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SUPPORTING MATERIAL 

 

Empirical Bayes Method Using Surrounding Pixel Information for Number and 

Brightness Analysis 

 

R. Fukushima, J. Yamamoto, M. Kinjo 

 

 

Herein, we provide supplemental information to describe the theoretical derivations, materials and methods, and 

supplemental data in detail. First, we briefly describe the derivation of the equations in the main text. Then, we 

describe the simulation method, preparation of EGFP and cells, and measurement and analysis methods. Finally, in 

the supplemental data, we present additional results that complement the main text and figures.  
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THEORETICAL DERIVATIONS 

Derivation of the recursive formula describing the probability distribution for photon count detected by 

double detectors 

The probability distribution for observing 𝑋 and 𝑌 photons by double detectors is given in Eq. 6. The equation is 

a summation of 𝑊 time Bernoulli processes, and 𝑊 is an independent random variable determined by a Neyman 

type A distribution. The probability-generating function is given by  

 

𝐺(𝑧1, 𝑧2) = ∑ ∑ 𝑃(𝑋, 𝑌)𝑧1
𝑋𝑧2

𝑌

∞

𝑌=0

∞

𝑋=0

 

= exp[𝜈(exp[𝜀(𝑝𝑧1 + 𝑞𝑧2 − 1)] − 1)], 

(S1) 

 

where 𝑝 + 𝑞 = 1. The 𝑎-th order derivative of the probability-generating function with respect to 𝑧1 is given as 

follows from mathematical induction (𝑎 ≥ 1):  

 

𝜕𝑎𝐺

𝜕𝑧1
𝑎 (𝑧1, 𝑧2) = ∑  (

𝑎 − 1
𝑙

) 𝜈(𝜀𝑝)𝑎−𝑙 exp[𝜀(𝑝𝑧1 + 𝑞𝑧2 − 1)]
𝜕𝑙𝐺

𝜕𝑧1
𝑙

(𝑧1, 𝑧2)

𝑎−1

𝑙=0

. (S2) 

 

The 𝑏-th order derivative of Eq. S2 with respect to 𝑧2 is given as follows from mathematical induction (𝑏 ≥ 0):  

 

𝜕𝑎+𝑏𝐺

𝜕𝑧1
𝑎𝜕𝑧2

𝑏
(𝑧1, 𝑧2) 

= ∑ (
𝑏
𝑚

) ∑ (
𝑎 − 1

𝑙
) 𝜈𝜀𝑎−𝑙+𝑏−𝑚𝑝𝑎−𝑙𝑞𝑏−𝑚 exp[𝜀(𝑝𝑧1 + 𝑞𝑧2 − 1)]

𝜕𝑙+𝑚𝐺

𝜕𝑧1
𝑙𝜕𝑧2

𝑚
(𝑧1, 𝑧2)

𝑎−1

𝑙=0

𝑏

𝑚=0

. 

(S3) 

 

Substituting 𝑧1 = 𝑧2 = 0 into the definition of the probability-generating function yields  

 

𝜕𝑎+𝑏𝐺

𝜕𝑧1
𝑎𝜕𝑧2

𝑏
(0,0) = 𝑎! 𝑏! 𝑃(𝑎, 𝑏). (S4) 

 

Substituting 𝑧1 = 𝑧2 = 0 and Eq. S4 into Eq. S3 gives 

 

𝑃(𝑎, 𝑏) =
1

𝑎
𝜈𝜀𝑝 exp[−𝜀] ∑

(𝜀𝑞)𝑏−𝑚

(𝑏 − 𝑚)!
∑

(𝜀𝑝)𝑎−𝑙−1

(𝑎 − 𝑙 − 1)!
𝑃(𝑙, 𝑚)

𝑎−1

𝑙=0

𝑏

𝑚=0

. (S5) 
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Derivation of a photon-counting model for a dead-time-affected single detector 

Bédard described the probability for dead-time-affected photon count (1). The probability distribution for observing 

𝑊 photons on a dead-time-affected detector is given as follows for 𝑊 < 1/𝛿:  

 

𝑃(𝑊|𝜂, 𝛿) = ∫ 𝑃(𝑊|𝜂, 𝐼0, 𝛿)𝑃(𝐼0)d𝐼0

∞

0

 

= ∫ {𝐹(𝑊 − 1|𝜂, 𝐼0, 𝛿) − 𝐹(𝑊|𝜂, 𝐼0, 𝛿)}𝑃(𝐼0)d𝐼0

∞

0

, 

(S6) 

 

where the probability distribution 𝐹 is given by 

 

𝐹(𝑊|𝜂, 𝐼0, 𝛿) =
𝛾{𝑊 + 1, 𝜂𝐼0(1 − 𝑊𝛿)}

𝑊!
, (S7) 

 

where 𝛾(𝑊 + 1, 𝜉) is an incomplete gamma function, and 𝛾(𝑊 + 1, 𝜉) = ∫ 𝑢𝑊 exp(−𝑢) d𝑢
𝜉

0
. 𝛿 is obtained by 

dividing dead time 𝜏 by the sampling time (𝛿 = 𝜏/𝑇). O’Donnell derived a Taylor expansion of the probability 

distribution from the first to third terms, and Ackermann and Hogreve derived that from the fourth to fifth terms (2). 

Hillesheim and Müller corrected the dead-time effect with the first term of the expansion (3, 4). We generalize this 

formulation and present it in a different form for our purpose of approximation. The Taylor expansion is given by 

 

𝑃(𝑊|𝜂, 𝐼0, 𝛿) = ∑
𝛿𝑘

𝑘!

𝜕𝑘𝑃

𝜕𝛿𝑘
(𝑊|𝜂, 𝐼0, 0)

∞

𝑘=0

 

= ∑
𝛿𝑘

𝑘!
{

𝜕𝑘𝐹

𝜕𝛿𝑘
(𝑊 − 1|𝜂, 𝐼0, 0) −

𝜕𝑘𝐹

𝜕𝛿𝑘
(𝑊|𝜂, 𝐼0, 0)}

∞

𝑘=0

, 

(S8) 

 

where the derivative of the distribution 𝐹 is given as follows from mathematical induction (𝑘 = 1, 2, 3, …):  

 

𝜕𝑘𝐹

𝜕𝛿𝑘
(𝑊|𝜂, 𝐼0, 0) = (𝑊)𝑘Poi(𝑊|𝜂𝐼0) ∑ [(−1)𝑙+1 (

𝑘 − 1
𝑙

) (𝜂𝐼0)𝑘−𝑙
𝑊!

(𝑊 − 𝑙)!
]

𝑘−1

𝑙=0

. (S9) 

 

(
𝑎
𝑏

) is a binomial coefficient given by (
𝑎
𝑏

) =
𝑎!

𝑏!(𝑎−𝑏)!
. Each term in the infinite series of Eq. S8 contains a Poisson 

distribution multiplied by (𝜂𝐼0)𝑘 : Poi(𝑊|𝜂𝐼0) , (𝜂𝐼0)Poi(𝑊|𝜂𝐼0) , …or (𝜂𝐼0)𝑘Poi(𝑊|𝜂𝐼0) . Such a Poisson 

distribution can be rewritten by using (𝜂𝐼0)𝑘Poi(𝑊|𝜂𝐼0) = (𝑊 + 𝑘)!/𝑊! Poi(𝑊 + 𝑘|𝜂𝐼0). The infinite series can 

be separated into multiple terms having Poi(𝑊 + 𝑚|𝜂𝐼0) and function 𝐴𝑚(𝑊, 𝛿) with 𝑚 = 0,1,2, … as follows:  
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𝑃(𝑊|𝜂, 𝐼0, 𝛿) = ∑ 𝐴𝑚(𝑊, 𝛿)Poi(𝑊 + 𝑚|𝜂𝐼0)

∞

𝑚=0

. (S10) 

 

Under our assumption, the probability distribution for observing 𝑊 photons on a dead-time-affected detector is 

 

𝑃(𝑊|𝜈, 𝜀, 𝛿) = ∑ 𝐴𝑚(𝑊, 𝛿)Ney(𝑊 + 𝑚|𝜈, 𝜀)

∞

𝑚=0

. (S11) 

 

Derivation of a photon-counting model for dead-time-affected double detectors 

For a double-detector system, the joint probability distribution for observing 𝑋  and 𝑌  photons on dead-time-

affected detectors is given as follows:  

 

