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Abstract

In this thesis, we study two problems by using physical models with super-
symmetry and their path integral. Since this thesis deals with these topics from
a common perspective, but in different ways, we have divided this thesis into two
parts. One is deriving fixed-point theorem using path integral [25]. The other
is the Euler number and Mathai-Quillen formalism in the Grassmann manifold
[20]. This thesis is based on [20], [25] and [28].

In the part I, we derive the Bott residue formula by using the topological
sigma model (A-model) that describes dynamics of maps from CP! to a Kihler
manifold M, with potential terms induced from a holomorphic vector field K
on M [25]. The Bott residue formula represents the intersection number of
Chern classes of holomorphic vector bundles on M as the sum of contributions
from fixed point sets of K on M. Our strategy is to represent the integral of
differential form on M by a correlation function and show that the correlation
function is obtained by collecting contributions from the zero set of K. It is
realized by showing the invariance of correlation function for the parameter of
potential terms. As an effect of adding a potential term to the topological sigma
model, we are forced to modify the BRST symmetry of the original topological
sigma model.

In the part II, we provide a recipe for computing Euler number of Grassmann
manifold G(k, N) by using Mathai-Quillen formalism [33] and Atiyah-Jeffrey con-
struction [3]. Especially, we construct the path integral representation of Euler
number of G(k, N) [20]. As a by-product, we construct free fermion realization of
cohomology ring of G(k, N). It means that the cohomology ring of G(k, N) can
be represented by fermionic fields that appear in our model. As an application,
we calculate some integrals of cohomology classes by using fermion integrals [28].
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About this thesis

In physics, the systematic transition procedure from classical understanding of phe-
nomena to quantum mechanics is called quantization. It can be done in two major
ways. One is the method using operators, and the other is using path integrals by
Feynman. We focus on path integrals in this thesis. A path integral is given by the
sum of contributions from all possible configurations of the fields can be taken in the
physical model we are considering. In many situations, it can be computed by a Gaus-
sian integral. However, the measure of the path integral needs to be discussed for
each model. In this thesis, we focus the physical models and supersymmetry. Phys-
ical models are given by the Lagrangian. In physical models, there are two types of
fields (variables) called bosonic fields and fermionic fields. Bosonic fields are like usual
functions or variables. Fermionic fields have anticommutative property. Supersym-
metric transformation is a transformation that exchanges bosonic fields and fermionic
fields in the Lagrangian. If the Lagrangian is invariant under supersymmetric trans-
formations, the model is called having supersymmetry. In a physical model having
supersymmetry, the principle of localization is used. It claims that path integrals can
be evaluated by the sum of contributions from field configurations satisfying the con-
ditions that supersymmetric transformations of fermionic fields are zero [26]. By this
principle, the measure of path integrals may become a few simple. In this thesis, we
study supersymmetric transformations and physical models.

We explain why we consider the connection between geometric quantities and phys-
ical models having supersymmetry. A sigma model is one of the well-known physical
models that describes dynamics of maps from a space to a target space. The sigma
model having supersymmetry is called a supersymmetric sigma model. Various topo-
logical indices of a Riemann manifold M, such as Euler number, Hirzebruch signature,
Atiyah-Singer index etc., are computed by using a path integral of the supersymmetric
sigma model with target space M [36, 2, 13]. The characteristic of a sigma model
is that observables that is constructed by fields in the model correspond to differen-
tial forms on M. And the supersymmetry (or more precisely, its charge) corresponds
to the exterior derivative on M[18]. And the path integral of the observable mul-
tiplied exp(—Lagrangian) is called the correlation function. Then, we expect that
when we consider observables that vanish under supersymmetry, it becomes an ele-
ment of De Rham cohomology of M, and its correlation function represents the inter-
section number. It is implemented by the topological sigma model (A-model). The
A-model describes dynamics of maps from Riemann surface 3 to a Kahler manifold
M. Please refer [23]. It is given by the N = (2,2) supersymmetric sigma model af-
ter operating A-twist on the fields of the model. Supersymmetric transformation of
the N = (2,2) supersymmetric sigma model has four fermionic infinitesimal defor-
mation parameters a.,a_,a,,&_. The supersymmetry of the A-model is obtained
from setting a_ = a, = a, ay = a_ = 0 after operating A-twist on the fields. And
the supersymmetry of the A-model is called BRST-symmetry. The BRST-symmetry
is nilpotent. If the observable transformed by the BRST-symmetry is zero, it called



the BRST-closed observable. Since the BRST-symmetry and BRST-closed observables
correspond to the exterior derivative and elements of the De Rham cohomology (dif-
ferential form) on M, we consider BRST-closed observables. In general, correlation
functions for the A-model are decomposed into the degree of map. Then, the path in-
tegral becomes the integral on the moduli space of the holomorphic map of the degree
d from X to M. Especially, when we consider the A-model for a map from CP! to M,
the correlation function of degree 0 represents the integral of the cohomology class on
M.

We explain the first half of this thesis. In [38], Witten considered the supersym-
metric sigma model with various potential terms. Especially, he suggested that the
fixed-point formula for signature of even-dimensional M can be obtained by using this
model with a potential term induced from a Killing vector field on M. On the other
hand, various fixed-point formulas, such as Duistermaat-Heckman formula etc., have
been derived by using this kind of potential terms [1, 2, 35]. In the first half of this
thesis, we focus the Bott residue formula. It is one of the well-known fixed-point the-
orems. It represents the intersection number of Chern classes of holomorphic vector
bundles on M as the sum of contributions from fixed point sets of a holomorphic vector
field K on a Kéhler manifold M. The topic of the first-half of this thesis is deriving the
Bott residue formula by using the topological sigma model (A-model) with potential
terms induced from K and the path integral [25]. Here, we use a map from CP! to M.
In order to extend the BRST-symmetry to the A-model with the potential terms, we
have to modify the BRST-transformation of the usual topological sigma model. Our
BRST symmetry is obtained from setting a, = @, a_ = a, = a_ = 0 after operating
A-twist on the fields. Hence our BRST symmetry uses half of the supersymmetry used
in constructing the usual BRST symmetry of the A-model. But our BRST symme-
try still has nilpotency, which will be shown later by explicit computations. The new
BRST symmetry is still conserved in the original Lagrangian of the A-model, and it
can be extended to the A-model with the potential term. Since we modify the BRST-
symmetry of the A-model to extend the A-model with potential terms, BRST-closed
observables correspond to Dolbeault cohomology of M instead of De Rham cohomol-
ogy of M. But Chern classes of holomorphic vector bundles on M are given by (i,1%)
forms of M, and they are automatically Dolbeault cohomology classes of M. Therefore,
change of BRST-symmetry causes no problem for our purpose. When potential terms
in our model are parameterized, correlation functions are independent of the parame-
ter. From this property, we have derived the Bott residue formula by computing the
correlation function of degree 0 in our model. More precisely, when the contribution
from potential terms is very small, since the Lagrangian becomes original Lagrangian
of the A-model, as mentioned above, the correlation function of degree 0 represent the
integral on the M. On the contrary, when the contribution from potential terms is a
large, the path integral is localized at the zero set of K. Potential terms similar to our
model have already proposed by Labastida and Llatas in [31]. They construct a super-
symmetric sigma model and derived Poincaré-Hopf theorem. However, we note that
their supersymmetry is not BRST-symmetry and their result is different from our aim.



Recently, Beasley and Witten considered supersymmetry closely related to our new
BRST-transformation for (0, 2) liner sigma models with a potential term induced from
holomorphic section of a holomorphic vector bundle [4]. Our new BRST-symmetry
seems to be closely related to their idea applied to the case when the holomorphic
vector bundle is given by the holomorphic tangent vector bundle 7"M. Of course, they
derive a kind of fixed-point formula, but their result is different from our goal of first
half in this thesis: “deriving the Bott-residue formula by using the topological sigma
model (A-model) with the potential term induced from a holomorphic tangent vector
field”. Our model can be used not only for the map of degree 0 but also for higher
degrees. For example, let 3 and M be a CP! and CP* (4-dimensional complex projec-
tive space) [22]. Let z(l = 1,--- ,n) be different points each other. Then, the degree
d correlation function of its A-model is interpreted by

N
/ A evi(h)
ﬂcpl(CP4’d) =1

Mepi (CP?,d) is a compactified moduli space holomorphic map of degree d from CP*
to CP*. h is the first Chern class of hyperplane bundle of CP*. A% is an element of
HY%%(CP*, C). ev} is a pull back of an evaluation map ev; : Mcpi (CP*, d) — CP*(l =
1,---,n). It is defined by ev;(¢) = ¢(z) for ¢ € Mcp1(CP* d) and z € CPL. If we
take CP?™* as Mcp1(CP?*, d) (see [22] for details), evy (k%) € Hbb(CP%+4 C). Then,

