0

d휀1:𝐽

∞

0

 

=∏[∫ ∫ ℒ(𝒙𝑗 , 𝒚𝑗|𝜈𝑗 , 휀𝑗 , �̂�)LN(𝜈𝑗|𝜇, 𝜎)Uni(휀𝑗)d𝜈𝑗

∞

0

d휀𝑗

∞

0

]

𝐽

𝑗=1

. 

(40) 

 

The EM algorithm is an iterative method to find the maximum, which is given by maximizing the following function 

𝒬(𝜇, 𝜎, 𝜇old, 𝜎old) (see Supporting Material for derivation):  

 

𝒬(𝜇, 𝜎, 𝜇old, 𝜎old) =∑∫ ∫ 𝑃(𝜈𝑗 , 휀𝑗|𝒙𝑗 , 𝒚𝑗 , �̂�, 𝜇old, 𝜎old) log LN(𝜈𝑗|𝜇, 𝜎)  d𝜈𝑗

∞

0

d휀𝑗

∞

0

𝐽

𝑗=1

. (41) 

 

The algorithm consists of an E step and an M step. The E step is a calculation step of expectations with the fixed 

hyperparameters 𝜇old  and 𝜎old . The M step is a maximization step of 𝒬(𝜇, 𝜎, 𝜇old, 𝜎old)  by changing the 

hyperparameters 𝜇 and 𝜎. The first derivative of 𝒬(𝜇, 𝜎, 𝜇old, 𝜎old) is given by, 

 

𝜕𝒬

𝜕𝜇
(𝜇, 𝜎, 𝜇old, 𝜎old) =

1

𝜎2
∑[𝔼𝜈𝑗𝜀𝑗[log 𝜈𝑗] − 𝜇]

𝐽

𝑗=1

, (42) 
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𝜕𝒬

𝜕𝜎
(𝜇, 𝜎, 𝜇old, 𝜎old) =∑[−

1

𝜎
+
𝔼𝜈𝑗𝜀𝑗 [(log 𝜈𝑗 − 𝜇)

2
]

𝜎3
]

𝐽

𝑗=1

, (43) 

 

where 𝔼𝜈𝑗𝜀𝑗[ ] denotes an expectation with posterior distribution 𝑃(𝜈𝑗 , 휀𝑗 , |𝒙𝑗 , 𝒚𝑗 , �̂�, 𝜇old, 𝜎old). Setting the first 

derivatives to zero gives 

 

𝜇new =
1

𝐽
∑𝔼𝜈𝑗𝜀𝑗[log 𝜈𝑗]

𝐽

𝑗=1

, (44) 

𝜎new = (
1

𝐽
∑𝔼𝜈𝑗𝜀𝑗 [(log 𝜈𝑗)

2
]

𝐽

𝑗=1

− 𝜇new
2)

1
2

. (45) 

 

In this model, 𝔼𝜈𝑗𝜀𝑗[log 𝜈𝑗] and 𝔼𝜈𝑗𝜀𝑗 [(log 𝜈𝑗)
2
] are calculated in the E step, and 𝜇new and 𝜎new are estimated in 

the M step. The estimated 𝜇new and 𝜎new are used as 𝜇old and 𝜎old, respectively, in the following E step. The 

iteration of the E step and the M step continues until convergence. 

 

Lognormal prior with gamma hyperprior model 

In the previously described lognormal prior model, the EB method gives the estimates, and the estimates can be 

substituted for lognormal distribution LN(𝜈|�̂�, �̂�). The distribution enables the prediction of particle number in a 

pixel. However, the precision of the estimates is insufficiently high; thus, the prediction sometimes fails (see Fig S1.1 

in Supporting Material). The low precision could be attributed to the small number of grouped pixels; especially, a 

low �̂� reduces the variance of the distribution, and the prediction fails to represent the variation in the particle 

number of grouped pixels. To avoid this problem, Chung et al. proposed to use gamma distribution as a hyperprior 

(28). A hyperprior is a prior distribution for a hyperparameter, which acts as a penalty against a low �̂�. A gamma 

hyperprior for 𝜎 is given by 

 

Gam(𝜎|𝛼, 𝛽) =
𝛽𝛼

Γ(𝛼)
𝜎𝛼−1 exp(−𝛽𝜎), (46) 

 

where 𝛼 and 𝛽 are parameters taking a positive value (0 < 𝛼, 0 < 𝛽), Γ(𝛼) is a gamma function, and Γ(𝛼) =

∫ 𝑢𝛼−1 exp(−𝑢)d𝑢
∞

0
. Chung et al. recommended to use 𝛼 = 2 and 𝛽 → 0 by default. In this study, we used 𝛼 =

𝐽 + 1 and 𝛽 = 0.01𝐽 (we assumed 𝐽 = 8; thus, 𝛼 = 9 and 𝛽 = 0.08). We choose a pair of 𝛼 and 𝛽 to simplify 

the calculation in the M step and construct the gamma distribution with a mode of 100. With this choice, the 25th 

and 75th percentiles of the gamma distribution are 𝑄25 = 85.5  and 𝑄75 = 135.0 , respectively. The gamma 

distribution works to positively increase �̂� and prevents the prediction from failing. Simply considering the default 

amount of particle number variation whose 𝜎 of 100 is given, the 25th and 75th percentiles for 𝜈 are 𝑄25 =

5.10 × 10−30 exp(𝜇) and 𝑄75 = 1.96 × 10
29 exp(𝜇), respectively. The median of the distribution is given by 

exp(𝜇). Although the percentiles depend on 𝜇, the 𝑄25–𝑄75 interval would be regarded as sufficiently wide. An 



 14 / 28 

 

actual experimental range of the particle number in an N&B analysis would be 10−3 < 𝜈 < 103. With a small 

particle number, the fluorescence background and autofluorescence are not negligible. In contrast, with a large 

particle number, the fluorescence intensity increases, and the photon count saturation of the detectors is not negligible. 