𝑃(𝑋, 𝑌|𝜂1, 𝜂2, 𝛿1, 𝛿2) = ∫ ∫ 𝑃(𝑋|𝜂1, 𝐼1, 𝛿1)𝑃(𝑌|𝜂2, 𝐼2, 𝛿2)𝑃(𝐼1, 𝐼2)
∞

0

d𝐼1

∞

0

d𝐼2, (S12) 

 

where 𝛿1 and 𝛿2 represent the dead time of each detector divided by the sampling time. Under our assumption, the 

joint probability is rewritten as follows for 𝑋 < 1/𝛿1 and 𝑌 < 1/𝛿2 with 𝑓 = 0,1,2, … and 𝑔 = 0,1,2, …:  

 

𝑃(𝑋, 𝑌|𝜈, 𝜀, 𝑝, 𝛿1, 𝛿2) = ∑ ∑ 𝐴ℎ(𝑋, 𝛿1)𝐴𝑚−ℎ(𝑌, 𝛿2)𝑃(𝑋 + ℎ, 𝑌 + 𝑚 − ℎ|𝜈, 𝜀, 𝑝)

𝑚

ℎ=0

∞

𝑚=0

= 𝐴0(𝑋, 𝛿1)𝐴0(𝑌, 𝛿2)𝑃(𝑋, 𝑌|𝜈, 𝜀, 𝑝) + 𝐴1(𝑋, 𝛿1)𝐴0(𝑌, 𝛿2)𝑃(𝑋 + 1, 𝑌|𝜈, 𝜀, 𝑝)

+ 𝐴0(𝑋, 𝛿1)𝐴1(𝑌, 𝛿2)𝑃(𝑋, 𝑌 + 1|𝜈, 𝜀, 𝑝) + 𝐴2(𝑋, 𝛿1)𝐴0(𝑌, 𝛿2)𝑃(𝑋 + 2, 𝑌|𝜈, 𝜀, 𝑝)

+ 𝐴1(𝑋, 𝛿1)𝐴1(𝑌, 𝛿2)𝑃(𝑋 + 1, 𝑌 + 1|𝜈, 𝜀, 𝑝) + 𝐴0(𝑋, 𝛿1)𝐴2(𝑌, 𝛿2)𝑃(𝑋, 𝑌 + 2|𝜈, 𝜀, 𝑝)

+ ⋯ + 𝐴𝑓(𝑋, 𝛿1)𝐴𝑔(𝑌, 𝛿2)𝑃(𝑋 + 𝑓, 𝑌 + 𝑔|𝜈, 𝜀, 𝑝). 

(S13) 
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Derivation of 𝓠 function on expectation maximization algorithm 

We describe the derivation of the 𝒬  function on lognormal prior with gamma hyperprior. Bishop described the 

details of the derivation generally (5) (Section 9.4, the EM Algorithm in General). The 𝒬 function on lognormal 

prior is derived similarly. The marginal likelihood is given in Eq. 48. The natural logarithm of the marginal likelihood 

is given by 

 

log ℳ(𝒙1:𝐽, 𝒚1:𝐽|𝑝̂, 𝜇, 𝜎, 𝛼, 𝛽)

= ∑ [log ∫ ∫ ℒ(𝒙𝑗 , 𝒚𝑗|𝜈𝑗 , 𝜀𝑗 , 𝑝̂)LN(𝜈𝑗|𝜇, 𝜎)Uni(𝜀𝑗)d𝜈𝑗

∞

0

d𝜀𝑗

∞

0

]

𝐽

𝑗=1

+ log Gam(𝜎|𝛼, 𝛽). 
(S14) 

 

We introduce a probability distribution 𝑅(𝜈𝑗 , 𝜀𝑗) and use Jensen's inequality as follows:  

 

log ℳ(𝒙1:𝐽, 𝒚1:𝐽|𝑝̂, 𝜇, 𝜎, 𝛼, 𝛽) 

= ∑ [log ∫ ∫ 𝑅(𝜈𝑗 , 𝜀𝑗)
ℒ(𝒙𝑗 , 𝒚𝑗|𝜈𝑗 , 𝜀𝑗 , 𝑝̂)LN(𝜈𝑗|𝜇, 𝜎)Uni(𝜀𝑗)

𝑅(𝜈𝑗 , 𝜀𝑗)
d𝜈𝑗

∞

0

d𝜀𝑗

∞

0

]

𝐽

𝑗=1

+ log Gam(𝜎|𝛼, 𝛽) 

≥ ∑ [∫ ∫ 𝑅(𝜈𝑗 , 𝜀𝑗) log
ℒ(𝒙𝑗 , 𝒚𝑗|𝜈𝑗 , 𝜀𝑗 , 𝑝̂)LN(𝜈𝑗|𝜇, 𝜎)Uni(𝜀𝑗)

𝑅(𝜈𝑗 , 𝜀𝑗)
d𝜈𝑗

∞

0

d𝜀𝑗

∞

0

]

𝐽

𝑗=1

+ log Gam(𝜎|𝛼, 𝛽) 

= ∑ [∫ ∫ 𝑅(𝜈𝑗 , 𝜀𝑗) log LN(𝜈𝑗|𝜇, 𝜎) d𝜈𝑗

∞

0

d𝜀𝑗

∞

0

]

𝐽

𝑗=1

+ log Gam(𝜎|𝛼, 𝛽) + const. 

(S15) 

 

The right-hand side of the last equation in Eq. S15 is a lower bound on the log-marginal likelihood. The lower bound 

is maximized with a fixed 𝜇old  and 𝜎old  when 𝑅(𝜈𝑗 , 𝜀𝑗)  is equal to 𝑃(𝜈𝑗 , 𝜀𝑗 , |𝒙𝑗 , 𝒚𝑗 , 𝑝̂, 𝜇old, 𝜎old, 𝛼, 𝛽) , and the 

maximized lower bound is a 𝒬 function.  

 

 

 

Derivation of overlap fraction 

We simply consider the overlap fraction during scanning in the x–y plane. We assume that the confocal volume has a 

radius 𝑟 and the microscope scans a pixel size 𝑠 within a sampling time. The illuminated area within a sampling 

time is the trajectory that is given by moving the circular confocal volume along the line of scanning. The illuminated 

area is the summation of the areas of the circle with a radius 𝑟 and the rectangle with lengths of 2𝑟 and 𝑠 for its 

two sides: 𝜋𝑟2 + 2𝑠𝑟. The overlapped area between the adjacent pixels is the circular area, and is thus given by 𝜋𝑟2. 

Therefore, the overlap fraction is given by 𝜋𝑟2/(𝜋𝑟2 + 2𝑠𝑟). 
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Relation between average of particle number, particle brightness, and photon count average 

The product of the particle number and particle brightness is equal to the temporal average of the photon counts (Eq. 

18) for MoM and ML. Either the particle number or particle brightness is underestimated if the other is overestimated. 

One could consider that these relations are the same for the average of the estimates as well, and that the results 

presented in Fig. 2 are doubtful. Fig. 2G shows an overestimation of the particle number, but Fig. 2H shows an 

accurate estimation of the particle brightness in MoM and ML. However, these relations are not the same for the 

average of the estimates. We present a counter-example below, wherein we assume that the spatial distribution of the 

particle number and the temporal average of the photon counts follow gamma distribution and delta distribution, 

respectively:  

 

Gam(𝜈|𝛼, 𝛽) =
𝛽𝛼

Γ(𝛼)
 𝜈𝛼−1 exp(−𝛽𝜈), (S16) 

Del(𝜆|𝑑) = {
∞, 𝜆 = 𝑑,
0, 𝜆 ≠ 𝑑,

 (S17) 

 

where 𝜆 is a random variable for the temporal average of photon counts. The assumption of delta distribution means 

that the temporal average of the photon counts is a constant 𝑑 at any spatial position. The distribution of 1/𝜈 is an 

inverse gamma distribution, and 𝜀 = 𝜆/𝜈. The distribution of particle brightness is given by  

 

P(𝜀|𝛼, 𝛽, 𝑑) =
1

𝑑

𝛽𝛼

Γ(𝛼)
 (

𝜀

𝑑
)

−𝛼−1

exp (−
𝛽𝑑

𝜀
). (S18) 

 