N N
/ /\ev}"(hbl) = / /\ R
M p1(CP4,d) cpodta ;|

=1

where /1 is the first Chern class of hyperplane bundle of CP***. When 3", b; = 5d-+4,
its result is 1. It is computed by the Bott residue formula on CP?***. On the other
hand, the holomorphic vector field in our model is an element of the holomorphic
tangent vector bundle on M. So, the question arises as how to compute the integral
over Mcpi(M,d). In other words, how should we treat the contribution from each
field on a zero set of K7 Since we can use our model for a map from ¥ to M, we may
be able to calculate correlation functions for all A-model by solving these problems.
The second half of this thesis is the topic of the representation of the Euler number
for complex Grassmann manifold via Mathai-Quillen formalism (MQ-formalism). This
topic is based on [20, 28]. We construct the physical toy-model which path integral
representing the Euler number for Grassmann manifold. Toy-models mean that its
path integral for each variable is the usual integral. So, integrals for bosonic fields and
fermionic fields become Gaussian integrals and integrals for fermionic fields. There-
fore, we do not discuss integral measures in this part. The Euler class of E is given
by pull-back of the Thom class by the section s : M — FE. It does not depend on
choice of the section of s as a cohomology class because of homotopy invariance of
De Rham cohomology. Therefore, we can compute the Euler number of £ by choos-
ing a convenient section. Mathai-Quillen formalism [33] is a method for constructing
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Thom class of finite dimensional vector bundle E on a manifold M, that decreases like
Gaussian along fiber direction. This Thom class plays the same role as the original
Thom class which has compact support along fiber direction. Suppose M is given as
an orbit space X/G where a Lie group G acts freely on a manifold X. Atiyah and
Jefferey extended the MQ-formalism for an orbit space X/G [3]. We call this method
“Atiyah-Jeffrey construction”. They extended it to the case when X/G is given by
infinite-dimensional space of gauge equivalence classes of connections of SU(2) bundle
on a 4-dimensional manifold, in order to study mechanism behind Witten’s construc-
tion of topological Yang-Mills theory [3, 39]. The motivation in the second half is “On
finite dimension manifold, can its Euler number really be given by Atiyah-Jeffrey con-
struction?”. Imanishi and Jinzenji chose zero-section as s and construct the toy-model
by applying Atiyah Jeffrey construction to the case when X /G is complex Grassmann
manifold G(2, N) and E is holomorphic tangent bundle of G(2, N). Then, they com-
pute the Euler number of G(2, N) by using their model [19]. We have extended their
model to the general G(k, N) and obtained the representation of Euler number in [20].
As a by-product, we construct free fermion realization of cohomology ring of G(k, N).
It means that Chern classes of the dual bundle of the tautological bundle on G(k, N)
are represented by fermionic variables. In general, these Chern classes correspond to
the Poincaré dual of Schubert cycles [17]. Therefore, an integral of Chern classes over
G(k, N) is known as an intersection number of Schubert cycles. From free fermion real-
ization of cohomology ring of G(k, N), we found that an integral of Chern classes over
G(k, N) can be computed using a fermion integral. In the second half, we calculate
some intersection numbers using this result [28].

To summarize, this thesis is based on [25], [20] and [28]. In particular, a common
topic in paper [25] and [20] is the use of physical models and path integrals to reproduce
geometric objects. However, these researches are not directly related, this thesis is
divided into two parts. In the first half (the topic of [25]), we derive the Bott residue
formula by using the A-model with potential terms induced from a holomorphic vector
field. In the second half (topics of [20] and [28]), we provide a recipe for computing
Euler number of Grassmann manifold G(k, N) by using Mathai-Quillen formalism [33]
and Atiyah-Jeffrey construction [3] and calculate some intersection numbers of Schubert
cycles. Our research is characterized by the use a supersymmetry and physical model
to prove geometric objects and quantities. One of the aims of the research are to review
these quantities from a physical aspect, to obtain new computational methods and to
enable intuitive understanding.
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Part 1

Holomorphic Vector Field and
Topological Sigma Model on CP!
World Sheet

This part is an edited and reprinted version of the contents of [25], with the exception of
Subsections 3.1 and 3.2. Subsection 3.1 and Subsection 3.2 are reviews of the A-model
[22, 23].

1 Main result and organization of Part I

1.1 Main result of Part I

The purpose of this part is to provide a derivation of the Bott residue formula by
using the topological sigma model (A-model) with potential terms induced from a
holomorphic tangent vector field. First, we introduce assertion of the Bott residue
formula [8].

The Bott Residue Formula

/Mf(E )= za: /N det(ggi/\:izag)

Here, M is a compact Kéahler manifold with dimc(M) = m. Let E be a holomorphic
vector bundle over M with rankcE = g and ¢(F) is a wedge product of Chern classes
of E. Tt is represented by symmetric homogeneous polynomial (a1, -+ ,x4) of degree
m. Let K be a holomorphic tangent vector field on M and {N,} be a set of connected
components of the zero set of K. ¢(A,) is a cohomology class of N,. 0% is the
automorphism induced by action of K on the normal bundle of N,. RY is the curvature
(1,1)-form of the normal bundle of N,. The details are descrived in Subsection 2.1.

Next, we introduce the topological sigma model (A-model). We use the topological
sigma model (A-model) from CP! to the Kédhler manifold M with potential terms
induced from the holomorphic tangent vector field K = K° 821-. Fields that appear in
the model is given as follows.

__ 4
=9z

™

e ¢ ¢ : bosonic fields given as C®-map from CP! to M
e \': fermionic fields that takes values in C*° section of ¢~1T"M

e y: fermionic fields that takes values in C* section of ¢~ T7M



e 1i: fermionic fields that takes values in C™ section of T*CP' @ ¢~ 'T"M
e ¢i: fermionic fields that takes values in C*° section of T*CP! @ ¢~ T"M

Let g;; be Kahler metric of M and Rz be its curvature tensor. Then, we introduce
the Lagrangian of our model. Let us define L and V' as follows.

t ' j i j : j i . i j
L= [ daz[505(0.60:0 + 0:0/0.07) + ViiggiDox’ + ViigguiDo
— R, (1.1)
V.= / dzdz [ts2,6’gi3Kil_(3 + tsgﬁvpf_(jxﬁxi + sﬁgﬁvuK"@Dg‘@]. (1.2)
CP!

L is the original Lagrangian of the A-model [23] and V is the potential terms induced
from K. t is a parameter called the coupling constant (t € R>g). s € R, 5 € C is
parameters for V. The Lagrangian of our model is

L+V = / dzdé[égﬁ((?qu’@ggbj + 0:¢'0.¢7) + Vtigizwl Dax' + Vitigi i DX
cp!
— R I + ts* By K K? + tsg VKo X" X' + 8895V K WE¢L]. (1.3)

A detailed explanation is given in Section 3 and 4. For simplicity, also only L is referred
to as the Lagrangian. From now on, we set 8 := 2mi. Covariant derivatives are given

by
D:x' = 0:x" +10,0:0" X", (1.4)
D.x' = 0.x' +T,0.0"\". (1.5)

Our BRST-transformation for this model is given as follows. (& is a fermionic variable.)

5§ = iax, Syl = —ial%, "7,
b= —Viade', oY =isapK’, 6¢' =ox' =0 (16)

The above potential terms and BRST-symmetry are closely related to the supersym-
metry used in [4]. In this part, we prove the following proposition that play important
roles in our derivation.

Proposition 1. Correlation functions of BRST-closed observables are invariant under
variation of s.

Please see Subection 4.1 for details. Explanations for correlation functions and
BRST-closed observables are given in Section 3. Then we can derive the Bott residue
formula by evaluating correlation function of degree zero map both in the limit s — 0
and s — oo.

10



1.2 Organization of Part I

This part is organized as follows.

In Section 2, we introduce the Bott residue formula and notations used in this
part. And to demonstrate usage of the Bott resideuformula, we compute the integral
of Chern classes of a hyperplane bundle on CP™.

In Section 3, we introduce our topological sigma model. In Subsection 3.1 and
3.2, we review outline of the topological sigma model (A-model) and observables for
A-model. Discussions in these subsection is besed on [22], [23] and [27]. Then, we
introduce our BRST-symmetry that uses half of the supersymmetry in Subsection 3.3.
We show that our new BRST-symmetry conserves the Lagrangian of the topological
sigma model without potential terms. Under the new BRST-symmetry, BRST-closed
observables become elements of Dolbeault cohomology of the target Kéhler manifold.
Next, we include potential terms induced from a holomorphic tangent vector field and
extend the new BRST-symmetry to this case. Then BRST-closed observables become
elements of equivariant Dolbeault cohomology under the action of the holomorphic
vector field. Mathematical relationship between the Bott residue formula [7] and this
cohomology is discussed in [10, 32].

Section 4 is the main section of this part. We evaluate the degree 0 (i.e., homotopic
to constant maps) correlation function of our model. It corresponds to the correlation
function represented by the Bott residue formula. Proposition 1 claims that the corre-
lation function is invariant under change of the parameter s. Hence, we can compare
the results evaluated under the s — 0 limit and the s — oo limit.

In the s — 0 limit, the degree 0 correlation function turns into the classical integra-
tion on M of differential forms that represent Chen classes by the standard argument
of weak coupling limit of the topological sigma model. In the s — oo limit, evaluation
of the degree 0 correlation function reduces to the evaluation of contributions of from
connected components of the zero set of the holomorphic tangent vector field K. This
follows from the localization principle. The localization principle insists that path in-
tegrals of a model having supersymmetry can be evaluated by the sum of contributions
from field configurations satisfying the conditions that supersymmetric transformations
of fermionic fields are zero. We perform standard localization computation. The re-
sult of evaluation from each connected component turns out to be the contribution in
the Bott residue formula from the same connected component. By equating these two
results, we obtain the desired Bott residue formula.

In appendix, we prove Proposition 1.

2 Introducton to the Bott residue formula

2.1 Notation and The Bott Residue Formula

We introduce here our basic notations. Let us denote a compact Kahler manifold by
M (dimc(M) = m) and a holomorphic tangent vector field on M by K. Let E be a

11



holomorphic vector bundle on M with rankc(E) = ¢ and I'(E) be set of C* sections
of E.