The joint posterior distribution is given by 

 

𝑃(𝜈1:𝐽, 휀1:𝐽|𝒙1:𝐽, 𝒚1:𝐽, �̂�, 𝜇, 𝜎, 𝛼, 𝛽) =
1

ℳ
∏[ℒ(𝒙𝑗 , 𝒚𝑗|𝜈𝑗 , 휀𝑗 , �̂�)LN(𝜈𝑗|𝜇, 𝜎)Uni(휀𝑗)]

𝐽

𝑗=1

Gam(𝜎|𝛼, 𝛽), (47) 

 

where  

 

ℳ(𝒙1:𝐽, 𝒚1:𝐽|�̂�, 𝜇, 𝜎, 𝛼, 𝛽) =∏[∫ ∫ ℒ(𝒙𝑗 , 𝒚𝑗|𝜈𝑗 , 휀𝑗 , �̂�)LN(𝜈𝑗|𝜇, 𝜎)Uni(휀𝑗)d𝜈𝑗

∞

0

d휀𝑗

∞

0

]

𝐽

𝑗=1

Gam(𝜎|𝛼, 𝛽). (48) 

 

𝒬 is given by (see Supporting Material for derivation), 

 

𝒬(𝜇, 𝜎, 𝜇old, 𝜎old)

=∑∫ ∫ 𝑃(𝜈𝑗 , 휀𝑗 , |𝒙𝑗 , 𝒚𝑗 , �̂�, 𝜇old, 𝜎old, 𝛼, 𝛽) log LN(𝜈𝑗|𝜇, 𝜎) d𝜈𝑗

∞

0

d휀𝑗

∞

0

𝐽

𝑗=1

+ logGam(𝜎|𝛼, 𝛽). 

(49) 

 

The first derivatives are given by 

 

𝜕𝒬

𝜕𝜇
(𝜇, 𝜎, 𝜇old, 𝜎old) =

1

𝜎2
∑[𝔼𝜈𝑗𝜀𝑗[log 𝜈𝑗] − 𝜇]

𝐽

𝑗=1

, (50) 

𝜕𝒬

𝜕𝜎
(𝜇, 𝜎, 𝜇old, 𝜎old) =∑[−

1

𝜎
+
𝔼𝜈𝑗𝜀𝑗 [(log 𝜈𝑗 − 𝜇)

2
]

𝜎3
] +

𝛼 − 1

𝜎
− 𝛽

𝐽

𝑗=1

. (51) 

 

Setting the first derivatives to zero and substituting 𝛼 = 𝐽 + 1 gives 

 

𝜇new =
1

𝐽
∑𝔼𝜈𝑗𝜀𝑗[log 𝜈𝑗]

𝐽

𝑗=1

, (52) 

𝜎new = [
𝐽

𝛽
{
1

𝐽
∑𝔼𝜈𝑗𝜀𝑗 [(log 𝜈𝑗)

2
]

𝐽

𝑗=1

− 𝜇new
2}]

1
3

. (53) 
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The model for a dead-time-affected detector is given by replacing ℒ(𝒙𝑗 , 𝒚𝑗|𝜈𝑗 , 휀𝑗 , �̂�)  in Eq. 48 with 

ℒ(𝒙𝑗 , 𝒚𝑗|𝜈𝑗 , 휀𝑗 , �̂�, 𝛿1, 𝛿2), and by replacing posterior distribution on the expectation.  

 

RESULTS 

Comparison of different concentrations by simulation 

To determine if the ML and EB–MAP methods produce estimates accurately and precisely, we simulated images 

imitating measurements with different concentrations. Fig. 2A–F show the variation in estimates given by MoM (Fig. 

2A and 2D), ML (Fig. 2B and 2E), and EB–MAP (Fig. 2C and 2F). One thousand images were simulated with a fixed 

particle brightness of 10 kHz and different particle numbers.  

Fig. 2A–C show the dependence of the estimated particle number on the true particle number. In Fig. 2A, the 

averages are scattered around the true values and do not overlap with them. The medians are closer to the true values 

than to the averages. In Fig. 2B, the averages are overestimated, and the medians overlap with the true values. In Fig. 

2C, the averages are close to the true values. Fig. 2G and 2I show the normalized bias and standard deviation of the 

particle number; the normalization is divided by the true value. A bias of 0 indicates accurate estimation, and a low 

standard deviation indicates high-precision estimation. Fig. 2G and 2I show that EB–MAP estimated the particle 

number with the highest accuracy and precision. The precision of EB–MAP estimation was an order of magnitude 

higher than that of MoM. Note that the bias and the standard deviation of ML were given by excluding the particle 

number of infinity; these values are only for reference. Fig. 2D–F show the dependence of the estimated particle 

brightness on the true particle number. For all the methods, the averages and the medians were close to the true value 

and were constant. The number of outliers was notably smaller than that estimated for the particle number. Fig. 2H 

and 2J show the normalized bias and standard deviation of the particle brightness. Fig. 2H indicates that MoM and 

ML estimated the particle brightness accurately, but EB–MAP overestimated the values. The magnitude of bias on 

EB–MAP was constant. Fig. 2J indicates that the estimation of EB–MAP was the most precise, that of ML was the 

second-best, and that of EB–MAP was 1.5 times better than that of MoM. One could consider that either the particle 

number or particle brightness would be underestimated if the other was overestimated in Fig. 2G and 2H. Although 

each estimate of MoM and ML satisfies Eq. 18, the average of the estimates does not satisfy such relation (see 

Supporting Material for details).  

These results suggest that EB–MAP is more advantageous than MoM and ML for estimating the particle number. 