The spatial average of the particle number and particle brightness is 𝔼[𝜈] = 𝛼/𝛽  and 𝔼[𝜀] = 𝑑𝛽/(𝛼 − 1) , 

respectively. Therefore, the product of the averages is 𝔼[𝜈]𝔼[𝜀] = 𝛼𝑑/(𝛼 − 1). In contrast, the spatial average of 

photon count averages is 𝔼[𝜆] = 𝑑. The product of the averages is not equal to the average of the photon count 

averages, i.e., 𝔼[𝜈]𝔼[𝜀] > 𝔼[𝜆]. For a sufficiently large 𝛼, the gamma distribution converges to normal distribution, 

and the product of averages is close to 𝑑. This discussion reveals that the results presented in Fig. 2 are not doubtful.  
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Appearance of negative particle number and particle brightness in MoM 

In MoM, a negative value of the particle number and brightness is occasionally observed. The cause for this is an 

insufficient number of observations for covariance estimation. Let 𝑋𝑖  and 𝑌𝑖  be a photon count at the 𝑖 th 

observation (𝑖 = 1, 2, … , 𝐼) in detectors 1 and 2, respectively. The estimators for the particle number and brightness 

in TD–N&B are respectively as follows (6):  

 

𝜈̂ =
𝑋̅𝑌̅

𝐶̅
, (S19) 

𝜀̂ =
(𝑋̅ + 𝑌̅)𝐶̅

𝑋̅𝑌̅
. (S20) 

 

where 𝑋̅ and 𝑌̅ are the sample average of 𝑋𝑖 and 𝑌𝑖, respectively, and 𝐶̅ is sample covariance. 𝑋̅, 𝑌̅, and 𝐶̅ are 

given as follows:  

 

𝑋̅ =
1

𝐼
∑ 𝑋𝑖

𝐼

𝑖=1

, (S21) 

𝑌̅ =
1

𝐼
∑ 𝑌𝑖

𝐼

𝑖=1

, (S22) 

𝐶̅ =
1

𝐼
∑(𝑋𝑖 − 𝑋̅)(𝑌𝑖 − 𝑌̅)

𝐼

𝑖=1

. (S23) 

 

The expected values of the sample average and covariance are given from the probability-generating function (Eq. 

S1) as follows:  

 

𝔼[𝑋̅] = 𝑝𝜈𝜀, (S24) 

𝔼[𝑌̅] = (1 − 𝑝)𝜈𝜀, (S25) 

𝔼[𝐶̅] = 𝑝(1 − 𝑝)𝜈𝜀2. (S26) 

 

If the number of observations is infinite, the estimators for particle number and brightness are equal to the true particle 

number and brightness, respectively; thus, the estimates are positive. However, there is no guarantee that the 

estimators are equal to the true ones if the number of observations is finite. Under finite observations, estimates are 

close to the true values, and deviate from the true value if the number of observations is insufficient. The sample 

covariance could become negative if the number of observations is insufficient. The negative value of the sample 

covariance results in negative values of particle number and brightness.  
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MATERIALS AND METHODS 

Simulation 

Photon count images were numerically simulated using Microsoft Visual Studio Community 2017, version 15.9.10 

(Microsoft, USA). All programs were written in Visual C++. A typical simulation of FCS must simulate the 

trajectories of diffusing particles, but the temporal fluctuation of the fluorescence intensity is independent in number 

and brightness (N&B) analysis; thus, we simulated the temporal fluctuation with independent generation of random 

numbers. We generated the random numbers by using functions implemented in the header “random.” The seeds for 

random numbers were generated by the function “std::random_device” and pseudorandom numbers were generated 

by the function “std::default_random_engine” and the seed. The pseudorandom numbers were transformed into 

distributions representing photon counts by using the functions “std::poisson_distribution” and 

“std::binomial_distribution.” The separation probability on binomial distribution was assumed to be 0.5665 (this 

value is the same as the experimentally estimated value). We did not add any noise and background, to simplify our 

model. The photon counts were simulated with a sampling time of 10 μs. The frame size of the simulated images 

was 18×18, and the pixels excluding the edge were analyzed. As a result, the particle number and brightness with the 

size of 16×16 were obtained. One thousand images were simulated with a fixed particle brightness of 10 kHz and 

different particle numbers (𝜈 = 10, 20, 30, 40, 50, 60, 70, 80, 90, and 100) (Fig. 2). Further, the frame was separated 

into 2×2 grids, and 1000 images were simulated with a fixed particle number of 50 or 100 and different particle 

brightness (𝜀 =  0.025, 0.050, 0.075, 0.100, 0.125, 0.150, 0.175, and 0.200) (Fig. 3). These simulations were 

performed independently on each pixel.  

 

Purification of EGFP 

The EGFP was purified using the His-tag method, which has been described previously (6). 

 

Preparation of EGFP tandem oligomer-transfected HeLa cells 

HeLa cells were maintained at 37 ℃ under a humidified atmosphere of 5% CO2 in a Dulbecco’s Modified Eagle’s 

Medium (DMEM; Sigma-Aldrich, USA) supplemented with 100 µg/mL penicillin G (Sigma-Aldrich, USA) and 100 

µg/mL streptomycin (Sigma-Aldrich, USA). The HeLa cells were seeded into an 8-well chambered coverglass 

(#155411, Thermo Fisher Scientific, USA) and incubated for 24 h. The cells (1.5 × 104 cells) were then transfected 

with 0.02 µg of EGFP-C1 plasmids encoding EGFP monomer, or plasmids encoding flexible linker (FL) linked EGFP 

tandem-oligomers (2–3 mer) (7, 8) using ViaFect (Promega, USA). The pCAGGS plasmid was added as necessary 

to increase the total amount of plasmids to 0.1 µg. The cells were incubated for 24 h. The medium was then renewed, 

and incubation was continued for 24 h. The medium was renewed again before the measurements were performed. 

 

Image acquisition for N&B analysis 

Confocal fluorescence microscopy images were obtained using an LSM 510 META ConfoCor3 system (Carl Zeiss, 

Germany) with a C-Apochromat 40×/1.2W Corr objective (Carl Zeiss, Germany). The EGFP was excited at a 

wavelength of 488 nm. EGFP fluorescence was split into two channels by a half mirror, filtered using a long-pass 

filter (LP505), and detected by two avalanche photodiodes, which has been described previously (6). The pinhole 
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size was 94 µm (1.32 airy unit). The zoom factor was ×6, and the pixel size was 0.146 µm × 0.146 µm. The X- and 

Y-scanning sizes were 256×64 pixels. The pixel dwell time was 6.39 µs, and the scanning was raster scan. Two 

thousand images were sequentially obtained. The laser had an output of 0.30 µW at the objective for 1.0% output 

(see Fig. S1.3 for details). For Fig. 4, the images were obtained with different dilution ratios of EGFP with a laser 

output of 1.0%. For Fig. 5, the images were obtained with different laser outputs (0.2, 0.4, 0.6, 0.8, 1.0, 1.2, 1.4, 1.6, 

1.8, and 2.0%). For Fig. 6, the images of the cells were obtained with a laser output of 0.4%. To minimize the 

background intensity, we selected the cell having a fluorescence intensity greater than 400 kHz on average in the 

cytoplasm. The fluorescence intensity of the non-transfected cell was less than 20 kHz in an area where the 

fluorescence intensity was stationary. Thus, the fraction of the background intensity would be less than 0.05 in 

cytoplasm. On the other hand, the fluorescence intensity in the nucleus was lower than that in the cytoplasm for EGFP 

dimer and trimer. This could be because of the larger molecular size than an EGFP monomer; EGFP dimer and trimer 

are difficult to pass through nuclear pores. The fluorescence intensity in the nucleus was greater than 150 kHz on 

average. Thus, a fraction of the background intensity would be less than 0.13.  

 

Analysis conditions 

For analysis based on method of moments (MoM), we adopted two-detector number and brightness analysis (TD–

N&B), which has been described previously (6). A method based on covariance estimation of photon count sequence 

and correction for dead time are not required. In this study, linear regression, boxcar filtering, and median filtering 

were not implemented, unlike in a previous study (6). 

For maximum likelihood (ML) estimation and empirical Bayes–maximum a posteriori (EB–MAP) estimation, a 

statistical model without correction for dead time was applied to the simulated images. In contrast, a statistical model 

with correction for dead time was applied to the experimentally obtained images. We assumed the same dead time of 

50 ns (performance data, EG&G, Canada) on both detectors (𝛿1 = 𝛿2 = 7.82 × 10−3), and a separation probability 

𝑝̂ of 0.5665. The estimated value and standard error for 𝑝̂ was 0.566565±0.000031. In the calculation of 𝐴0, 𝐴1, 

and 𝐴2, we approximated the summation in Eq. 10 by partial summation from 0 to 5, 1 to 5, and 2 to 5, respectively. 