First, we note the basic facts of £ and introduce an action of K on E used in
[8]. The holomorphic vector bundle E has a canonical connection compatible with
Hermitian metric. ( For more details of holomorphic vector bundles, please see [29].)
Let V be the canonical connection on E and Q7" (E) be complex vector space of E-
valued (p,r)-forms. We also introduce the exterior holomorphic covariant derivative
D' : QP (E) — QP (E). Then the canonical connection is decomposed into V =
D’ 4 0 where 0 is the anti-holomorphic part of the exterior derivative operator d of M.
Let {e, | a=1,---,q} be local holomorphic frame of E. Then the following relation
holds.

Je, = 0,
Ve, = D'e, = 0%, d7e,, (2.7)
where (z',---,2™) is a local coordinate of M and ©},d2" is the connection (1, 0)-form

of E. Curvature (1, 1)-form F = (F}), F? = F?,;dz" AdZl, is given by F? = 0(0%, dz*) =
—0,(0°,)dz* A dz!. Here, we define A : ['(E) — I'(E) as a differential operator which
acts on fs (f : C* a function on M, s € I'(F)) in the following way,

A(fs)=(Kf) s+ fA(s), OA = AO. (2.8)

This A defines the action of K on E. In the case when E is the holomorphic tangent
bundle T"M, A is explicitly given by holomorphic Lie derivative of the holomorphic
tangent vector field Y by K:

O(K):Y — [K,Y]. (2.9)

Then, we can check that 6(K) satisfies the condition (2.8) by using local coordinate on
M.

0
K)(fY)=|K, fY Y7 Y? .
O)(IY) = (K, 1Y) = K (v ) py azj< )
af ; 8 8 j 0
= K55 (Y a])+fK(9 FY o) — fY ( o)
of
= K K\ Y
o Ly ik y)
= (Kf)Y + fIK,Y]. (2.10)
Second, we introduce notations for characteristic classes of E. Let o(xy,- -, x,)
be a symmetric homogeneous polynomial in xy,---,x, with complex coefficients of

homogeneous degree m = dim¢(M). We define p(A) where A is an endomorphism
A:V — V. (V: a complex g-dimensional vector space ). Let A\; (I = 1,---q) be
eigenvalues of A. Then it is defined by

P(A) i= (A1, -, Ag)- (2.11)

12



We then regard zi,-- -, x, as Chern roots of E defined by

ﬁ(l +tx;) =1+ te)(B) + t2co(E) + -+ + tic (E). (2.12)

i=1

With this set-up, a characteristic class p(F) is defined as follows.

O(E) = (w1, 2). (2.13)

Let {N,} be the set of connected components of the zero set of K. We assume that
each N, is a compact Kéhler submanifold of M. In the following, we define ¢(A,),
which is given as a cohomology class of N,. Let A, be A|y,, i.e., restriction of A
to N,. By the first condition in (2.8), A, becomes an endmorphism of E, = E|y,.
We say that A is constant type if eigenvalues of A, are constant on each connected
component N, . In this part, we assume that A is constant type. Then we introduce the
following notations. Let {A$ | i = 1,--- ,r} be distinct eigenvalues of A, (r < ¢) and
m¢ be multiplicity of A& (D°7_, m® = ¢). We denote the largest sub-bundle of E, on

which (Aq — A) is nilpotent by E,(A\}) (rankc(Fo(A))) = m$). Then, E, canonically
decomposes into a direct sum, F, = & EL(A). Let ¢;(E4(AY)) be the i-th Chern class
i=1

of E,(A}) and z;(A$) (j=1,---,mf) be Chern roots of E,(\{") defined by

7

—:

(1 +tz;(A) == 1+ ter(Ea(A)) + Pea(Ba(AY)) + -+ - + tley (B (M), (2.14)

<.
Il

With these set-up’s, the cohomology class ¢(A,) is defined by

f(Aa) = 90<>‘?+x1()‘?)7"' ?)‘? +$m‘f()‘(1l)>)‘g +x1()‘g)?"' ,)\§”+xmg()\§‘),
AT T (AY), AT e (AY)). (2.15)

This is the original definition of ¢(A,) used in [8]. Let F, be curvature (1, 1)-form

(valued in End(E|y,)) of E|n,. If we regard A, + 5= F, as End(E|y,) valued form on
Na, ¢(Ay) is rewritten by using (2.11) as follows.

(M) = 9(Aa + =

= 2

F,). (2.16)
With these set-up’s, we introduce the Bott residue formula. We assume that the

endomorphism 6|y, induced by the action of K on the holomorphic tangent bundle
T'M |y, has precisely T'N,, for its kernel; i.e., the sequence

0= T'Ny — T'M|x, 2225 T/ M|y, (2.17)

is exact. From the above exact sequence, Im(0|y,) = T"M |y, /T'N, follows. Hence
we obtain an automorphism 6% := 0"|n, : T'M|n,/T'Noy — T'M|n,,/T'N, (where
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the subscript “v” means that we consider holomorphic normal bundle 7'M |y, /T’ N,
instead of T"M | N, )- Let RY be the curvature (1,1)-form of the holomorphic normal
bundle T"M |y, /TN, on N,. Then the Bott residue formula is given as follows.

E(Aa)
/J\4£(E> - Z/adet (0% + =Ry)
p(Aa +tF)
Z/ det (67 +tRY) |,

In Section 3 and Section 4, we will derive the Bott Residue formula in the form of the
second line of the above equality.

(2.18)

i
327

2.2 Usage of the Bott residue formula: An Example

(The contents of this subsection are based on discussions with Professor Masao Jinzenji.)
In order to demonstrate usage of the Bott residue formula, we compute the following
integral of Chern classes by using the formula (2.18):

/C el (2.19)

Here, H is a hyperplane bundle on CP".

First, we explain the case of CP!. Let (X; : X3) be homogeneous coordinates of
CP'. Then, CP! is covered by two open sets U; := {(X; : X5) € CP'|X; # 0} and
Uy = {(X;: Xy) € CPYX, # 0}. We use z := % and w := % as local holomorphic
coordinates on U; and U, respectively. Then we introduce the following holomorphic
vector field K on CP!.

d
K = 1z (on Uy), (2.20)
d
= —alw% (On UQ), (221)
where we assume a; # 0. Then actions of §(K') on 7 and il given by
z w
d d d d d d d
O0(K)(—) =[K,—] = —, —]=—a1— O(K)(—)=a;—. 2.22
( )(dz) [ ’dz] [alzdz’ dz] N ( )(dw) N w (2:22)

Zero set of K is given by {(1 : 0),(0 : 1)} and we denote (1 : 0) (+» 2z = 0) and
(0:1) (+» w=0) by p; and p, respectively. Then (2.22) tells us that 6”|,, = —ay and
6”|,, = a1 because T'CP'|,,/T'p; = T'CP'|,,.

Next, we construct local frame of H = S* in order to determine A; = Af,, and
Ay = AJ,, (S is the tautological line bundle on CP'). The fiber of S on (X; : X5) € CP*
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is given by a complex 1-dimensional linear subspace of C? spanned by (X, X5). Let
e1 and es be local frames on U; and U, given by

er = (1, 2), es = (w,1). (2.23)

Hence transition functions of S that satisfy e, = ggﬁeﬁ on U; N Uy are obtained as
gng = l
Since hyperplane bundle H is dual line bundle of S, transition functions of H are given
as gif = (¢%,)~! = w and gl = 2. Then a global holomorphic section s is given by fi
on U; and wfy on U because f; = wfo holds on U; N Uy. With this set-up, note that
A satisfies (2.8) and that A(s'f;) = A(s%fs) on Uy N Us. Since p; = (1:0) € Uy \ Uy
and po = (0: 1) € Uy \ Uy, we set A(f1) =: A1f1 and A(fs) =: Aafa. Then we apply
(2.8) to the above global holomorphic section s.

A(f1) = Af) = M fi, (2.24)
A(wfg) = K(w)f2 + wA(fQ) = —Oéle—ZfQ + wA2f2 = (-Oél + AQ)U}fQ. (225)

1
and g5, = o Let f; and f; be local frames of H on U; and U, respectively.

Since A(f1) = A(wfz) holds on Uy N Uy, we obtain
A =C, Ny =C+ ay,(C is an arbitrary constant). (2.26)

With these set-up’s, we compute fcpl c1(H). Since zero set of K is given by {p1, p2}
and ¢ (H) is given by trace of curvature form of H, the assertion of Bott Residue
Formula in this case becomes

2

/C e =3 % (2.27)

i=1

On the other hand, we have the following table from the discussions so far:

Table 1: Summary of the case of CP!

b1 b2
tr(Alp,) C | CH+awo
det(@” pi> —Q (03]
Hence we obtain
¢ C
/ G(H) = - 4 &S50 (2.28)
cp? aq aq
Then we turn into the CP" case. Let (X; : ---: X,,+1) be homogeneous coordinates
of CP". CP™ is covered by (n+ 1) open sets U; := {(X; : -+ : X,,y1) € CP" | X; #
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0} (i=1,2,---,n+1). Local coordinate systems on U;: ¢; : U; — C™ are defined in
the following way.