In contrast, the median of the estimates given by MoM and ML would be useful as a representative value. Moreover, 

Digman et al. (7) and our group (11) applied a spatial median filter to the images of the estimates in previous studies 

(see Fig. S2.2 in Supporting Material for the results regarding application of median filter). Regarding particle 

brightness, MoM and ML are advantageous for accurate estimation, but EB–MAP estimates with the highest 

precision.  

 

Comparison of different laser powers or oligomeric states by simulation 

Next, we simulated images imitating measurements with different laser powers or oligomeric states. One thousand 

images were simulated with a fixed particle number and varying particle brightness. In the simulation of the fixed 

particle number, we simulated a 2×2 grid-patterned area to demonstrate the applicability of the EB–MAP estimation. 

The EB–MAP implemented by lognormal prior with gamma hyperprior can be applied even if the particle number 

changes sharply (see Fig. S1.2 in Supporting Material).  

Fig. 3A and 3B show the true and estimated particle numbers given by MoM, ML, and EB–MAP. In the image 
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with the particle brightness of 20 kHz, the grid pattern was observed clearly for all the methods. In the images with 

lower particle brightness of 10 and 5 kHz, many outliers appeared in the MoM and ML methods. However, outliers 

were very small in number, and the edge of the grid pattern was stored, in the case of the EB–MAP method. Fig. 3I 

and 3K show the normalized bias and standard deviation of the particle number, respectively (see Fig. S3.1 in 

Supporting Material for box plot). As seen from Fig. 3I, MoM estimated unstably, and sometimes overestimated and 

underestimated. Further, ML markedly overestimated at lower particle brightness; EB–MAP estimated with a bias of 

0 for a particle brightness of over 7.5 kHz and underestimated for a particle brightness of less than 7.5 kHz. As seen 

in Fig. 3K, ML and EB–MAP estimated more precisely compared with MoM. The precision of EB–MAP estimation 

was an order of magnitude better than that of MoM. Fig. 3C–H show the true and estimated particle brightness. 

Although outliers were fewer in number, MoM and ML sometimes estimated negatively if the true particle brightness 

was low. Fig. 3J and 3L show the normalized bias and standard deviation of the particle brightness, respectively. As 

seen from Fig. 3J, MoM and ML estimated accurately, except for a true particle brightness of 2.5 kHz; however, EB–

MAP markedly overestimated if the true particle brightness was low. Fig. 3L shows that ML and EB–MAP estimated 

more precisely compared with MoM. To carefully examine the bias produced by MoM and ML, we performed 

another simulation with a particle brightness of less than 5 kHz (see Fig. S3.4 in Supporting Material). The results 

showed that MoM underestimated and ML overestimated, if the true particle brightness was low. The magnitude of 

bias of ML was smaller than that of EB–MAP.  

 

Experimental comparison of different concentrations 

To demonstrate the applicability of ML and EB–MAP, we experimentally obtained images of the EGFP solution and 

analyzed them. In the previous simulations, we simulated the ideal photon counts based on Neyman type A 

distribution. However, the effect of the dead time on photon detectors cannot be neglected in actuality. We analyzed 

the images using MoM, ML, and EB–MAP, which can be applied to dead-time-affected photon counts (see Fig. S4.3 

in Supporting Material for results without correction for dead time). For analyses based on MoM, we adopted the 

TD–N&B analysis (11), which does not require correction for dead time. This method is based on covariance and 

fluorescence intensity estimation; the covariance is not affected by dead time. Although the fluorescence intensity is 

affected by dead time, we assume that the effect is negligibly small in our measurements. This effect has been 

previously evaluated by Hillesheim et al. (29). As a control for N&B analysis, FCS measurements were also 

performed (see Fig. S4.4 in Supporting Material). We prepared different concentrations of EGFP using 

phosphate-buffered saline (pH 7.4). The average of fluorescence intensity increased with the concentration; we 

plotted the averages in the x-axis. It can be expected that increasing the concentration will increase the particle 

number, but the particle brightness will remain constant.  

Fig. 4A shows the dependence of the average particle number on the average of fluorescence intensity (see Fig. 

S4.1 in Supporting Material for box plot) and fitted lines. Each line shows an increase in particle number (see Table 

S4.3 in Supporting Material for details on parameters of the lines). For MoM, the averages were scattered around the 

fitted line. For ML, the averages were closer to the line, but a few were away from the line at high concentration. For 

EB–MAP, all the symbols of the average overlapped with the line. Fig. 4B shows the dependence of the average 

particle brightness on the average of the fluorescence intensity and fitted lines. For all the methods, the averages 

were close to the fitted line and showed a constant particle brightness. The particle brightness was the highest for EB–

MAP and second-highest for ML. The magnitude relationship of particle brightness between MoM, ML, and EB–

MAP was similar to that of the simulated result for low particle brightness (see Fig. S3.4 in Supporting Material). Fig. 
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4C and 4D show the standard deviations of the particle number and particle brightness, respectively. The ML and EB–

MAP estimated more precisely compared with MoM. The precision of EB–MAP estimation was an order of 

magnitude better for particle number and 1.5 times better for particle brightness than those of MoM. These results 

are consistent with the simulated results. 

 

Experimental comparison of different laser powers 

Next, we obtained images of the EGFP solution with different laser powers and analyzed them. As a control, FCS 

measurements were also performed (see Fig. S5.3 in Supporting Material). It can be expected that increasing the 

laser power will increase the particle brightness, but the particle number will remain constant. 