Although the upper limit of the summation is 𝑊 + 𝑚, the difference only slightly affects our result. This is because 

the difference between the total and partial summations is negligibly small. We plan to calculate the total summation 

in future experiments.  

In the Newton–Raphson method, the initial pairs of 𝜈(0) and 𝜀(0) were determined by choosing the pair giving 

the maximum log-likelihood between candidates. The candidates were chosen arbitrarily within the interval of the 

parameters. The iteration process of the Newton–Raphson method was terminated when the relative error of the 

parameters was less than 1.0 × 10-6 for each parameter. The relative error was estimated as follows for 𝜈(𝑘) and 

𝜈(𝑘+1) : 𝜈(𝑘+1)/𝜈(𝑘) − 1 . The relative error for 𝜀(𝑘)  was similarly estimated. In ML estimation, log-likelihood 

sometimes gives maximum on the boundary of the parameter space. In the iteration process, we considered the 

estimates as boundary estimates, 𝜈̂ of infinity, and 𝜀̂ of 0, when the estimates did not satisfy the above termination 

condition after 100 iterations. To solve the simultaneous linear equations in Eq. 31, we used Boost uBLAS 

(http://www.boost.org/libs/numeric/ublas/) implemented in Boost C++ Libraries, version 1.72.0.  

In the EM algorithm, the choice of the initial pair of 𝜇old and 𝜎old and the termination of the iteration process 
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were the same as those in the Newton–Raphson method. EB–MAP estimation was not performed on the edge of the 

image because the number of surrounding pixels is less than 8. For numerical integration, we used a double 

exponential formula (9) implemented with the transformation exp(𝜋/2 sinh 𝑡). We calculated the double integral as 

iterated integral, and applied the transformation formula to the first and second integrals. The numerical integration 

was iteratively performed by doubling the number of nodes. The iteration was terminated when the relative error of 

the integral was less than 1.0 × 10-6. The EM algorithm requires an iterative calculation of the double integral with 

different 𝜇 and 𝜎. In the first integral with respect to 𝜀, the integration does not depend on 𝜇 and 𝜎. To reduce 

the computational costs, we recorded the integrated value of the first integral, and calculated the second integral 

iteratively using the recorded first integral. For the first integral, we truncated the infinite summation when the 

truncation error was less than 1.0 × 10-6. For the second integral, we fixed the interval of 𝑡 on the second integration 

as -2 to 3 (3.36 × 10−3 < ν < 6.82 × 106), and confirmed that the truncation error is less than 1.0 × 10-6 at the 

endpoints. In this numerical integration, arithmetic computations were performed in a logarithmic scale to avoid 

underflow and overflow. For the analysis in Fig. 2, the typical computation time was 30 ms, 6 s, and 1400 s for MoM, 

ML, and EB–MAP, respectively. 

 

Evaluation of analysis results 

The fluorescence intensity was calculated by dividing the temporal average of the photon count by the sampling time. 

After estimations by MoM, ML, and EB–MAP, the variation of the estimates was shown by a box plot, and the sample 

average and sample standard deviation were estimated within the regions of interest (ROIs). In Fig. 2 and 3, the 

normalized bias for the particle number was estimated by 𝜈̅/𝜈true − 1, where 𝜈̅ is the sample average of the particle 

number and 𝜈true is the true particle number. The normalized bias for particle brightness was similarly estimated. 

Normalized standard deviation was estimated from the sample standard deviation divided by true parameters. In the 

calculation of the sample average and sample standard deviation, infinite values were excluded, but negative values 

and 0 were included. Note that the fraction of the negative values in the particle number and particle brightness 

estimated by MoM is the same because the estimates of MoM satisfy Eq. 18. Further, the weighted least squares 

method was applied with the weight of sample variance (Fig. 4 and 5). One could consider that the negative values 

of particle number and brightness are non-physical and should be excluded when calculating the sample average. 

However, we do not recommend excluding the negative values. Fig. S3.5 shows the influence of negative values on 

the calculation of the normalized bias. Excluding negative values resulted in an overestimation of the normalized 

bias. Thus, we do not recommend excluding the negative values when calculating the sample average. Readers 

interested in why negative values appear may refer to the section above, “Appearance of negative particle number 

and particle brightness in MoM.” 

For experiments with EGFP in solution, an ROI of size 16×16 was placed at the center of a 256×64 image of the 

estimates. For experiments with EGFP monomer, dimer, and trimer in a cell, the position of the ROIs of size 16×16 

was chosen carefully within the nucleus and cytoplasm. Our theory assumed independent and identical distribution 

of the photon count sequence. Cell migration and photobleaching could be the causes of artifacts, owing to 

nonstationary changes in the sequence. We confirmed that the sequences are stationary on each pixel in the ROI. 

Strong distortion of the sequence would be easily identified, but weak distortion would be missed if the sequence is 
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checked only pixel-by-pixel. To avoid missing the weak distortion, we additionally confirmed that the time sequence 

made by averaging the spatial photon counts in the ROIs is stationary. 

 

FCS measurements 

FCS measurements were performed using an LSM 510 META ConfoCor3 system (Carl Zeiss, Germany) with a C-

Apochromat 40×/1.2W Corr objective (Carl Zeiss, Germany). The EGFP was excited at a wavelength of 488 nm. 

EGFP fluorescence was split into two channels by a half mirror and filtered using a long-pass filter (LP505). The 

pinhole size was 66 µm. The measurement duration was 10 s × 20 times. In Fig. S5.3, the measurement duration was 

20 s × 20 times for the lowest and second-lowest laser power. A single-component diffusion model with one triplet 

state was used for curve-fitting: 

 

𝐺(𝜏cor) =
1

𝜈FCS
[1 + 𝑓tri exp (−

𝜏cor

𝜏tri
)] [1 +

𝜏cor

𝜏dif
]

−1

[1 +
𝜏cor

𝜑2𝜏dif
]

−
1
2

+ 1, (S27) 

 

where 𝐺(𝜏cor) is a temporal correlation function, 𝑓tri is a triplet fraction, 𝜏tri denotes the relaxation time of triplet 

state, 𝜈FCS denotes the average number of fluorescent particles in the confocal volume, 𝜏dif is the diffusion time, 

and 𝜑 is a structure parameter representing the ratio of beam waist to the axial radius. After pinhole adjustment, the 

structure parameter was determined using a 10−7 M standard solution of rhodamine 6G, whose diffusion coefficient 

is known, i.e., DR6G = 414 μm2/s (10, 11). The radius of confocal volume was calculated by (4𝜏dif𝐷R6G)0.5 

theoretically. The particle brightness was calculated as a summation of count rate divided by the number of particles 

determined by curve-fitting with a cross correlation function. For Fig. 4, the measurements were performed with 

different dilution ratios of EGFP with a laser output of 1.0%. For Fig. 5, the measurements were performed with 

different laser outputs (0.2, 0.4, 0.6, 0.8, 1.0, 1.2, 1.4, 1.6, 1.8, and 2.0%). For Fig. 6, the measurements on cell were 

performed with a laser output of 0.2%. 
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SUPPLEMENTAL DATA 

Validation of construction for prior distribution with lognormally distributed particle number  

In a single pixel analysis, MoM and ML estimations are conducted at each pixel on an image, and the neighboring 

pixels of the analyzed pixel play no role in this. In contrast, the EB–MAP estimation utilizes the information of the 

surrounding pixels. To verify the EB method, we simulated a lognormally distributed particle number and determined 

the hyperparameter using two models, namely, lognormal prior and lognormal prior with gamma hyperprior. The 

purpose is to choose the appropriate hyperparameters for prediction; hyperparameters representing ambiguous 

prediction are acceptable. Fig. S1.1A and S1.1B show the spatial distribution of the particle number. Fig. S1.1C and 

S1.1D show the estimated hyperparameters and the 𝑄25–𝑄75 interval, respectively, determined by lognormal prior. 