Xy Xic1 Xina Xnt1 n
Gi(Xyteo Xpga) = (Za 77i7 X: » T XJ,-F ) :(Z(li)v"' 72(1'))' (2.29)
Coordinate transformations between Uy and U;(j = 2,3,--- ,n+1) are explicitly given
by
1 1 i Zéf)l S i Zél) S
)= A= 5o U<i<j-1), 2= (<0). (2.30)
Z4 Z4 Z()

From these results, we obtain the following transformation rules on U; N Uj;:

0 -1 K, 0
— = —— 2y (2.31)
82{1)1 82{1)1 521 J 826)
o 25 0 o
— = = - (1<i<j—2), (2.32)
8,2(1) (92(1) 82(;.31
0 2y 0
=0 (j < 49). (2.33)

Ozyy Oy 02

Then, we introduce the following holomorphic tangent vector field K on CP™:

K = Zaizél)a—i (on U7) (2.34)
i=1 (1)
0 s 0
_ 1 =1\ i
= =izl g + D (e — ol o
025 = 92(5)
+ Z(oz,- - a‘j_l)z(j)az—éj) (on U; (i=2,3,---,n+1)), (2.35)
i=j
where we assume o; # 0 (i = 1,2,--- ,n) and o # o’ (i # j). Zero set of K is given
by
{plaan T 7pn+1}7
i—1 n—i+1
—— —— .
(pi=0:--:0:1:0:---:0) (i=12,---,n+1)). (2.36)

Then we determine action of #(K) on each U;. On Uy, it is given by

0 )= o 0
6221) 6221)

0(K)( (2.37)
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O(K)( ) =al"! :
0z, 0z ;)
o | 0
OK)(z——)= (" —a")— (i=2,3,--,j— 1),
02(;) 92(;
0 - .0 .
Q(K)(azi )= (a/t — a’)azi (i=3,7+1,---,n+1). (2.38)
(

7)
Since p; (i = 1,2,--- ,n+ 1) is a point in CP™ and p; € U; \ (Uj U;), 67 := 0|, is
given by the above representations of §(K) on U;.

Next, we construct local frames of hyperplane bundle H = S* on U; in order to

determine A; := A|,,. In the same way as the CP! case, the local frame of S on U, is
given by

_ 1 i—1 7 n

Then we can determine transition function gfj that satisfies e; = gfjej on Uy NU;.

Jj—2 n

201 (1)

1
_ 1 n\ __ j—1 (1) (1
61—<1az(1)7"'72(1))_2g1) G—1° _j—1° "> j,1717 G—10 j*l)
| AW o A ()
= Zgl_)lej = gfjej (] =2,3,---,n+ ]-) (240)

Let fi(i =1,--- ,n+1) be the local frame of H = S* on U;. Then transition functions

g1+ is given by (¢7,)7" = Z]%l = z(lj) and we have fi = g1;f; = z(lj)fj. Then we can

€)) A
construct a global holomorphic section s of H which is reperesented as s'f; on U;, by

setting s' =1, s/ =2}, (j =2,3,---,n+1) Since p; € U; \ (Ujx; Uj). we can set
A(f;) = Aif;. Then by applying (2.8) to s, the following equality:

A(s'fr) = Mifa
=A(s'fi) = K(Z(li))fi + Z(lz)A(fz) = _aiilz(li)fi + Z(li)Aifz‘ = (=" 4+ M) fa,

holds on U; NU;. Hence A;’s are given as A' =C, A'=C+a" ! (i=2,3,--- ,n+1)
where C' is an arbitrary constant. We summarize the above results in the following
table.

Table 2: Summary of the case of CP"
tr(Al,,) C C+a!
det(60”],) | TTmy(=a') | @ [T o(e " — o DT} (a" " — o)
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Then the assertion of Bott residue formula is given by

e (A"
[, et = 2 det(0],,)
_ = (C + i)
o) Z o T (0t = ad =) [ (it — ad)
cn - C + a")"
_ Z ( )

== T — : : - : —. (2.41)
[T (mah) o [[i=i (@ = a7 Y[ (0f = ad)
Let us consider a melomorphic function f(z) = % on CU {oo}. f(z) has
. 1=
simple poles at z = 0,00,a' (i =1,---,n) and sum of residues at these points equals
zero. Therefore, we have
3 (C+d) —1=0. (2.42)

[Tn(-e)  FHa =i (@ =a D] (af — o)

By combining (2.41) with (2.42), we obtain
|ty =1, (243)
cpn

3 Models in Part I

For the properties of the connection, V the covariant derivative and the curvature
tensor of a Kahler manifold, please refer to [34].

3.1 Original Topological Sigma Model (A-Model)

We introduce the topological sigma model (A-model) and its correlation function. This
subsection and Subsection 3.2 are reviews of the A-model [22, 23]. The discussion and
description in this subsection and Subsection 3.2 are based on [22], [23] and [27]. (Please
refer to [22] and [23] for details.) First, we consider the Lagrangian. The Lagrangian
of the topological sigma model (A-model) is given by

t . = . = = . . =
L= / dzdz [§gi3(3z¢202¢9 +0:0'0.¢" ) + Vgl Dox' + ViiggiD.yx’
Cp!
— RgatIx"x']. (3.44)

t is the coupling constant. Here, we rescaled ¢ — % and ¢ — % in [23]. Fields in the
Lagrangian and covariant derivatives are the same as the ones introduced in Section
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1. Original supersymmetry (BRST-symmetry) of this model is given in the following
form.

8¢ = iax’, 5¢° = iax’,
= —Vtad.¢' —iall ",

where « is a fermionic variable. We define the operator {Qo, *} via 0.X =: ia{Qq, X }(X
is a field that appears in the A-model). And, we call @y the generator of this trans-
formation. Then {Qo, {Qo, X}} = 0 holds. And {Qo, L} = 0 from 6L = 0. When we
rewrite {Qo, X} to QpX, we identify the operator ()y and the exterior derivative d on
M from {Qo,{Qo, X}} = 0. Q2 = 0 is a characteristic of the BRST-transformation.
Note that Qo and {Qo, *} may be equated.

Next, we discuss general characteristics of a correlation function in the A-model.
The correlation function of an observable W is defined by

<W >:i= / DXe LW (3.46)
An observable is constructed by fields that appear in this model. Its detail is given by

Subsection 3.2. If W is given by W = {Qo, U} ( U is other observable) , its correlation
function vanishes [22, 23].

<{Qo, U} >=0. (3.47)

It is shown by rotating the field through supersymmetric transformation. The rotating
is induced by acting the operator exp(eQ)y) on each field. € is a fermionic parameter.
The path integral is invariant under the rotating.

<U >= /@Xe_LU: /33(exp(er)X)(exp(eQO)e_LU)

Since the transformation is given by rotating the field, the Jacobian for its transforma-
tion is 1.

U= /@X exp(eQo)e” /@X +eQo)(e D).
From QoL = 0,
<U>= /@Xe_L(l + €Qo)U = /@Xe-L(U + Qo)
=<U > +e/®XeL{Q0U} =<U > +e<{Q, U} >.

Therefore, we obtain < {Qo, U} >= 0. (This proof is referenced to [23].) In the A-
model, we consider the observable O that satisfies the relation{Qy, O} = 0. One of the
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reasons of this is to use the weak coupling limit in the calculation for the correlation
function. We explain it later. Here, we introduce important formulas for observables.
“If observables O;(i = 1,2,--- ,n) satisfy {Q, O;} = 0, the equalities

{Q7 0102 e On} - O, {Q, A}0102 cee On = {Q, AOIO2 NN On}

hold for arbitrary observable A.”[23] ( @ in [23] corresponds to (Jy.) From now on,
we assume that the observable satisfies {Qo, O} = 0 in this subsection. It is known
that the phase space of a correlation function is decomposed in every degree of ¢. We
rewrite the Lagrangian as follows.

=11 &w+rL. (3.48)

2 Jepr
Here,

Lq:= / dzdz[tg;0:¢'0.¢7 + Vgl Dax' + VitiggiD.x’ — Rgibix*x']
CP!
(3.49)

and

0= [ Eelas(0.00.00 ~0.60.00)] (3.50)

cP!

w = ggdz' A dzi is the Kahler form of M. And we note that w is a representative of
H?*(M). ¢*(w) means the pull-back of w by the map ¢ : CP' — M. If H*(M,Z) = Z,

we obtain ,
= ¢"(w) = 2midt (d € Z and d > 0) (3.51)

2 cp?
by rescaling the metric g;;. d means the degree of ¢. We introduce the equation of
motion for ¢». We vary 1 in the Lagrangian.

<@m=4pwﬁwww@mv—&mwwk%ﬂ (3.52)
= [ sz~ Viig Doy + Rttt (3:53)
The equation of motion for ¢! is given by dyi Lg = 0. Therefore,
—ﬁigijszj + R 2XkXZ =0. (3.54)
The equation of @Z)z is also given in the same way.

—ivVtgDex' — Ritvixx' = 0. (3.55)
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By using the equation of motion for v,
iVtgblD:x' = RgbibIx*x', iVigigiD.x’ = R, (3.56)
Ly is represented by
. 2 1 j i i j
Ly = —ivt d*z{Qo, P}, P := 5%(%@5 + Lo, ¢0). (3.57)
cP!

Then, the phase space of the correlation function < 0,05 ---O,, > can be decomposed
into connected components Py (d is a degree of ¢. d =0,1,2,3,---) as follows.

<0050, >= /@Xe—La@ O, = /@Xe_thPl WL, 0, O,

[e o]

= e~ 2midt / DXe 0,050,
Py

d=0

Let us define the degree d correlation function by
< 0,09 -- On >qi= / @X€_Ld0102 s On (358)
Pq

< 0104 ---0,, >4 does not depend on the coupling constant . We change t into t + ot
n (3.58). And Ly = —iV/t [ d*2{Qo, P} from equations of motion.