Fig. 5A shows the dependence of average particle number on the laser power (see Fig. S5.1 in Supporting 

Material for box plot). For MoM, the averages had a large variation and were not constant. For ML, the averages 

increased roughly and seemed to become constant at high laser power, but did not increase monotonically. For EB–

MAP, the averages increased and saturated at high laser power. The dotted line was arbitrarily drawn with a slope of 

0 and an intercept of 53.1, which is an average of the first three largest values (i.e., the highest average, 

second-highest average, and third-highest average). Fig. 5B shows the dependence of the average particle brightness 

on the laser power. For all the methods, the averages were close to the fitted line and increased (see Table S5.3 in 

Supporting Material for details on parameters of the lines). For MoM, the lines had an intercept of nearly 0. In 

contrast, for ML and EB–MAP, although the fitted line characterized the averages precisely, the lines had positive 

intercepts. Fig. 5C and 5D show the standard deviations of the particle number and particle brightness, respectively. 

Both ML and EB–MAP estimated more precisely than MoM. The precision of EB–MAP estimation was an order of 

magnitude better for particle number and 1.5–2 times better for particle brightness than those of MoM. These results 

are consistent with the simulated results. 

 

Experimental comparison of EGFP tandem oligomers 

Finally, we prepared HeLa cells expressing the EGFP monomer, dimer, and trimer separately. The dimer and trimer 

are EGFP tandem-oligomers, and have flexibly linked two and three EGFP units, respectively. Increasing the EGFP 

unit will increase the particle brightness. We obtained their images and analyzed them. For quantification, we placed 

regions of interest (ROIs) of the size 16×16 in the nucleus and cytoplasm, and estimated the averages. Additionally, 

FCS measurements were also performed as a control (see Fig. S6.4 in Supporting Material). 

Fig. 6A shows the fluorescence intensity of a cell expressing EGFP monomer, and Fig. 6B shows the particle 

number (see Fig. S6.1 and S6.2 in Supporting Material for other results). For MoM and ML, the outline of the 

nuclear membrane and cellular structure is not clear due to the presence of many outliers. On the other hand, for EB–

MAP, there are no outliers and the contrast between the fluorescence intensity and particle number seems similar. The 

histogram of the particle number in the cytoplasm shows that EB–MAP suppressed the appearance of larger values 

(see Fig. S6.3 in Supporting Material). Fig. 6C–E show the dependence of the average particle brightness on the 

number of EGFP units, and Fig. 6F shows the normalized particle brightness and fold change in the particle 

brightness in the cytoplasm; the normalization is divided by the average of the average particle brightness of the 

monomer. The fold change in the particle brightness is the normalized average of averages. For MoM, increasing the 

number of EGFP units increased the average of averages in cytoplasm, and the average did not clearly increase from 

EGFP dimer to trimer in the nucleus. The fold change in particle brightness did not correspond with the number of 

EGFP units. The results of FCS were similar to those of MoM. All these results are consistent with the results of a 



 18 / 28 

 

previous study (11). For ML and EB–MAP, the averages were higher, and the fold changes were smaller than those of 

MoM. To examine the cause of the decreasing fold change, we subtracted the intercept obtained in Fig. 5B from the 

average particle brightness (the intercept is 2.80 and 6.62 for ML and EB–MAP, respectively), and calculated the 

fold change (indicated by “+” in Fig. 6F). The corrected fold changes of ML and EB–MAP were recovered and found 

to be equivalent to those of MoM.  

 

DISCUSSION 

Thus far, we have demonstrated that EB–MAP can estimate precisely. In our statistical model, we did not include a 

model describing the point spread function (PSF) and scanning to reduce the computational cost. The spatial intensity 

distribution of the excitation light is described by PSF, and the position of a fluorescent particle in PSF affects the 

particle brightness. Additionally, scanning changes the position of the fluorescent particles in PSF. In a photon 

counting histogram (PCH) (21), the Gaussian–Lorentzian distribution and 3D Gaussian distribution are used for 

two-photon excitation and one-photon excitation (21), respectively. Including a model for PSF requires the 

calculation of convolution. Our algorithm for EB–MAP requires iterative computation for numerical integration; 

the iterative computation is required for each pixel. To prevent any further increase in computational cost, we did 

not include the model. Nevertheless, the dependence of the estimated particle number and particle brightness on the 

sample concentration and laser power corresponded well with the theoretically expected relationship (see Fig. 4 and 

5). These results suggest that our method characterized the intensity fluctuation comparatively. However, these 

results are not absolute estimations, and the estimates could be affected by a shape factor of the PSF described in 

PCH (21). 

In the construction of prior distribution, we assumed lognormal distribution for the particle number; this 

assumption limits the particle number. In contrast, we assumed uniform distribution for the particle brightness; this 

assumption does not limit the particle brightness. Another construction of prior distribution is possible, i.e., limiting 

both the parameters. Such a prior distribution would be useful in further improving the precision. However, this 

construction increases the number of hyperparameters to be optimized simultaneously, and consequently increases 

the computational cost. Thus, we simplified the prior distribution and limited only the particle number. In future 

studies, a prior distribution limiting both the parameters would be required. Our assumption in the prior distribution 

ignored the distribution of particle brightness and the correlation between the particle number and particle 

brightness. However, the particle number and particle brightness correlate negatively on the likelihood function. 

Ignoring the particle brightness in the prior distribution would result in omitted-variable bias (30) (Chapter 3.3), 

which could have been a possible cause for the overestimated particle brightness in EB–MAP (Fig. 3J). To 

construct a prior distribution limiting both the parameters, an orthogonal parameterization (31) would be useful to 

eliminate the correlation of the parameters. 

In fluorescence imaging and N&B analysis, the background intensity is a problem. For example, dark count, 

stray light, and autofluorescence would be sources of background intensity. Dark count and stray light can be 

corrected by implementing an additional probability distribution such as Poisson distribution, and by estimating the 

intensity of the background by a reference measurement. However, the correction for autofluorescence is 

challenging, because the intensity of autofluorescence differs depending on the position in cell and the cellular 

structure. We assumed that the effect of background intensity can be suppressed by increasing the fluorescence 

intensity from the target particles. We measured cells with fluorescence intensity, to the maximum extent possible; 

therefore, we did not perform corrections for background in this research (see Materials and Methods in Supporting 
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Material).  