In Fig. S1.1C, the estimates are scattered around the intersection of the true values. In Fig. S1.1D, the estimated 𝑄25–

𝑄75  interval is sometimes shorter than the true one. These results suggest that underprediction 

FIGURE S1.1: Comparison between prior models with lognormally distributed particle number  

One thousand images were simulated with particle number and particle brightness of 10 kHz, and hyperparameters were estimated 

by the EB method with different models. The particle number was lognormally distributed independently (𝜇 = 2, 𝜎 = 1). (A) 

Spatial distribution of particle number. (B) Histogram of the particle number in A. The red curved line is a theoretical line of 

lognormal distribution. The black solid line shows the 25th and 75th percentiles of the distribution. (C, E) Scatter plot of the 

hyperparameters estimated by lognormal prior (C) and lognormal prior with gamma hyperprior (E). The dashed lines are true 

hyperparameters. (D, F) 𝑄25–𝑄75 interval of the lognormal distribution for which the estimated hyperparameters are substituted. 

The symbols show median, the error bars show the 25th and 75th percentiles of the lognormal distribution. The black solid lines 

show the 25th and 75th percentiles of the true distribution.  
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of the 𝑄25 –𝑄75  interval occurs sometimes, which would cause bias. Thus, the lognormal prior model is not 

appropriate for the prediction of particle number. Fig. S1.1E and S1.1F show the estimated hyperparameters and the 

𝑄25–𝑄75 interval, respectively, determined by lognormal prior with gamma hyperprior. Fig. S1.1E shows that the 

estimates for 𝜎 increased, but those for 𝜇 did not change markedly as before. Fig. S1.1F shows that the estimated 

𝑄25–𝑄75 interval is wider than the true one. These results suggest that the prediction is ambiguous and it is difficult 

to miss the prediction, although the estimation of the hyperparameters is not accurate. Thus, the lognormal prior with 

gamma hyperprior can be applied to predict the particle number.  
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Validation of construction for prior distribution with grid-patterned particle number  

In the lognormal prior model, a problem would arise if the distribution of the particle number on the surrounding 

pixels does not follow lognormal distribution. However, we assumed gamma distribution in addition to the lognormal 

distribution. The gamma distribution widens the lognormal distribution by increasing 𝜎̂. The wide prior distribution 

weakly constrains the estimation. It can be applied to predict distributions other than lognormal distribution. We 

simulated 2×2 grid-patterned images of the particle number to confirm that the presence of a sharp change in the 

surrounding pixels does not affect the estimation. The grid-patterned image has two types of area, each of which has 

the same particle number. The pixels have the particle number of 50 in one area, and 100 in the other.  

Fig. S1.2A shows the distribution of the estimated 𝜇̂ and 𝜎̂ for different particle brightness. At a low particle 

brightness, 𝜎̂  was estimated highly. Fig. S1.2B and S1.2C show the 𝑄25 – 𝑄75  interval of the lognormal 

distribution for which 𝜇̂ and 𝜎̂ were substituted. Fig. S1.2B shows the intervals for a particle brightness of 20 kHz. 

FIGURE S1.2: Optimization of hyperparameters by lognormal prior with gamma hyperprior on grid-patterned particle 

number 

Simulation condition is the same as that in Fig. 3. (A) Spatial distribution of estimated hyperparameters with different particle 

brightness [kHz]. (B, C) 𝑄25–𝑄75 interval of the lognormal distribution for which the estimated hyperparameters are substituted. 

The intervals are shown for a particle brightness of 20 kHz (B) and 5 kHz (C). The symbols represent median, and error bars 

represent the 25th and 75th percentiles of the lognormal distribution. All plots belong to the area with the true particle number of 

100. The results on the edge of the area are colored in red, and those inside the area are colored in blue. The black solid lines denote 

the particle number of 100.  
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𝜇̂ inside the grid-patterned area having a particle number of 100 was close to the true value, and 𝜇̂ on the edge of 

the grid-patterned area was smaller than the true value. The smaller 𝜇̂ could have been caused by the adjacent pixels 

having a particle number of 50. The 𝑄25–𝑄75 intervals contain the true value both on the edge and in the inner area, 

and they would be sufficiently wide to predict the particle number. Fig. S1.2C shows the intervals for a particle 

brightness of 5 kHz. The 𝑄25–𝑄75 intervals were wider than those in Fig. S1.2B, and contain the true value. The 

lognormal prior with gamma hyperprior can be applied if the particle number changes sharply between the 

surrounding pixels.  

 

 

 

 

Relation between laser power setting and actual output 

 

 

 

 

 

  

FIGURE S1.3: Dependence of actual laser output on laser power setting 

The solid line is a fitted line obtained by the least square method (see Table S1.1 for details on parameters of the line).  

 

TABLE S1.1: Slope and intercept for the fitted line in Fig. S1.3 

Estimated value and standard error 
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Supplemental data for Fig. 2 

 

 

 

  

 

  

FIGURE S2.1: Broad view of estimated particle number in Fig. 2A and 2B 

The view is adjusted to show the 5th and 95th percentiles of the particle number. The plots are shown similarly in Fig. 2. The 

minimum and maximum values are shown in Table S2.1 and S2.2. (A) Broad view of Fig. 2A. (B) Broad view of Fig. 2B.  

 

TABLE S2.1: Minimum and maximum values of 

estimated particle number in Fig. 2A 

TABLE S2.2: Minimum and maximum values of 

estimated particle number in Fig. 2B 
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FIGURE S2.2: Noise smoothing by median filter 

For noise smoothing, a median filter of size 3×3 was applied to the result of MoM and EB–MAP in Fig. 2. Normalized bias and 

standard deviation are shown for particle numbers (A, C) and particle brightness (B, D). 
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Supplemental data for Fig. 3 

 

 

 

  

FIGURE S3.1: Variation in estimates for different particle brightness 

One thousand images were simulated with a fixed particle number and different particle brightness, and analyzed by MoM (A, D), 

ML (B, E), and EB–MAP (C, F). (A, B, C) Dependence of estimated particle number on true particle brightness [kHz]. The particle 

number is shown for the area having a true particle number of 100. Figures S3.1A and S3.1B are shown in enlarged view (see Fig. 

S3.2 for broad view). (D, E, F) Dependence of estimated particle brightness [kHz] on true particle brightness. All figures are shown 

similarly in Fig. 2.  
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FIGURE S3.2: Broad view of estimated particle number in Fig. S3.1A and S3.1B 

The view is adjusted to show the 5th and 95th percentiles of the particle number. The minimum and maximum values are listed in 

Table S3.1 and S3.2. (A) Broad view of Fig. S3.1A. (B) Broad view of Fig. S3.1B. 

 

TABLE S3.1: Minimum and maximum values of the 

estimated particle number in Fig. S3.1A 

 

TABLE S3.2: Minimum and maximum values of the 

estimated particle number in Fig. S3.1B 
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FIGURE S3.3: Shape of likelihood function 

Typical results obtained by simulation in Fig. 3. Shape of the likelihood function when the ML estimate is (A) not on the boundary 

and (B) on the boundary. The dashed lines show the true value of particle number. The images were simulated with a particle 

brightness of (A) 20 kHz and (B) 5 kHz.  

 

FIGURE S3.4: Normalized Bias of particle brightness 

One thousand images were simulated with a fixed particle number of 100 and different particle brightness, and analyzed by MoM, 

ML, and EB–MAP. The size of the simulated images is 34×34, and the bias was estimated by excluding the edge of the image 

(32×32 pixels).  
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FIGURE S3.5: Influence of negative values on normalized bias 

Normalized bias was estimated by excluding negative values in the results of Fig. 3. (A, B) Normalized bias for true particle number 

of 100 particles (A) and particle brightness (B).   
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Supplemental data for Fig. 4 

 

 

 

  

FIGURE S4.1: Variation in estimates for different concentrations 

Two thousand images were obtained with different concentrations, and analyzed by MoM (A, D), ML (B, E), and EB–MAP (C, F). 

(A, B, C) Dependence of the estimated particle number on fluorescence intensity [kHz]. Figure S4.1A and S4.1B are shown in 

enlarged view (see Fig. S4.2 for broad view). (D, E, F) Dependence of the estimated particle brightness [kHz] on fluorescence 

intensity [kHz]. All figures are shown similarly in Fig. 2.  
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FIGURE S4.2: Broad view of estimated particle number in Fig. S4.1A and S4.1B 

The view is adjusted to show the 5th and 95th percentiles of the particle number. The minimum and maximum values are listed in 

Table S4.1 and S4.2. (A) Broad view of Fig. S4.1A. (B) Broad view of Fig. S4.1B. 