DX VI [op Q0 PY) 0, ... O,

Py

- / DXV er @HQPYiS G fep *2{Q0PY oy 0 L 0
Py

D X ¢V e #2Q0PY( 1+Z_/ d*2{Qo, P})0,05 - -- O,
Pl

Py

= / @Xei\/zf(CPl dQ‘Z{QO)P}OIOQ N OTL
Pq

O S i #eanp) / &*2{Qo, PY0,0; - O,
22 J,,

s / @Xel\/szPl d2Z{Q07P}0102 R OTL
Pd

+z— DXt Jert #HQLPH O ( / d?2P)0,0,--- 0,}
Py cp?

s / @Xel\[f(CPl d2Z{Q07P}(9102 e On_
Py

We ignored terms above the second or higher order of 6t and used < {Qo, U} >4= 0.
Therefore, in < 0105 ---0,, >4, we can take the limit of ¢ — co. “In field theory,
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this operation is called “taking weak coupling limit”.”[23] Under the limit ¢ — oo, the
exact value of the path integral is given by expanding each variable in a neighborhood
of the solution of equation of motion. So, an observable O has to satisfy {Qo, O} =0
to take the weak coupling limit.

Lastly, we consider the phase space of path integral into connected component
P, and explain the weak coupling limit. The lagrangian of the degree d correlation
function L, is given as follows.

Ly = / dzdz[tg50:0'0.¢7 +iVlgzl Dax' +iVigiD.’ — R n™x!] (3.59)
cpl

For the time being, we neglect — Rt/ zxkxl_. (According to [22, 23], this operation
does not change the result.) Here, we introduce the principle of localization [26].

The principle of localization

Path integrals of a model having supersymmetry can be evaluated by
the sum of contributions from field configurations satisfying the conditions
that supersymmetric transformations of fermionic fields are zero.

Since 61! = —Vtad, ¢, St = —/tad:¢" (we neglect the term of I') in  — 0o, ¢ must
satisfy 0,¢' = 0 and 0;¢' = 0. Equations of motion for each ferminic field are

D.x' =0,D:x' =0, D) =0, Dz1p’ = 0. (3.60)

Here, D¢, = 0 and DE@, = 0 are given by the equation of motion for y as follows.
(We ignore Rguibivix*x'.)

SyiLg =0y dzdz [ivtg;0  Dsx'] (3.61)
cpt

= [ ez [iviggulouox) + iVigully, b0 (3.62)
cpt

- / dzdz iV (~019;50-6' — O950:0 )02 — 95003 Yo'
cpt

T ivEgg Ui, X 0: 0] (3.63)

= [ deds[ivi{ (o Thou0' — gaTH0s0) ] — gg0euT}ox
cpt

+ iVtg Il ox"0:¢" ] (3.64)

_ / A=z [iv/H(— gl 20617 — ;;0:07)6x] (3.65)
cpt

_ / dzdz[—iv/ig (DL 9:6'07 + D7) ] (3.66)
cpt

_ / dzdz[—iv/igg Dviox'] = 0= Dol = 0, (3.67)
cp?
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In the same way
0iLa=0y, /C N dzdz[iV'tgi0 D] (3.68)
= / dzdz[iVigs0L0.(6x7) + iVigsiTh,0x"0.0"] (3.69)
CP!

= / dzdz [—i\/%{algijaz¢l¢; + 3[915@925%2 + gzjazw;’}5>(§
cP!

+ Vgl 07 0.¢" ] (3.70)
= / dzdz[—ivVH{ gy D)0-0W% + gis D08 0L + g;50:0L 1%
CP!
+ Vgl 0% 0.0 (3.71)
= / dzdz [—iVt(gr 0.0 0L + g;50.01)0X] (3.72)
CcpP?
- / dzdz[~iVtg; D.iox'] = 0= Dyl = 0. (3.73)
cpl

We used 0ig;; = g,\jfﬁl and Ojg;; = gi;\Fl’lj. (In a Kahler manifold, I} = T'} and
F% = F?z"> We consider d:¢ = 0,Dz;x" = 0 and Ds)! = 0. Other equations are
complex conjugate of these equations. (We derive the condition d;¢° = 0 from the
principle of localization in this thesis [27]. However, in [22] and [23], 0:¢" = 0 is given
by the equation of motion for ¢. So, we call 9;¢° = 0 the equation of motion for ¢,
here.) 9:¢" = 0 means that ¢ is a holomorphic map. Then, D;x" = 0 means that x is
a holomorphic section of the holomorphic vector bundle ¢~*(7"M) on CP!. In other
words, x is an element of HO(CP!,¢~'(T"M)). In the same way, v, is an element of
H°(CP'(T'CPY)* ® ¢~ (T"M)) from Dz¢)i = 0. When M is a Kihler manifold, the
isomorphism 7'M =~ (T'M)* is obtaind from Kihler metric. From the Serre duality,

H°(CP' (T'CPYY* ® ¢ Y(T'M)) ~ H*(CP', (T'CP")* @ ¢ ((T'M)") (3.74)

~ (H(CP,, T'CP'@ ¢ {(T'M) ® (T'CP")*))* ~ (H'(CP", ¢ (T'M)))*. (3.75)
Therefore, 1), is an element of (H'(CP',¢~'(T"M)))*. “If M is a compact Kéhler
manifold, the set of holomorphic maps of degree d from Riemann surface ¥ to M
becomes a complex space of finite dimension.”[23] “This space is called the “moduli
space of holomorphic maps of degree d from X to M”. Let us denote it by Myx (M, d)
temporarily. The complex dimension of Mx(M,d) in a small open neighboorhood
of a point ¢ € Mx(M,d)) is given by dim(H*(Z, ¢~ 1(T"M))).”[23] The relationship
between the number of solutions to the equations of motion for y and v, is given by
the Riemann-Roch theorem

dim(H°(CP", ¢~ (T'M))) — dim(H (CP*, ¢~ (T'M)))

= dime (M) + . o*(c1(M)). (3.76)
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If degree d = 0, the holomorphic map ¢ is a constant map. Since ¢~(7"M) is a trivial
bundle CP! x CHme®) dim(H(CPY, ¢~(T'M))) = dime(M). From the Riemann-
Roch theorem, dim(H'(CP!,¢~(T"M))) = 0. In other words, the solution of the
equation of motion for 1, is trivial. We consider the weak coupling limit. Let ¢, xo
and 1)y be solutions of equations of motion (9;¢' = 0, D;x* = 0 and D;¢! = 0). We
call them zero modes. And we expand each variable around a zero mode as follows.

¢ =y + ¢" X =X+ X" YL = s + Y (3.77)
P =g+ " X =xb+x" VL =h, + Ul (3.78)

We call ¢/, ¥ and ¢’ oscillation modes. We expand Lagrangian by using this result.
(We neglect third or higher terms involving the oscillation mode.)

Ly=1Lo+ L (3.79)
Lo— - / d2dzR bbb (3.80)
cpt
L'= / dzdZ[tg;0:¢" 0,07 +iVtg 7 0\ + iVtg0"20.x"] (3.81)
Ccp?

From 8;(;56 = qug =0, D, and D; become 0, and 0;. “More ever, in the t — oo, the
radius of M becomes infinity and M can be regarded as a locally flat space. Therefore,
we can replace the Kahler metric g;; by 6;;.”[23] Therefore, the oscillation part of
Lagrangian is given as follows.

dime M

L= > / d2dz [t0:¢"0.¢" + VIO + iV 0. (3.82)
i=1 JCP!

The integral measure D X = DD D is also divided into the zero mode part D ¢y® x oDy
and the oscillation mode part D¢'Dx'D)’. Therefore,

<HOI> = / DD xoDeoe " [ [ Oul / DFDXDY'e ). (3.83)
I=1 d Mep1(M,d) =1

Since L' is the same form (3.29) in [23], we use the result of Gaussian integration of

(3.29) in [23]. “ The result of Gaussian integration of ¢’, x" and ¢ is given by
(det’(9,))tme@D(det'(95))1me®D det/(9,05))dmeM)
(det’(0,0;))dime (M)  det’(9,0;))dime (M)

=1

Y

where det’'(A) is the product of non-zero eigenvalues of A. In sum, contributions of
oscillation modes of bosons and fermions cancel each other.”[23] As a result,

<H O[> = / @(bo@)(o@'(ﬂoei[/o H O]. (384)
I=1 d Mep1(M,d) I=1
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In this thesis, we consider holomorphic map of degree 0 from CP! to M (¢ zero mode
is constant map) and its correlation function. Since ¢ zero mode is an element of
(HY(CP', ¢~ (T'M)))* and dim(H'(CP',¢~(T"M))) = 0 in degree 0, 1 has no zero
mode. Then, Ly = 0 and integral measures of ¢y and x, are

Do = doideh - - - dpd™ M aga™e M Dy = dybdxd - - dy I gy dimeD (3 85)

3.2 Interpretation of Observable O

In this subsection, we explain observables for A-model. From above discussion, they
have to satisfy {Qo, O} = 0. From the analogy of ()y and exterior derivative d, an
observable corresponds to an element of cohomology ring of M [22, 23]. We introduce
a differential (p, ¢)-form W on M as follows.
1 A A . - - -
= il ilm...ip;l;?..];(zl, s ZMdZ NdZ? N d2' N NDZ? - NdZP. (3.86)
Here, 2 is a local coordinate of M and 2% is the complex conjugate of z'. Then, we
correspond ! with dz* and x* with dz‘, and represent O associated with W.
1

Ow = 1t Wiy (DX X - XXX -, (3.87)

Since

1e" . o T
5OW - pl_ql(almli?“ipﬁjz'“]; (¢>Xl + 8151/%”'2..,2-?]?132“.]; (gb)Xk)X IX 2 ... Y thXh o X]q

(3.88)
= 1aOgw (3.89)

from the supersymmetry,
{Qo, Ow} = Oaw. (3.90)

If W is a closed form, {Qo, Ow} = 0. On the other hand, if W is an exact form or
there is a differential form A that satisfies W = dA, Ow = {Qo, O4}. An observable
O has to satisfy {Qo, O} = 0. When {Qo, O;} =0(i =1,2,--- ,n),

{QOJ A}0102 e On = {Q07 AOIOZ e On}

If correlation function involves an observable associated with exact form, its correlation
function vanishes. So, the observable of the A-model regarded as an element of the
De Rham cohomology of M. In other words, observables for the degree d correlation
function must be associated with W, € HP1% (M, C). From the discussion in Subsection

3.1,
(TToweo) -,

DpoDxoDtboe ™ [ [ Ow, (21). (3.91)
I=1

cp1(M,d)
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In the above expression, Ow, (z7)(I = 1,2,--- ,n) consists only zero modes.