We simulated photon count images with different particle numbers (Fig. 2) and particle brightness (Fig. 3), and 

evaluated the bias and standard deviation. The evaluation of the bias and standard deviation suggested the following. 

(a) For estimating the particle number, EB–MAP would be better to improve the accuracy and precision; however, 

EB–MAP underestimates the particle number if the true particle brightness is low. (b) MoM and ML often cause 

outliers, which skews the average. The median would be useful to characterize the distribution instead. (c) For 

estimating the particle brightness, the choice of estimator would change depending on the purpose of the analyst. 

MoM would be a better choice if the analyst expects estimation with less bias. On the other hand, ML and EB–MAP 

would be better if the analyst expects precise estimation, and already knows that the true particle brightness is 

constant or a correction for the bias is available. 

We applied these methods to the images of EGFP solution with different concentrations (Fig. 4) and laser powers 

(Fig. 5). We analyzed the images with the models considering the dead-time effect; considering this effect enabled 

recovery of the behavior of the parameters on different concentrations (see Fig. S4.4 in Supporting Material for 

results without correction). This suggests that the consideration of dead time is essential.  

In the estimations of particle number with different laser powers using EB–MAP (Fig. 5), the particle number 

increased with the increasing laser power and saturated at the highest laser power. Considering the simulated results, 

the saturated value of 53.1 would be an unbiased estimation, although the true particle number is unknown in the 

experiments. However, decreasing the laser power below 1.6% decreased the estimates. Although experiments with 

different concentrations (Fig. 4) were conducted with a laser power of less than 1.6%, increasing the concentration 

increased the particle number linearly. This suggests that an underestimated particle number would be comparable, if 

the true particle brightness is the same. 

In the estimation of particle brightness with different laser powers (Fig. 5), EB–MAP estimated the highest 

average of particle brightness, and ML and MoM estimated the second- and third-highest averages, respectively. 

These estimates were characterized well by lines, and ML and EB–MAP had clear positive intercepts. This result 

indicates that doubling or tripling the true particle brightness does not proportionally increase the particle brightness 

estimated by ML and EB–MAP. Therefore, in the experiments with EGFP tandem oligomers, the fold change in 

particle brightness by ML and EB–MAP decreased compared with that of MoM (Fig. 6F). We calculated the fold 

change again by subtracting the intercept (indicated by “+”: ML (+) and EB–MAP (+) in Fig. 6F). This correction 

recovered the fold change in particle brightness by ML and EB–MAP to be equivalent to that of MoM. This result 

implies that although ML and EB–MAP overestimate the particle brightness, they could be useful for relative 

quantification of particle brightness. The theoretical behavior of the estimated particle brightness was not 

investigated in detail in this study. Further studies are required for robust correction of the fold change. We 

performed simulations to investigate the origin of the positive intercept (see Fig. S5.4 in Supporting Material). The 

simulation results showed that the intercept decreased with the increasing number of images. The origin of the 

positive intercept would be the insufficient number of images at low particle brightness. Subtracting the intercept 

would compensate when sufficient number of images is not available. Further, the number of EGFP units did not 

correspond with the fold change obtained by MoM (Fig. 6C); this result is the same as that of FCS (see Fig. S6.4 in 

Supporting Material) and consistent with that of a previous study (11). These results suggest the presence of a 

non-fluorescent state of EGFP. There are several possible explanations for this phenomenon. One could be the 

photophysical processes, such as long-lived dark states (32) and photobleaching (33), and another could be the 

chromophore formation (protein maturation and incorrect folding) (34–36). To estimate the number of EGFP units 
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accurately, a simple correction method was proposed for the non-fluorescent state (35, 37). For error analyses on the 

fold change, see the sections in page 33–42, Supporting Material.  

 

CONCLUSION 

We applied ML and EB–MAP to N&B analysis to accurately and precisely estimate the particle number and 

particle brightness, which reflect the concentration and oligomeric state, respectively, of a fluorescently labeled 

protein in a cell. In the construction of EB–MAP, we effectively utilized the information of the surrounding pixels 

by assuming lognormal prior and gamma hyperprior. To extend the feasibility of our analysis, we combined the 

double-detector system achieved by a half mirror (11) and the correction for the dead time of photon detectors. We 

demonstrated the feasibility, accuracy, and precision of our method by simulations and experiments. The results 

showed that EB–MAP can be applied even if the particle number of the surrounding pixels changes sharply; further, 

EB–MAP estimated with better precision compared with that of the conventional method. Although EB–MAP 

overestimated the particle brightness, a simple correction recovered the fold change in particle brightness 

comparable to the conventional method. Our method (EB–MAP–N&B) recognizes the changes in parameters 

sensitively.  

The N&B analysis is advantageous for monitoring the spatial distribution of the concentration and oligomeric 

state in cells. The measurement in this method is performed using confocal laser scanning microscopy. Our method 

has a wide range of applications in the field of fluorescence imaging. Furthermore, our method would contribute to 

the understanding of the dynamic processes in oligomerization and protein aggregation in cells. 

To our knowledge, this is the first study that applies Bayesian statistics to N&B analysis, and we revealed the 

great potential of Bayesian statistics. The methods reported herein will open up avenues for further research in this 

field. In this study, although we mainly focused on the pair of parameters that maximizes the joint posterior 

distribution, other choices of estimators are also possible. The MAP estimate can be determined by maximizing the 

marginal distribution of the joint posterior distribution. Additionally, the expected a posteriori (EAP) estimate can 

also be determined. Evaluating the accuracy and precision of other estimators would widen the choice of estimators. 