 

TABLE S4.1: Minimum and maximum values of the 

estimated particle number in Fig. S4.1A 

 

TABLE S4.2: Minimum and maximum values of the 

estimated particle number in Fig. S4.1B 
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TABLE S4.3: Slope and intercept for the fitted line in Fig. 

4A 

Estimated value and standard error 

 

TABLE S4.4: Slope and intercept for the fitted line in Fig. 

4B 

Estimated value and standard error 

 

FIGURE S4.3: Variation in estimates without correction for dead time  

The images for analysis are the same as those in Fig. 4 and Fig. S4.1, and were analyzed by ML (A, C) and EB–MAP (B, D) without 

correction for dead time. (A, B) Dependence of the estimated particle number on fluorescence intensity. (C, D) Dependence of the 

estimated particle brightness [kHz] on fluorescence intensity. All figures are shown similarly in Fig. 2.  
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FIGURE S4.4: Estimation by FCS with different concentration 

FCS measurements on EGFP solution with different concentrations. (A) Dependence of the estimated particle number on 

fluorescence intensity. (B) Dependence of the estimated particle brightness [kHz] on fluorescence intensity. In the plot, diamonds: 

results obtained from a single measurement, open squares: averages, and error bars: standard deviations. The solid lines are fitted 

lines obtained by the least squares method (see Table S4.5 for details on parameters of the lines).  

 

TABLE S4.5: Slope and intercept for the fitted line in Fig. S4.4A and S4.4B 

Estimated value and standard error 
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Supplemental data for Fig. 5 

 

 

 

  

FIGURE S5.1: Variation in estimates for different laser powers 

Two thousand images were obtained with different laser powers, and analyzed by MoM (A, D), ML (B, E), and EB–MAP (C, F). 

(A, B, C) Dependence of the estimated particle number on laser power. Figure S5.1A and S5.1B are shown in enlarged view (see 

Fig. S5.2 for broad view). (D, E, F) Dependence of the estimated particle brightness [kHz] on laser power. All figures are shown 

similarly in Fig. 2.  
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FIGURE S5.2: Broad view of estimated particle number in Fig. S5.1A and S5.1B 

The view is adjusted to show the 5th and 95th percentiles of the particle number. The minimum and maximum values are listed in 

Table S5.1 and S5.2. (A) Broad view of Fig. S5.1A. (B) Broad view of Fig. S5.1B. 

 

TABLE S5.1: Minimum and maximum values of the 

estimated particle number in Fig. S5.1A 

 

TABLE S5.2: Minimum and maximum values of the 

estimated particle number in Fig. S5.1B 
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TABLE S5.3: Slope and intercept for the fitted line in Fig. 5B 

Estimated value and standard error 

 

FIGURE S5.3: FCS measurements on EGFP solution with different laser powers 

(A) Dependence of the estimated particle number on laser power. (B) Dependence of the estimated particle brightness [kHz] on 

laser power. In the plot, diamonds: results obtained from a single measurement, open squares: averages, and error bars: standard 

deviations. The solid lines are fitted lines obtained by the least squares method (see Table S5.4 for details on parameters of the lines).  

 

TABLE S5.4: Slope and intercept for the fitted line in Fig. S5.3A and S5.3B 

Estimated value and standard error 
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FIGURE S5.4: Simulations with different numbers of images 

1000 (A), 2000 (B), and 3000 images (C) of size 34×34 were simulated with a fixed particle number of 10 and different particle 

brightness. (A, B, C) Dependence of the estimated particle brightness on true particle brightness. The symbols show the average of 

particle brightness. The dashed lines represent the true value. The solid lines are fitted lines obtained by the weighted least squares 

method (see Table S5.5 for details on parameters of the lines).  

 

TABLE S5.5: Slope and intercept for the fitted line in Fig. S5.4 

Estimated value and standard error 
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Supplemental data for Fig. 6 

Fig. S6.1 and S6.2 show the particle number and particle brightness in the experiments with EGFP tandem-oligomer 

in a living cell. The fluorescence intensity in the nucleus is lower than that in the cytoplasm for the EGFP dimer and 

trimer. This could have been caused by the higher molecular weight of the EGFP dimer and trimer than the monomer. 

The higher molecular weight species would be difficult to pass through nuclear pores. At the boundary between the 

nucleus and cytoplasm, the estimation of the particle number was markedly lower, and that of particle brightness was 

markedly higher than those in the nucleus and cytoplasm; this is remarkable in the EGFP trimer (Fig. S6.2D and 

S6.2F). This occurs due to the non-stationary change in fluorescence intensity by the movement of the nuclear 

membrane within the field of imaging. In actuality, the total measurement time is approximately 8 min to obtain 2000 

images, and the cells migrate during the entire time period. We have previously reported that non-stationary changes 

cause artifacts, underestimation of particle number, and overestimation of particle brightness (6). Thus, we carefully 

placed the ROIs by avoiding the areas on which the pixel values would be biased by the artifact. Performing 

corrections for the non-stationary changes would improve the estimations.  

 

 

 

 

  

FIGURE S6.1: Particle brightness images of EGFP monomer 

Estimated images of particle brightness [kHz]. Fluorescence intensity and particle number are shown in Fig. 6. The pixels below 

the range are colored in blue, and those beyond the range are colored in red. (Please view the digital version of this figure because 

the printed version could appear different.) 
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FIGURE S6.2: Estimated images for EGFP dimer and trimer 

Experiments on EGFP dimer and trimer. Images of fluorescence intensity [kHz] for EGFP dimer (A) and trimer (B). Red squares 

represent the ROIs placed in the nucleus and cytoplasm. Estimated images of particle number for dimer (C) and trimer (D), and that 

of particle brightness [kHz] for dimer (E) and trimer (F). The pixels below the range are colored in blue, and those beyond the range 

are colored in red. (Please view the digital version of this figure because the printed version could appear different.) 
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FIGURE S6.3: Histogram of particle number 

The histogram was created from the particle number for EGFP monomer in the cytoplasm (ROI is shown in Fig. 6A).  

 

FIGURE S6.4: FCS measurements on EGFP tandem oligomers 

(A) Dependence of the particle brightness [kHz] on the number of EGFP units in the nucleus (Nuc) and cytoplasm (Cyto). Dots: 

particle brightness, bar: sample average of particle brightness, and error bar: sample standard deviation of particle brightness. (B) 

Normalized particle brightness with respect to the particle brightness of the monomer in the cytoplasm. Bar: fold change in particle 

brightness (sample average of normalized particle brightness), error bar: sample standard deviation of normalized particle 

brightness.  
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Supplemental data for Fig. 6C–E and Fig. S6.4A 

Verification of linearity in particle brightness of EGFP tandem oligomers 

In experiments with EGFP tandem oligomers, particle brightness is expected to proportionally increase (with 

intercept of 0) for the monomer, dimer, and trimer. Even if a non-fluorescent state of EGFP appears, the particle 

brightness linearly increases (with intercept of any value). In Fig. S6.4A, the average particle brightness seems to 

increase linearly in the cytoplasm for FCS. However, in Fig. 6C–E, the average of the average particle brightnesses 

does not seem to increase linearly in the cytoplasm for MoM, ML, and EB–MAP. One could consider that particle 

brightness of the trimer is positively biased.  

We assume that the particle brightness for the monomer and dimer was estimated accurately, but that for the trimer 

was overestimated. To evaluate the uncertainty, we estimated credible intervals for the difference between actual and 

predicted particle brightness of trimer. The particle brightness is predicted by assuming linearity between particle 

brightness of the monomer and dimer. The aim of this evaluation is not to specify the cause resulting in the non-linear 

change of particle brightness in our experiments, but to provide a method to evaluate the uncertainty of results in 

readers’ experiments. In a strict sense, we cannot specify the cause that resulted in the non-linear change of particle 

brightness because our experiment is conducted on three different oligomeric states. Other combinations of 

assumptions are possible: The particle brightness for the dimer and trimer were estimated accurately, but the particle 

brightness for the monomer was overestimated; the particle brightness for the monomer and trimer were estimated 

accurately, but the particle brightness for the dimer was underestimated. Naturally, the linearity of the particle 

brightness between the monomer, dimer, and trimer is lost if two of the three particle brightness are not estimated 

accurately. The following analyses do not determine whether a scientific assumption is true. In the interpretation of 

the following results, we referred to papers (12, 13). 