1
prlqr!
X X%I(ZI)X%Q(ZI) e ‘Xéql (21). (3.92)

¢ and x are solutions of equation of motion. z; means a point in CP!. In the case of
degree d = 0, since ¢ is a constant map, Mcp1(M,0) = M. And 9 has no zero mode.

From (3.85), the integral measure of xo , p; and ¢;(i = 1,2, -- ,n) satisfy

OWI (ZI> =

(W1 )isiziyy igoi, (G0 (20X (20)XE (21) -+ X" (21)

dime(M) =Y pr=>_ar. (3.94)
I=1 I=1

It means that the degree 0 correlation function represents the integration of some
differential form on M.

- OWI(Z[) = Wl VAN W2 VASRRIVAY Wn. (395)
(flewc) -

3.3 Base Model (Topological Sigma Model (A-Model) with
Half BRST-Symmetry)

We introduce the model for deriving the Bott residue formula. The base model is a
topological sigma model (A-model). Let us represent the Lagrangian again.

t B = . = = . . =
L= / dzdz [5915(8@‘ ¢ + 0:0'0.¢7) + Vitigshl Dox" + VtigihiD.x’
Ccp?

— Ryl x*x']. (3.96)
This model has a supersymmetry. However, in order to include potential terms induced
from a holomorphic tangent vector field K, we have to change the BRST-symmetry in

the following way (we observed that this change is inevitable to extend BRST-symmetry
to the Lagrangian with potential terms).

5§ = iax, Syl = —ial', "y,
oy = —Vtaosg', 69" = o' = o' = 0, (397)

where @ is also a fermionic parameter. In the next subsection, we prove that the
Lagrangian (3.96) remains invariant under this new BRST-symmetry. We can confirm
that this transformation is the BRST-transformation in the following way. Let @) be
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the generator of this transformation defined via the relation X =: ia{Q, X} (X is
a field that appears in the theory). If @ has nilpotency, i.e. {Q,{Q,X}} = 0, this
transformation is called the BRST-transformation. The most non-trivial part comes
from deriving {Q, {Q,¥:}} = 0. In this case, we have

oyl =ia{Q, Y} = {Q, v} = ~TL "L, (3.98)

By using the following relation that holds for the curvature tensor of Kahler manifold,

Rzéip = &lrflﬁ - F%@F% — 8,;1%7 + rire —o

la™ pv
= aZFEED - FE}&F% = 8ﬂr%7 - F%argﬂv
we can show
(T x™Y) = a0 L X! Y — ial L T2 WY = —ia (0%, — TLIe ) x'x Y

N P A\ fi P : P ra. L p
=l [5 (8frﬁ9 o FﬁdFID)XlX#1/}2 +5 8irﬁp - Fﬁdrl_p XZX#1/)
Y

=
-
SN
_I_
=

T
= —ia[Z (0T} — Thal5)x'x

]
]
Ty — Thalm) XX
]

SV

SV

)

v~ Dial ) XX"0%
)
)

—~ N I/~

N =N RN =N =

)
1 i i o I G0
= —iQ [5 (8;Fi-“7 — Ll )XZX“% +
)

1 7 P Pa\.l.p. v 7 P Ta T
= —zab (O — Thal B X XYY — I — Tl ) ' ¢l =0

=
|

= {Q,{Q,v}} =0.

Check for other fields is straightforward.

3.4 Proof of 6L =0

In this subsection, we check invariance of the Lagrangian in (3.96) under the BRST-
transformation given in (3.97) , i.e., the equality 6L = 0. We first evaluate variation

§(tgi50.0'0:¢7) = t0r(g:7)080.¢' 0= + tg50.6'0:(3¢)
= it (g 20:0'0:7 X' + 9,50.6'9:x")
— itag;0.¢' (9=x? + Th,0:0"x")

(3.99)
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By integration by parts, we obtain the following (we neglect total differential).

/dzdz(i( tg;;0.0" Zqﬁj) (3.100)

= ita/zdzdz% (gijﬁzqﬁi@ng + gigﬁzqzﬁinl{?gqﬁﬁxz)

= ito‘z/zdzdzl( A19:;0 ¢laz<b’x — 019;;0 ¢laz¢l j

— 6;50:0.0'X7 + 90:10:0"0.6'X")

= ita /E dzdf% [9:50-6 (8.7 + T2,0.0"x")]

= ita /E dzdz%(gijé?zqﬁiDsz). (3.101)
Variation of other terms are evaluated as follows.
5(51930-010-6) = S19aT 0600061 + 5 1050-(567)0-

1. _ i i j
= 5ita (9T}, X'0:0"0:0' + g;50:6'0.x°)

= %ito_zgijaggzﬁiDZXE . (3.102)
3 (ivtgi Dsx') = ivtg I 506" I DX + iv/tgisowl Dax' + ivtgib IO, 00 0:0"x"

= —aVigi i "0 Doy’ + avig DX 0l Doy’

+ avtg Ul R, x 0:0" Y

= aVitR;,, W10:0"Y'X" = —avViR, 5, 10:6" "X’

= —aV1tR70:0"0Ix X (3.103)
3 (ivtgiD.") = iVtgalyy 5¢ WD + Vg0V D + iVt 00' 0.0y

+iVtg Wil 0. (667X

= Vg i X" ViD. X" — iatg;0:¢' Do

+ avigioh ' 0.0"y + avt gmwzFL XX

= —av/igg DX W0 — aVtggl X U0, X! — iatg;0:0' DX
+ Oé\/_gww &FMVX ang“x + a\/_gzqubz v ZX Xﬂ
= oz\/_gw(&f‘j + FJBngl;) Exlazgzﬁ”x - zoztgi;aggbiszj. (3.104)

By using the following relation that holds for the curvature tensor of Kahler manifold,

= Oy, — 0L +T2Th, — rﬂ rﬂ =0, (3.105)

T Bl v
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&ZF% = O;Ff;,; and Fgf, = Fgﬂ, the first term is

giizbéangﬁ(afréﬁ + Féjrgﬂ)XlXﬁ

= 59i79:0:0" (O 'y + I 59i7920:0" (01, + P T2
1 i 5 - - = - _ 1 ; l_/ - -
= 59:59:0:0" (0o + P ToaX X" + 59i79:0:0" (O iz + P o)X X!
= §9ij¢;8z¢y(al'rf7p, + ngl—rgﬁ)XlXﬂ + §gijw;8z¢y<al{‘]ﬁﬁ + FJEZ‘F?L&)XMXZ = 0. (3'106)
Then,
§(ivVtgii D7) = —iatg;0:6' Doy (3.107)
5 (=R iIxX"X') = =05 Rigid ™I X' — Rigradibx*x' — Rijirhtowix"x!

= —idaXRijkW; ngXiXX + d\/zRijkz‘azﬁbi szXi (3.108)
— 1R ;FfzszﬁwzﬂXle
= —ia(05 Rigiy — Rigral o5 0t X' + aviRg,0:0"Ix Y.

(3.109)
Next, we use the following formula of covariant derivative of the curvature,
ViR = OsRui — RZ-BIJF% — R0, (3.110)
and Bianchi’s identity,
VxR = ViRies- (3.111)
S~ vix'Y') = —aViBptvn S +aviRgadoundy'

= d\/ERijkl_aé¢i ngXi-
As a result, all the variations cancel each other. Therefore, we have shown the equality:

IL=0<{Q,L}=0.

3.5 BRST-Closed Observables of the Base Model with Half
Symmetry

In this subsection, we consider BRST-closed observable of this model, i.e., observable
O that satisfies {Q, O} = 0. Here we restrict observables that are obtained from
differential forms on M. Let W be a (p, ¢)-form on M:

1
W= W,

— (24, 2™z dz2 - - derdZ dF - - dF (3.113)
plg!

1i2ipg1j2-Jq
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then we consider the following observable Oy :

1 i1 i i 12 i
Ow = p,—q,V[/m2...ipﬁ;2~--g;(¢)x DGR GO G GREED G (3.114)

Variation of Oy under the BRST-transformation:
{Q,¢'}=0,{Q,¢"} = X' {Q,x'} = 0,{Q,x'} =0,
is given by

1 i1, i = -
6OW o pqu&WHm “ipjija- Jq6¢lX lX 2. X pXﬁXJZ .. .qu

p' I&Wuzz “ipj1je- JqX X“Xm T 'XipleXj2 o 'qu' (3‘115)

The above result is summarized as follows.
§Ow = iadOy = ia{Q, Ow}. (3.116)
{Q, } is represented as follows.

Therefore, a BRST-closed observable Oy is obtained from a differential form W that
satisfies W = 0. By standard discussion of topological field theory, correlation func-
tion of BRST-closed observables with insertion of a observable of type {Q, Ow } = O
automatically vanishes. Hence, physical observables of the base model correspond to
elements of Dolbeault cohomology. Let us recall Dolbeault’s theorem and Hodge’s
decomposition theorem.