We further note that EB–MAP can be applied to other FFS techniques, namely, scanning FCS (38) and imaging 

FCS (2, 39), to improve their accuracy and precision. These methods record the spatial distribution of fluorescence 

fluctuation, as with N&B analysis. Therefore, expecting a similarity between parameters at spatially close positions 

would be reasonable. The spatial similarity of parameters is typically not assumed if the parameters are estimated 

by analyzing the temporal fluctuation at a position. We demonstrated that assuming the spatial similarity is useful to 

effectively extract the information contained in fluorescence images.  

 

SUPPORTING MATERIAL 

Theoretical derivations, materials and methods, and supplemental data are available at (URL).  

 

AUTHOR CONTRIBUTIONS  

R. F. designed and conducted the research, analyzed data, and wrote the manuscript; J. Y. and M. K. supervised the 

project. 

 

ACKNOWLEDGMENT 

This work was supported by JSPS KAKENHI Grant Number JP19J13657. R. F. was supported by The Ministry of 



 21 / 28 

 

Education, Culture, Sports, Science and Technology through Program for Leading Graduate Schools (Hokkaido 

University “Ambitious Leader’s Program”). M. K. was partially supported by a Grant-in-Aid for Scientific 

Research on Innovative Areas “Chemistry for Multimolecular Crowding Biosystems” (JSPS KAKENHI Grant No. 

JP 20H04686), and a Grant-in-Aid for Scientific Research on Innovative Areas “Information physics of living 

matters” (JSPS KAKENHI Grant No. JP 20H05522). We would like to thank Editage (www.editage.com) for 

English language editing. 

 

The authors declare no conflict of interest. 

 

SUPPORTING CITATIONS  

References (40–53) appear in the Supporting Material. 

 

REFERENCE 

1.  Youker, R.T., and H. Teng. 2014. Measuring protein dynamics in live cells: protocols and practical considerations 

for fluorescence fluctuation microscopy. J. Biomed. Opt. 19:090801. 

2.  Bag, N., and T. Wohland. 2014. Imaging Fluorescence Fluctuation Spectroscopy: New Tools for Quantitative 

Bioimaging. Annu. Rev. Phys. Chem. 65:225–248. 

3.  Migueles-Ramirez, R.A., A.G. Velasco-Feliz, R. Pinto-Camara, C.D. Wood, and A. Guerrero. 2017. Fluorescence 

fluctuation spectroscopy in living cells. Microsc. imaging Sci. Pract. approaches to Appl. Res. Educ. 138–151. 

4.  Elson, E.L., and D. Magde. 1974. Fluorescence correlation spectroscopy. I. Conceptual basis and theory. 

Biopolymers. 13:1–27. 

5.  Krmpot, A.J., S.N. Nikolić, M. Vitali, D.K. Papadopoulos, S. Oasa, P. Thyberg, S. Tisa, M. Kinjo, L. Nilsson, W.J. 

Gehring, L. Terenius, R. Rigler, and V. Vukojević. 2015. Quantitative confocal fluorescence microscopy of 

dynamic processes by multifocal fluorescence correlation spectroscopy. In: Advanced Microscopy Techniques IV; 

and Neurophotonics II. OSA, Washington, D.C. p. 95360O. 

6.  Yamamoto, J., S. Mikuni, and M. Kinjo. 2018. Multipoint fluorescence correlation spectroscopy using spatial light 

modulator. Biomed. Opt. Express. 9:5881. 

7.  Digman, M.A., R. Dalal, A.F. Horwitz, and E. Gratton. 2008. Mapping the Number of Molecules and Brightness in 

the Laser Scanning Microscope. Biophys. J. 94:2320–2332. 

8.  Qian, H., and E.L. Elson. 1990. On the analysis of high order moments of fluorescence fluctuations. Biophys. J. 

57:375–380. 

9.  Qian, H., and E.L. Elson. 1990. Distribution of molecular aggregation by analysis of fluctuation moments. Proc. 

Natl. Acad. Sci. 87:5479–5483. 

10.  Saleh, B. 1978. Photoelectron statistics with applications to spectroscopy and optical communication. 

Springer-Verlag Berlin Heidelberg GmbH, . 

11.  Fukushima, R., J. Yamamoto, H. Ishikawa, and M. Kinjo. 2018. Two-detector number and brightness analysis 

reveals spatio-temporal oligomerization of proteins in living cells. Methods. 140–141:161–171. 

12.  Strey, H.H. 2019. Estimation of parameters from time traces originating from an Ornstein-Uhlenbeck process. Phys. 

Rev. E. 100:062142. 

13.  Jazani, S., I. Sgouralis, O.M. Shafraz, M. Levitus, S. Sivasankar, and S. Pressé. 2019. An alternative framework for 

fluorescence correlation spectroscopy. Nat. Commun. 10:3662. 



 22 / 28 

 

14.  Santra, K., J. Zhan, X. Song, E.A. Smith, N. Vaswani, and J.W. Petrich. 2016. What Is the Best Method to Fit 

Time-Resolved Data? A Comparison of the Residual Minimization and the Maximum Likelihood Techniques As 

Applied to Experimental Time-Correlated, Single-Photon Counting Data. J. Phys. Chem. B. 120:2484–2490. 

15.  Santra, K., E.A. Smith, J.W. Petrich, and X. Song. 2017. Photon Counting Data Analysis: Application of the 

Maximum Likelihood and Related Methods for the Determination of Lifetimes in Mixtures of Rose Bengal and 

Rhodamine B. J. Phys. Chem. A. 121:122–132. 

16.  Shenton, L.R. 1949. On the efficiency of the method of moments and Neyman’s type A distribution. Biometrika. 

36:450–454. 