 

Statistical Model 

First, we predict the particle brightness of the trimer by assuming linearity between the particle brightness of the 

monomer and dimer. Let 𝑋 be the EGFP subunit number for the monomer, dimer, and trimer (𝑋 = 1, 2, 3) and 𝑌 

be the particle brightness. Note that variables used in this section are different from those used in the main text. We 

assume that particle brightness plotted as dots in Figs. S6.4A and 6C–E follow an independent normal distribution 

with average 𝜇 and standard deviation 𝜎, and we assume that the average of the normal distribution is equal to 

𝑎𝑋 + 𝑏 for the monomer and dimer, where 𝑎 and 𝑏 are the regression coefficient and intercept, respectively. In 

addition, we assume that the prior distribution of 𝑎 and 𝑏 follow a normal distribution, and the prior distribution 

of 𝜎 follows a half-Cauchy distribution. The joint probability distribution is given by  

 

𝑃(𝒀m, 𝜎m, 𝒀d, 𝜎d, 𝑎, 𝑏) = 𝑃(𝒀m|𝑎, 𝑏, 𝜎m)𝑃(𝒀d|𝑎, 𝑏, 𝜎d)𝑃(𝑎, 𝑏, 𝜎m, 𝜎d), (S28) 

 

where  
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𝑃(𝒀m|𝑎, 𝑏, 𝜎m) = ∏ Nor (𝑌m
(𝑖)

|𝑎 + 𝑏, 𝜎m)

𝐼m

𝑖=1

, (S29) 

𝑃(𝒀d|𝑎, 𝑏, 𝜎d) = ∏ Nor (𝑌d
(𝑖)

|2𝑎 + 𝑏, 𝜎d)

𝐼d

𝑖=1

, (S30) 

𝑃(𝑎, 𝑏, 𝜎m, 𝜎d) = Nor(𝑎|𝜇1, 𝜎1)Nor(𝑏|𝜇2, 𝜎2)Cau(𝜎m|𝜑1, 𝜓1)Cau(𝜎d|𝜑2, 𝜓2). (S31) 

 

The subscripts m  and d  represent variables for the monomer and dimer, respectively. The superscript (𝑖) 

represents the ordinal number of observations. For 𝐼m times observation, 𝒀m = (𝑌m
(1)

, 𝑌m
(2)

, … , 𝑌m
(𝐼m)

). Nor and 

Cau are normal and half-Cauchy distribution, respectively:  

 

Nor(𝑌|𝜇, 𝜎) =
1

√2𝜋𝜎2
exp (−

(𝑌 − 𝜇)2

2𝜎2
), (S32) 

Cau(𝜎|𝜑, 𝜓) =
2

𝜋𝜓
[

𝜓2

𝜓2 + (𝜎 − 𝜑)2
]. (S33) 

 

The hyperparameters are fixed as follows: 𝜇1 = 𝜇2 = 0, 𝜎1 = 𝜎2 = 103, 𝜑1 = 𝜑2 = 0, and 𝜓1 = 𝜓2 = 25. We 

believe that prior distributions with the hyperparameters would not be informative. In experiments with EGFP in the 

cells, the plausible values of particle brightness are in the range from 0 to 20 kHz, and a particle brightness of 40 kHz 

has a less likely yield than 20 kHz. For the hyperparameters, the prior distributions for 𝑎 + 𝑏 and 2𝑎 + 𝑏 are given 

by Nor(𝑎 + 𝑏|0, √2 × 103)  and Nor(2𝑎 + 𝑏|0, √5 × 103) , respectively. Nor(𝑎 + 𝑏|0, √2 × 103)  is flat in the 

range from 0 to 100 kHz, while the probability density is 2.82 × 10−4 at 𝑎 + 𝑏 = 0 and 2.81 × 10−4 at 𝑎 + 𝑏 =

100. Nor(2𝑎 + 𝑏|0, √5 × 103) is flat in the range from 0 to 100 kHz. A plausible value of the standard deviation 

for particle brightness is less than 10 kHz. Particle brightness is a universal parameter under the same experimental 

conditions, where the change of particle brightness in different cells is small. Cau(𝜎m|0, 25) and Cau(𝜎d|0, 25) 

are weakly-informative (14–16). The posterior distribution of predicted particle brightness for the trimer is 𝜇t
pred

=

3𝑎 + 𝑏 by the posterior distribution for 𝑎 and 𝑏, where the subscript t represents variables for the trimer. Next, 

we estimate the average particle brightness of the trimer. We assume that the prior distribution of 𝜇t and 𝜎t follow 

normal and half-Cauchy distributions, respectively. The joint probability distribution is given as follows, with 𝒀t =

(𝑌t
(1)

, 𝑌t
(2)

, … , 𝑌t
(𝐼t)

):  

 

𝑃(𝒀t, 𝜇t, 𝜎t) = ∏ [Nor (𝑌t
(𝑖)

|𝜇t, 𝜎t)]

𝐼t

𝑖=1

Nor(𝜇t|𝜇3, 𝜎3)Cau(𝜎t|𝜑3, 𝜓3). (S34) 
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The hyperparameters are fixed similarly as follows: 𝜇3 = 0, 𝜎3 = 103, 𝜑3 = 0, and 𝜓3 = 25. Nor(𝜇t|0, 103) is 

flat in the range from 0 to 100 kHz; the probability density is 3.99 × 10−4 at 𝜇t = 0 and 3.97 × 10−4 at 𝜇t =

100. The difference between the actual and predicted particle brightness of the trimer is given by the posterior 

distribution of 𝜇t and 𝜇t
pred

 as follows:  

 

𝛿𝜇 = 𝜇t − 𝜇t
pred

. (S35) 

 

 

Results 

We evaluated the difference between the actual and predicted particle brightness of the trimer, 𝛿𝜇, using different 

methods: FCS, MoM, ML, and EB–MAP. We used Markov chain Monte Carlo (MCMC) to simulate random numbers 

drawn from the posterior distribution of 𝛿𝜇 . The random numbers are a better approximation of the posterior 

distribution at the convergence to stationary distribution. We assessed the convergence using 𝑛̂eff/(𝑚𝑛) and 𝑅̂ (17), 

where 𝑛̂eff is the effective number of the simulated draws, 𝑚 is the number of multiple simulated sequence, 𝑛 is 

the actual number of the simulated draws in each simulated sequence, and 𝑅̂ is the potential scale reduction factor. 

Fig. S7.1 shows the posterior distribution of 𝛿𝜇, and Table S7.1 shows the posterior mean and percentiles, assessment 

factors for convergence, and the probability for differences less and greater than 0. In Table S7.1, 𝑛̂eff/(𝑚𝑛) for all 

methods ranged from 0.86 to 0.99, indicating minimal autocorrelation between the simulated draws, and 𝑅̂ for all 

methods ranged from 0.9999 to 1.0000, indicating the convergence of the simulated draws. In Fig. S7.1 and Table 

S7.1, FCS results suggest that the actual particle brightness of the trimer is 0.22 kHz higher than the predicted particle 

brightness on average. On the contrary, the 95% credible interval suggests that the difference in the particle brightness 

ranging from −0.58 to 1.02 kHz is compatible with our data, given our assumptions. From the credible interval, we 

infer the following: The difference of −0.58 indicates that the actual particle brightness of the trimer is 0.58 kHz 

lower than the predicted line, the difference of 0 indicates that the actual particle brightness of the trimer is on the 

predicted line, and the difference of 1.02 indicates that the actual particle brightness of the trimer is 1.02 kHz higher 

than the predicted line. In Table S7.1, the posterior probability for 𝛿𝜇 less and greater than 0 are 0.22 and 0.78, 

respectively, indicating that the probability for 𝛿𝜇 greater than 0 is high compared with the probability for less than 

0. In Fig. S7.1 and Table S7.1, MoM, ML, and EB–MAP showed a wider range of 95% credible interval, and the 

posterior mean was higher than FCS. The posterior probability for 𝛿𝜇 > 0 increased to 0.95, 0.92, and 0.92 for MoM, 

ML, and EB–MAP, respectively. To show how suitable our statistical model for characterizing observed samples are, 

we calculated the posterior predictive p-value (17) (Chapter 6, Model checking, p. 141), using sample mean and 

standard deviation as test quantities. In Table S7.2, the posterior predictive p-value of the sample average for all 

methods ranged from 0.49 to 0.50, indicating the sample averages are similar for replicated and observed samples. 