Theorem 1. (Dolbeault’s theorem)
HY(M, \PT"* M) ~ H29(M). (3.117)

Theorem 2. (Hodge’s decomposition thorem)[17]

H'(M,C)~ B H"(M). (3.118)
pt+g=r
HPI(M) ~ HF(M) ~ HI (M, N"T"™M). (3.119)

If W is a Chern class of a holomorphic vector bundle of M, it is given as a closed
(i,7)-form on M. Therefore OW = 0W = 0 follows from dW = (0 + 0)W = 0 and Oy,
is a BRST-closed observable of the base model.
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3.6 Potential Terms Induced from Holomorphic Tangent Vec-
tor Field

In this subsection, we include potential terms induced from the holomorphic tangent
vector field K. The potential terms are given as follows (we use a parameter 3 that
equals 27i for brevity).

V= / dzdz[ts*Bgs K K7 + tsgisV KO XX + 895, K] (3.120)
5

V' contains a parameter s € R that controls scale of the vector field K. We can extend
the BRST-transformation to the new Lagrangian L 4+ V as follows.

0" = iax’, Pl = —iali X", 0Ul = —v1ao:¢', (3.121)
5y' = isaBK’, 56’ = dx' = 0. (3.122)
Let @ be the generator of this transformation whose action is defined via the relation
0X =:ia{Q, X} (X is a field that appears in the theory). We check nilpotency of this

generator {@,{Q, X}} = 0. Non-trivial parts caused by appearance of K in (3.122) is
given as follows.

06" =ia{Q.¢'t = {Q,¢'} = X',

oy’ =ia{Q,{Q,¢'}} = {Q.{Q.¢'}} =0,
ox' =ia{Q,x'} = {Q.x'} = BsK",

0K =ia{Q.{Q. x'}} = {Q.{Q,x'}} = 0.

Hence the relation {Q, {Q, X}} = 0 also holds in this case.

3.7 Proof of §(L+V)=0

In this subsection, we check invariance of the Lagrangian L 4+ V under (3.122), i.e., the
relation §(L + V') = 0. Let us recall some properties of covariant derivatives of K.

vK7 =0, v,K7=0, (3.123)
0(95Vak?) = g5 ViVaK' + 915, Va ks, (3.124)
(95, K") = giXF?[VuKi + Ry, K. (3.125)
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We use the above formulas and standard property of Kahler metric. Then additional
terms that appear in checking 6(L + V') are given as follows.

3(iVtgIDax') = iVtgl0:(6X") + iV/tgITh, 0:" 5"
= asViBg L0 K 0:¢' + asvtsBg il 0:0" K”

= aspVtglvIK9.¢. (3.126)

0 (—RijubiixX"x') = —iqsBR i K ' (3.127)
0(ts*Bg K'K7) = ts*Bgisl50¢ KK + ts* By K'0pK7 64

= tsQBginivl-I_(j&b[ = io‘ztsQBgﬁKivl-[_(jXZ. (3.128)

(5(tsgﬁvﬂf§'5xﬂxi) = ts@l-(gﬁV—I_(;)(MZXﬂxi + tsgi;V—I_(jxﬂ(SXi
=iats(g;;ViVp K7+ gUFO‘ Va KJ)XZ_XﬂXi - io‘ztsZBgﬁVﬂ[_(jK"Xﬁ
= —iats 69,5 [LKJK’ . (3.129)
Here, we used V;Vﬂf_ﬁ = vﬁv,—f(?

0(589:7V, K VL) = 5B0(955 VK ) 58 W] + 5895V, K WLV + 589559, KWL 50
- ZSCEﬁ (gz)\r)\ v KZ + Rz],ul Z)Xlwgwi - Saﬂ\/%gzjv,u[(lai¢#wi
+ Zasﬁgz‘jrﬁavuKz@bz XP@Z)Z
= isaf Rt K — saBVtg; v, K 0:0/ . (3.130)

From the above results, we can conclude that (L + V') = 0 holds. From now on, we
only consider the model given by L 4+ V.

3.8 BRST-Closed Observable of the Model

In this subsection, we construct BRST-closed observable of the model with potential
terms. In the same way as the previous discussions, we restrict our selves to observables

obtained from a (p, ¢)-form W on M. It is represented in the following form.
1 1,0 ip A1 02 i
Ow = i Warizeiyiigaesig XX - XX X0 (3.131)

Variation 0Oy .under the BRST-transformation is given by

1 11 50 ) TR iq
5OW N p‘_Q'al_th “ipJ1je- Jq6¢lX 1X e X pXJlXJQ o qu

1
+ WWZW iy 1 j1GaGaOX X
pq'

—86 i1 0 Gy T -
+ (p — 1)!q!I/VlZ”2 1T ]quX 1X 2, .. X" IX.71X]2 L. qu} ) (3132)

lzl

.. )Ci(p*l))Cj_l)(j_2 e X]_q

Wiy 5 XXX - XXX - x

32



Let i(K) be the inner-product operator by K. Then, the above result is rewritten as
follows.

H_ence BRST-closed observable is obtained from a differe_ntial form W that satisfies
(0 + Bi(sK))W = 0. Note that this condition reduces to OW = 0 if s = 0.

We comment on mathematical background to this condition. In general, differential
form w on M is graded by the following operators:

Faw = (p+ q)w, Fyw = (q — pw.

This says that w is a (p, g)-form on M. For the operator 0 + Bi(sK), we adopt Iy as
the grading operator and consider the following vector space:

Ak — @ QP9(M)

q—p=k

where k ranges from —m to m. From the condition (3.133), we can see that observ-
ables correspond to elements of cohomology of the complex (A®) 3 + Bi(sK)). This
complex is called Liu’s complex. In [32], it is shown that cohomology of this complex
is independent of s (s # 0). This property is closely related to Proposition 1.

4 Derivation of the Bott Residue Formula

4.1 Overview

In this subsection, we explain our strategy of deriving the Bott residue formula by
using the topological sigma model with potential terms.

Since the Bott residue formula is a fixed point formula for integration of Chern
classes of the holomorphic vector bundle E, we consider observable that corresponds
to wedge product of Chern classes in the s — 0 limit. We first construct observable
Oy that satisfies (04 Bi(sK))W = 0 and lim,_,o W = (E). Let us recall Proposition
1 introduced in Subsection 1.1. B

Proposition 1

Correlation functions of BRST-closed observables are invariant under vari-
ation of s.

Assuming its proposition, we evaluate the degree 0 correlation function (Oy )¢ both in
the s — 0 limit and s — oo limit.

As for the s — 0 limit, the observable becomes O, gy and we can use standard weak
coupling limit. Moreover, the potential terms vanish in this limit. Then we expand each
field around the solution of the classical equations of motion (¢ = ¢g (constant map),

33



X = Xo (constant solution), ¥ = 0) and perform Gaussian integration of oscillation
modes. We show that contributions from Gaussian integral is trivial. Hence (Oy)o
turns out to be classical integration of (m,m)-differential form ¢(E) on M, i.e., the
Lh.s of (2.18). B

In the s — oo limit, the path integral is localized around neighborhood of zero
set {M,} of the holomorphic vector field K where the condition dx’ = isaBK* = 0
holds. We also expand each field around the solution of the classical equations of
motion (¢ = ¢y € M, (constant map), x = xo (constant solution), 1» = 0). In this
case, we carefully discuss integration measure of oscillation modes by using eigenvalue
decomposition by Laplacian for differential forms on CP!. Since contributions from
oscillation modes do not affect correlation functions, contribution from a connected
component M, turns out to be integration of differential form on M, given in the
r.h.s of (2.18). Summing up all the connected components, (Ow ) becomes the r.h.s
of (2.18).

We can equate these two results by using Proposition 1 and obtain the Bott residue
formula.

4.2 The BRST-Closed Observable Used for Derivation

In this subsection, we construct the observable Oy, that satisfies lim,_ oW = g(E)
and (0 + Bi(K))W = 0. We use the notation in Subsection 2.1. If we rescale K into
sK, 0(K) is also rescaled to sf(K). In general, A is also rescaled sA. Let {e,} be the
local holomorphic frame of E. Then, we define L = (L%) : I'(E) — I'(E) by

L(s) == sA(s) — i(sK)V(s) (4.134)
(s € I'(E)), where we rescale K into sK. For the local holomorphic frame,

Lley := sAle, — s0°, KFe,. (4.135)
Let us note that the following relations hold.

Di(sK)Ve, = s0i(0%,) K" dzley = —i(sK)(Fbdz" A dley),
I(Lhey) = O(sAle, — sOL, KFey) = —s0;(08, ) K*dzley, = i(sK)(FP d2* A d2ley),
O(Fa d2F A deb) =0,

i(sK)(Lge’) = 0. (4.136)

By using the above relations, we obtain (f = 2i),

(D + Bi(sK))(Lbey + %Fgeb) = O(Lbey) — i(sK)(FYdz* A dzley) = 0. (4.137)

If we define matrix valued form:

A4 b
A= (A7), A= L+F. (4.138)
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(4.137) says (0 + Bi(K))A = 0. Therefore (0 + Bi(K))tr(A™) = 0 holds for arbitrary
positive integer m. Let U be a linear automorphism of a complex vector space V' with
dimc = rank(F) = ¢. It is well-known that ¢(U) defined in Subsection 2.1 can be
represented in the following way:.

o(U) = > Wy (U (U2 -4 (U™), (4.139)

l
m; >0, Zizl mi;=m

where m is the complex dimension of M. Therefore, ¢(A) = (L + 5= F) is annihilated
by the operator 0 + Bi(sK). Obviously, ¢(L + 5-F) reduces to ¢(5-F) = ¢(E) under
the s — 0 limit. In this way, we have constructed the operator O, i) that is used
in derivation of the Bott residue formula. From now on, we simply denote it by ¢ for
brevity.