17.  Shenton, L.R., and K.O. Bowman. 1967. Remarks on Large Sample Estimators for Some Discrete Distributions. 

Technometrics. 9:587–598. 

18.  Galindo Garre, F., and J.K. Vermunt. 2006. Avoiding Boundary Estimates in Latent Class Analysis by Bayesian 

Posterior Mode Estimation. Behaviormetrika. 33:43–59. 

19.  Allman, E., H.B. Cervantes, S. Hosten, K. Kubjas, D. Lemke, J. Rhodes, and P. Zwiernik. 2019. Maximum 

likelihood estimation of the Latent Class Model through model boundary decomposition. J. Algebr. Stat. 10:51–84. 

20.  Mandel, L. 1958. Fluctuations of Photon Beams and their Correlations. Proc. Phys. Soc. 72:1037–1048. 

21.  Chen, Y., J.D. Müller, P.T.C. So, and E. Gratton. 1999. The Photon Counting Histogram in Fluorescence 

Fluctuation Spectroscopy. Biophys. J. 77:553–567. 

22.  Hillesheim, L.N., and J.D. Müller. 2005. The dual-color photon counting histogram with non-ideal photodetectors. 

Biophys. J. 89:3491–3507. 

23.  Neyman, J. 1939. On a new class of “contagious” distributions, applicable in entomology and bacteriology. Ann. 

Math. Stat. 10:35–57. 

24.  Adelson, R.. 1966. Compound Poisson Distributions. Oper. Res. Soc. 17:73–75. 

25.  Hendrix, J., W. Schrimpf, M. Höller, and D.C. Lamb. 2013. Pulsed Interleaved Excitation Fluctuation Imaging. 

Biophys. J. 105:848–861. 

26.  Bishop, C.M. 2006. Pattern Recognition and Machine Learning. Springer, Germany. 

27.  Gelman, A., J. Carlin, H. Stern, and D. Rubin. 2004. Bayesian data analysis. 3rd ed. Chapman & Hall/CRC, UK. 

28.  Chung, Y., S. Rabe-Hesketh, V. Dorie, A. Gelman, and J. Liu. 2013. A Nondegenerate Penalized Likelihood 

Estimator for Variance Parameters in Multilevel Models. Psychometrika. 78:685–709. 

29.  Hillesheim, L.N., and J.D. Müller. 2003. The Photon Counting Histogram in Fluorescence Fluctuation 

Spectroscopy with Non-Ideal Photodetectors. Biophys. J. 85:1948–1958. 

30.  Wooldridge, J.M. 2009. Introductory Econometrics: A Modern Approach. 5th ed. South-Western, Cengage 

Learning, USA. 

31.  Willmot, G.E. 1988. Parameter Orthogonality for a Family of Discrete Distributions. J. Am. Stat. Assoc. 83:517–

521. 

32.  Widengren, J., Ü. Mets, and R. Rigler. 1999. Photodynamic properties of green fluorescent proteins investigated by 

fluorescence correlation spectroscopy. Chem. Phys. 250:171–186. 

33.  Hur, K.-H., P.J. Macdonald, S. Berk, C.I. Angert, Y. Chen, and J.D. Mueller. 2014. Quantitative Measurement of 

Brightness from Living Cells in the Presence of Photodepletion. PLoS One. 9:e97440. 

34.  Balleza, E., J.M. Kim, and P. Cluzel. 2018. Systematic characterization of maturation time of fluorescent proteins 

in living cells. Nat. Methods. 15:47–51. 

35.  Dunsing, V., M. Luckner, B. Zühlke, R.A. Petazzi, A. Herrmann, and S. Chiantia. 2018. Optimal fluorescent 



 23 / 28 

 

protein tags for quantifying protein oligomerization in living cells. Sci. Rep. 8:10634. 

36.  Foo, Y.H., N. Naredi-Rainer, D.C. Lamb, S. Ahmed, and T. Wohland. 2012. Factors affecting the quantification of 

biomolecular interactions by fluorescence cross-correlation spectroscopy. Biophys. J. 102:1174–1183. 

37.  Vámosi, G., N. Mücke, G. Müller, J.W. Krieger, U. Curth, J. Langowski, and K. Tóth. 2016. EGFP oligomers as 

natural fluorescence and hydrodynamic standards. Sci. Rep. 6:33022. 

38.  Petrášek, Z., and P. Schwille. 2008. Scanning Fluorescence Correlation Spectroscopy. In: Single Molecules and 

Nanotechnology. Springer, Berlin, Heidelberg, . pp. 83–105. 

39.  Kannan, B., J.Y. Har, P. Liu, I. Maruyama, J.L. Ding, and T. Wohland. 2006. Electron Multiplying 

Charge-Coupled Device Camera Based Fluorescence Correlation Spectroscopy. Anal. Chem. 78:3444–3451. 

40.  Bédard, G. 1967. Dead-time corrections to the statistical distribution of photoelectrons. Proc. Phys. Soc. 90. 

41.  Ackermann, J., and H. Hogreve. 2010. Small dead-time expansion in counting distributions and moments. Nucl. 

Instruments Methods Phys. Res. Sect. A Accel. Spectrometers, Detect. Assoc. Equip. 614:297–302. 

42.  Oura, M., J. Yamamoto, H. Ishikawa, S. Mikuni, R. Fukushima, and M. Kinjo. 2016. Polarization-dependent 

fluorescence correlation spectroscopy for studying structural properties of proteins in living cell. Sci. Rep. 6:31091. 

43.  Pack, C., K. Saito, M. Tamura, and M. Kinjo. 2006. Microenvironment and Effect of Energy Depletion in the 

Nucleus Analyzed by Mobility of Multiple Oligomeric EGFPs. Biophys. J. 91:3921–3936. 