In Table S7.3, the posterior predictive p-value of sample standard deviations ranged from 0.61 to 0.64, indicating the 

sample standard deviations of replicated samples are occasionally higher than that of the observed samples.  
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FIGURE S7.1: Uncertainty in linearity of particle brightness for EGFP trimer 

Posterior distribution for the difference between actual and predicted particle brightness [kHz] of the trimer in the cytoplasm. The 

light blue shaded area represents 95% credible interval (interval between 2.5th and 97.5th percentiles), red histogram the posterior 

probability density, and solid blue line the posterior mean.  

 

TABLE S7.1: Summary of posterior distribution in Fig. S7.1 
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TABLE S7.2: Summary of posterior predictive p-values estimated by sample mean for Fig. S7.1 

 

TABLE S7.3: Summary of posterior predictive p-values estimated by sample standard deviation for Fig. S7.1 
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Discussions and Comments 

We predicted the particle brightness of the EGFP trimer by assuming a linearity between the particle brightness of 

the monomer and dimer. The 95% credible intervals in Fig. S7.1 indicate a wide range of uncertainty; thus, we cannot 

make strong implications, such as whether the actual particle brightness of the trimer is higher than the predicted line 

or whether the actual particle brightness is on the predicted line, for all methods. We need to increase the sample sizes 

to distinguish whether the actual particle brightness is on the predicted line. The 95% credible interval in FCS has an 

important sense practically; the difference of −0.58 and 1.02 kHz between the actual and predicted particle brightness 

is not negligible, compared with the sample average of 1.78 kHz for the particle brightness of the trimer (Fig. S6.4A). 

The uncertainty of the difference between the particle brightnesses are also not negligible for MoM, ML, and EB–

MAP. According to statistical hypothesis testing with a significance level of 0.05, if the 95% credible interval does 

not contain a difference of 0 between the actual and predicted particle brightness, it is possible to mechanically make 

the decision that the actual and predicted particle brightness is significantly different. Note that we obtained these 

results using small sample sizes and our assumptions, and we should not place too much confidence on the exact 

numerical values of these results. This is because our statistical model is not perfectly true. Although we constructed 

our statistical model using normal and half-Cauchy distributions, we have no evidence that the model is true. However, 

we can show the suitableness of our statistical model for characterizing observed samples through the posterior 

predictive p-value. If the statistical model is suitable to characterize the observed samples, replicated samples 

produced by posterior predictive distribution and observed samples would be similar. The results in Table S7.2 

suggest that our statistical model is suitable to estimate the mean, but the results in Table S7.3 suggest that our 

statistical model tends to overestimate the standard deviation. However, we believe that the use of our statistical 

model for the observed samples do not cause serious problems. The posterior predictive p-value of approximately 

0.6 indicates overestimated standard deviation in 60% of replicated samples among the multiple sets of replicated 

samples. We believe that the deviation between 0.5 and 0.6 is not significantly large.  

 

Methods 

Markov chain Monte Carlo (MCMC) 

Posterior draws were simulated using R, version 4.0.3 (18), and Stan, version 2.21.2 (19). Five sequences of draws 

are simulated in parallel to assess convergence of the simulated draws. The total number of simulated draws for 

each sequence is 305,000. The first 5,000 draws were discarded, and the remainder of the sequence was thinned by 

keeping every 30th draw, resulting in 10,000 draws for each sequence.  
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Supplemental data for Fig. 6F and Fig. S6.4B 

Credible interval of fold change in particle brightness 

In experiments with EGFP tandem oligomers, Fig. 6F shows the normalized particle brightness, where the average 

of normalized particle brightness is the fold change. We estimated the credible interval of the fold change for FCS, 

MoM, ML, and EB–MAP. The credible interval is useful to compare results obtained by different methods and 

verify the compatibility of the results. Using the same notation from the previous section, we assume that the joint 

probability distributions are given by  

 

𝑃(𝒀m, 𝜇m, 𝜎m) = ∏ [Nor (𝑌m
(𝑖)

|𝜇m, 𝜎m)]

𝐼m

𝑖=1

Nor(𝜇m|𝜇4, 𝜎4)Cau(𝜎m|𝜑4, 𝜓4), (S36) 

𝑃(𝒀d, 𝜇d, 𝜎d) = ∏ [Nor (𝑌d
(𝑖)

|𝜇d, 𝜎d)]

𝐼d

𝑖=1

Nor(𝜇d|𝜇5, 𝜎5)Cau(𝜎d|𝜑5, 𝜓5), (S37) 

𝑃(𝒀t, 𝜇t, 𝜎t) = ∏ [Nor (𝑌t
(𝑖)

|𝜇t, 𝜎t)]

𝐼t

𝑖=1

Nor(𝜇t|𝜇6, 𝜎6)Cau(𝜎t|𝜑6, 𝜓6). (S38) 

 

We fixed the hyperparameters as follows: 𝜇4 = 𝜇5 = 𝜇6 = 0, 𝜎4 = 𝜎5 = 𝜎6 = 103, 𝜑4 = 𝜑5 = 𝜑6 = 0, and 

𝜓4 = 𝜓5 = 𝜓6 = 25. The fold changes in the particle brightness for the EGFP dimer and trimer are given as 

follows using the posterior distributions of 𝜇m, 𝜇d, and 𝜇t:  

 

𝑟d =
𝜇d

𝜇m
, (S39) 

𝑟t =
𝜇t

𝜇m
. (S40) 

 

 

Results 

Fig. S8.1 shows the posterior distributions of 𝑟d and 𝑟t for FCS, MoM, ML (+), and EB–MAP (+). We used 

MCMC to simulate the draws from the posterior distribution in the same way as the previous section. Table S8.1 

summarizes the posterior mean, posterior percentiles, and the assessment factors for convergence. 𝑛̂eff/(𝑚𝑛) for 

all methods ranged from 0.94 to 1.00, indicating minimal autocorrelation between the simulated draws, and 𝑅̂ for 

all methods ranged from 1.0000 to 1.0001, indicating the convergence of the simulated draws. In Fig. S8.1 and 

Table S8.1, FCS result for the dimer shows that the 95% credible interval ranged from 0.98—indicating that the 

particle brightness of the dimer is equal to that of the monomer—to 2.12—indicating that the particle brightness of 

the dimer is approximately two times higher than that of the monomer. The 95% credible intervals of the fold 

change for the dimer in each method are within the range of 0.6 to 2.2 and overlapped each other, indicating that 
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the results are compatible with each other. Similarly, the 95% credible intervals of the fold change for the trimer are 

compatible with each other. Tables S8.2 and S8.3 summarize the posterior predictive p-value calculated by the 

sample mean and standard deviation, respectively. In Table S8.2, the posterior predictive p-value of the sample 

averages for all methods ranged from 0.49 to 0.50, indicating that they were similar between replicated and 

observed samples. In Table S8.3, the posterior predictive p-value of sample standard deviations ranged from 0.62 to 

0.65, indicating the sample standard deviations of the replicated samples are occasionally higher than that of the 

observed samples.  

 

 

 

 

Discussions and Comments 

In Fig. S8.1, the 95% credible intervals for FCS, MoM, ML (+), and EB–MAP (+) showed a wide range of 

uncertainty that was non-negligible. In Fig. 6F, particle brightness is divided by the sample average of particle 

brightness for monomer, which is the normalized particle brightness, and thus, the uncertainty in the population 

average of the particle brightness for the monomer is neglected. The credible interval is more useful than the 

standard deviation of the normalized particle brightness to estimate uncertainty. However, while useful to translate 

the uncertainty into numerical values, credible intervals must be interpreted with care. This is because the statistical 

FIGURE S8.1: Uncertainty in fold change of particle brightness for EGFP dimer and trimer with respect to monomer 

Posterior distribution for fold change in particle brightness in cytoplasm. The light blue shaded area represents 95% credible interval: 

interval between 2.5th and 97.5th percentiles, red histogram: posterior probability density, and blue solid line: posterior mean.  
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model is not true, similar to the previous section. Tables S8.2 and S8.3 summarize the similarity between the 

observed and replicated samples. The statistical model introduced in this section is not the only model to estimate 

uncertainty, and other models can be used.  

 

 

 

 

 

 

 

 

TABLE S8.1: Summary of posterior distribution in Fig. S8.1 

 

TABLE S8.2: Summary of posterior predictive p-values estimated by sample mean for Fig. S8.1 
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TABLE S8.3: Summary of posterior predictive p-values estimated by sample standard deviation for Fig. S8.1 
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