44.  Takahasi, H., and M. Mori. 1973. Double exponential formulas for numerical integration. Publ. Res. Inst. Math. Sci. 

9:721–741. 

45.  Müller, C.B., A. Loman, V. Pacheco, F. Koberling, D. Willbold, W. Richtering, and J. Enderlein. 2008. Precise 

measurement of diffusion by multi-color dual-focus fluorescence correlation spectroscopy. Europhys. Lett. 

83:46001. 

46.  Culbertson, C.T., S.C. Jacobson, and J. Michael Ramsey. 2002. Diffusion coefficient measurements in microfluidic 

devices. Talanta. 56:365–73. 

47.  Amrhein, V., S. Greenland, and B. McShane. 2019. Scientists rise up against statistical significance. Nature. 

567:305–307. 

48.  Johnson, D.H. 1999. The Insignificance of Statistical Significance Testing. J. Wildl. Manage. 63:763. 

49.  Lemoine, N.P. 2019. Moving beyond noninformative priors: why and how to choose weakly informative priors in 

Bayesian analyses. Oikos. 128:912–928. 

50.  Gelman, A. 2006. Prior distributions for variance parameters in hierarchical models (comment on article by 

Browne and Draper). Bayesian Anal. 1:515–534. 

51.  Polson, N.G., and J.G. Scott. 2012. On the Half-Cauchy Prior for a Global Scale Parameter. Bayesian Anal. 7:887–

902. 

52.  R Core Team. 2020. R: A language and environment for statistical computing. R Foundation for Statistical 

Computing, Vienna, Austria. https://www.r-project.org/. 

53.  Stan Development Team. 2020. RStan: the R interface to Stan. http://mc-stan.org/. 

 

  



 24 / 28 

 

FIGURE LEGENDS 

FIGURE 1 

 

FIGURE 1: Reflection of oligomeric state by particle brightness 

Fluorescent protein (green cylinder), two fluorescently labeled monomers, and one dimer. Fluorescence intensity of 

the monomers and the dimer are given by 𝑋 (the overline represents average). In the dimerization, the particle 

number reduces by half, and the particle brightness doubles.  
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FIGURE 2 

FIGURE 2: Simulations with different particle numbers 

One thousand images were simulated with a fixed particle brightness of 10 kHz and different particle numbers, and 

analyzed by MoM (A, D), ML (B, E), and EB–MAP (C, F). (A, B, C) Dependence of the estimated particle number 

on true particle number. Dashed lines represent the true value. In the box plot, open circle: average, box: interval 

between 25th and 75th percentiles, central bar: median, diamonds: outliers, crosses: 5th and 95th percentiles, and 

the error bars are minimum and maximum points without outliers. Fig. 2A and 2B contain numerous outliers, which 

are shown in an enlarged view (see Fig. S2.1 in Supporting Material for broad view). In MoM and ML estimations, 

estimates are sometimes out of the parameter space; the fraction of estimates outside the parameter space is shown 

on the right axes. (D, E, F) Dependence of the estimated particle brightness [kHz] on true particle number. A 

fraction of estimates outside the parameter space is shown. (G–J) Normalized bias and standard deviation are 

shown for particle numbers (G, I) and particle brightness (H, J).  
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FIGURE 3 

FIGURE 3: Simulations with different particle brightness on grid-patterned image 

One thousand images were simulated with a fixed particle number and different particle brightness. The particle 

number has a 2×2 grid-patterned area, in which each pixel has 50 or 100 particles. (A) True image for particle 

number. (B) Estimated images for the particle number given by MoM, ML, and EB–MAP under different particle 

brightness [kHz]. The brightness and contrast of the images are the same between A and B. The pixels below the 

range are colored in blue, and those beyond the range are colored in red. (C, E, G) True images for the particle 

brightness of 20, 10, and 5 kHz, respectively. (D, F, H) Estimated images for particle brightness [kHz]. The 

brightness and contrast of the images are the same between C and D, E and F, and G and H. (I–L) Normalized bias 

and standard deviation for a true particle number of 100 particles (I, K) and particle brightness (J, L).  
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FIGURE 4 

FIGURE 4: Experiments on EGFP solution with different concentrations 

Dependence of average and standard deviation on the concentration for particle number (A, C) and particle 

brightness [kHz] (B, D). Fluorescence intensity is plotted on the x-axis, instead of the concentration. The solid lines 

in A and B are fitted lines obtained by the weighted least squares method. 

 

FIGURE 5 

FIGURE 5: Experiments on EGFP solution with different laser power 

Dependence of average and standard deviation on the laser power for particle number (A, C) and particle brightness 

[kHz] (B, D). The dotted line in A was arbitrarily drawn with a slope of 0 and an intercept of 53.1. The solid lines in 

B are fitted lines obtained by the weighted least squares method.  
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FIGURE 6 

 

 

FIGURE 6: Experiments on EGFP tandem oligomers in cells 

(A) Fluorescence intensity [kHz] of a cell expressing an EGFP monomer. The red squares are regions of interest 

(ROIs) placed in the nucleus and cytoplasm. (Please see the digital version of this figure because printed version 

could seem different.) (B) Estimated images for particle number analyzed by MoM, ML, and EB–MAP. The pixels 

below the range are colored in blue, and those beyond the range are colored in red. (C–E) Dependence of average 

particle brightness [kHz] on the number of EGFP units in the nucleus (Nuc) and cytoplasm (Cyto). Dots: sample 

average of particle brightness in the ROIs, bar: average of the averages, and error bar: sample standard deviation of 

the averages. (F) Normalized particle brightness in the cytoplasm. Bar: fold change in particle brightness (sample 

average of the normalized average particle brightness), error bar: sample standard deviation of the normalized 

average particle brightness. The symbol “+” represents the correction for particle brightness by subtracting the 

intercept in Fig. 5B. 

 