4.3 Degree 0 Correlation Function and Integral Measure in
the s — 0 Limit

From now on, we consider the degree 0 correlation function < ¢ >¢. First, we rewrite
the Lagrangian in the following form.

t
L+V = 5/¢*(w)+L’+V’, (4.140)
>
LV = / d2d2[tg;50:60.60 + \Eigsd Dox’ + Vgl D
Ccp?

— R0t "\t + 152 Bgis KK + t5g:V s KIXPY + 5895V K ipbapd] (4.141)

Js, ¢*(w) is a topological term that gives mapping degree of ¢ : CP' — M. Since we
focus on the degree 0 correlation function, we use the Lagrangian L' + V' instead of
L + V. By using Proposition 1, we obtain the following equality.

lim < ¢ >p= lim < ¢ >¢ . (4.142)
s—0 5—00

In this subsection, we focus on the left hand side. In the s — 0 limit, the Lagrangian
L+V becomes Lagrangian of the usual topological sigma model (A-model). Moreover,
@ turns into O, gy, which is also a standard BRST-closed observable of the A-model.
Then we can apply standard result of the weak coupling limit t — oo [23]. It says that
the path integral reduces to Gaussian integration around the constant map ¢(z,z) =
¢o (€ M). From the discussion in Subsection 3.1 and 3.2, the correlation function
becomes,

s—0 M - M
where dggdyo is the measure for integration of position of ¢g € M and the corre-

sponding zero-mode of y, that can be interpreted as integration of (m,m)-form on
M.
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4.4 Integration Measure for the Degree 0 Correlation Func-
tion in the s — oo Limit

(This section is based on a discussion with Professor Masao Jinzenji.) We discuss
integration measure in evaluating the correlation function in the s — oo limit with
fixed t. Since we are considering the degree 0 correlation function, the map ¢ is
homotopic to a constant map ¢(z,2) = ¢ (€ M). Therefore, we expand the fields ¢,
x and 9 around the constant map ¢o. Then x (resp. ¢) becomes section of ¢! (T’ M)
(resp. ¢y (T"M)@T"*CP") and its complex conjugate. But ¢, (7" M) is isomorphic to
trivial bundle CP* x C™. Hence we can simply regard x*, x* (resp. 1%, %) as (0,0)-form
(resp. (0,1)-form, (1,0)-form) on CP! By using standard Kahler metric of CP!, we
can apply eigenvalue decomposition by Laplacian for differential forms on CP! to the
expansion. The Laplacian is represented as follows (1 means adjoint defined by Hodge
operator of CP?).

A = dd' + d'd, Ny := 00" + 970, Ng = 00" 4+ 0'0,

A =20, =20,

Let AP be restriction to Q®9(CP'). Vector space of (p, ¢)-forms with zero eigenvalue
is known as HP4(CP'): the vector space of (p, q) harmonic forms. The following result
is well-known.

dime (H*?(CPY)) =1, dime(H"(CP')) = dime(H*'(CPY)) = 0. (4.143)

Let {E, | n > 0} be set of positive eigenvalues of A0 ordered as follows.

0< By < By <By<---. (4.144)
Then we denote by f,(z, ) the (0,0)-form that satisfy
1
OOV fu(2,2) = Enfal2,2). (4.145)

Lemma 1. Sets of positive eigenvalues of%A(l’O) and %A(O’l) are both given by {7En |n >
0} and (1,0) and (0,1) forms with eigenvalue E, are given by 0f,(z,z) and 0f.(z, Z)
respectively.

Proof)
Since $A equals (99" + 0'9), we obtain
S800(2,2) = (001 +010)0(=,7)

00101, (2, 2)
000" + 0'9) fu(z, )

= LOAf(=2)
— E0f(z2). (4.146)
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Hence 0f,(z, 2) is (1,0)-form with eigenvalue E,,. On the contrary, let w be (1,0) form
with eigenvalue E. Then (0,0) form diw satisfy
1
éAaTw = (00" 4 9'0)0'w
= 9'00'w
= 07(00" + 0"9)w
1
= Ei'w. (4.147)
Therefore, 'w must coincide some f,(z,z). This completes proof for AL Proof for
LAY goes in the same way by using the equality 1A = (99" + 010). O

Variation d¢ from the constant map ¢y can also be regard as (0,0) form on CP.
Combining

¢ =dh+ Y Onfalz,2), ¢ =65+ difulz2), (4.148)
n>0 n>0
X =X0+ D Xafa(2,2), X =xo+ Y Xifulz2), (4.149)
n>0 n>0
Zw” 3 2 fn(2,2), Zw” 8 [z, 2). (4.150)
n>0 n>0

We set the volume of CP! to 1. Since A is Hermitian, { fo(z,2) = 1, fi(z, 2), fa(2, 2),- - }
can be considered as orthonormal basis of Q©:0)

(fas frn) = (2, 2) fm(2,2)dz NdZ = 8,pn (n,m > 0). (4.151)
CP!

Since (f,, (970 + 99" fin) = EmOpn = (f1n, 070 fm) = (O fn, O fnm), we obtain
0. fn(2,2)0:fm(2,2)dz NdZ = Epydpm  (n,m > 0). (4.152)
cpl

This forces us to adopt {Fﬁ fn(z,2) | n > 0} and \/}Efazfn(z, Z) | n > 0} as expan-
sion basis of ). Therefore, integration measure for path-integral is given by

DHD\DY — (Hd%d%d)codXo) (HH A0ddh ) g ”dw“dw)

i=1n=1
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4.5 The case when E=T'M

In this subsection, we discuss the case when the vector bundle E equals 7"M and the
zero set of K is given by a finite set of discrete points {p1,--- ,pnx}. In this case, the
action A on T"M is given by 0(sK) : Y — [sK,Y]. On the zero set of K, it is explicitly
given as follows.

9 00 0
Hence we set A; = —9; K" in this subsection.

4.5.1 Explicit Construction of the BRST-closed Observable

First, we construct the observable . For this purpose, we have only to determine the
explicit form of Af. Since the local holomorphic frame {e,} is given by {5}, we do
not distinguish subscripts of local frame from ones of local coordinate. Then canonical
connection becomes V aZi = ngdzk%. Then, we obtain

. - 0 , . o 9
Z(SK)V% = sKlz(dzl)ngXk@ = SKZFZl%,
;0 — 0 P 0 ;= 0 ; — 0
and
0 . 0 i .0 0 ~ 0 )
Al— =L — 4+ —F'— = sA'— — i(sK - —
70z 70z + 2 10zt ° 70z i(s >V821 70z

i i i i - 0
= (=0, K" = sT5, K" 4 o Rjyqdz* A d2t) ==,

This is the formula we use in this subsection.

4.5.2 Expansion of the Lagrangian up to the Second Order

In the s — oo limit, path-integral is localized on neighborhood of p,. Therefore, we use
expansion of the fields in (4.148), (4.149) and (4.150) with ¢g = p,. Then we expand
the Lagrangian up to the second order of the expansion variables. In the neighborhood
of p,, K is expanded in the form: —Kaézj +---. We can also assume that g;; = d;;
and T}, = F% = 0. Therefore, in expanding the Lagrangian, we can use the following
simplification.

D, — 0., D; — 0; v = 0j, Vi — 0;. (4.155)
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We also have v, K i=—-K zﬂ +--+. Then expansion of the Lagrangian up to the second
order is given as follows.

(L + V)anL = Lg + La/7
LY = t[Bs* 05K, KL, dhoh — 6 Kﬂuxoxo}
La/ = Z [t(sZ;(ﬁZ(ngn + \/—2513( an + Q/JZXQL) \% ]

n>0
+ {85205 Kl Kool — 18 Ko — B0 K] .
n>0

where Lg is zero mode part and L’ is oscillation mode part.

4.5.3 Evaluation of lim, .., < ¢ >

We represent the correlation function in the following form:

lim < ¢ >p= Z lim /@qb@x@@b 0| po e HOTEY (4.156)
S5—00

On po, A = —s0; K* — 5T K* 4 ﬁR;kldzk A dz! becomes sKl; — o= ? A2 A dz!. Let
K, be m x m matrix defined by K;. Then we have ¢|,, = s"¢o(K, — t5=R|,,) =
$"™@(pa, s). With this set-up, we evaluate the contribution from p,,. Flrst we integrate
oscillation modes. ¢|,, does not contain v oscillation modes and we neglect the third
and higher order terms that contain oscillation modes. The part of oscillation modes

integration is given as follows.

/7
lin [ DoDxDu el = i o, [ [TTT %% gysariausavse

i=1 n=1

At this stage, we transform integration variables in the following way (n > 0).

1 . 1 T

o o Z A N e _ T B 4.157

O =~ $n' = < on i = N X = e ( )
1

Y Y ) (4.158)

G Vs

Then integral measures of oscillation modes are invariant under the transformation and
L% is transformed in the following form.

HHdwd%d Hdxidyidy) = HH ‘W :"bd L, di i, (4.159)
i=1 n=1 i=1 n=1
al t i \/%
L= Y [ 505008 B + = =05 (4l + Unxh) V] (4.160)
n>0
> {180 K Ko dlich, — 105 Kol — BogKa ]} (4.161)
n>0
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We neglect O(s™!) part since we take the s — oo limit. As a result, integration of
oscillation modes is given by

Tim ¢l / HH o, d(b”d Lyt do)

i=1n=1
x exp| {480 Kl Khp 0l + 05 Koyt + o Kool ] (4162)
n>0
00 1 m ' i ' } ' )
— l 7 K2 7 2 (2 (2
x exp [—tﬁ%KaiffipeﬁMZ KL, + B Ra ] (1163)
By using the following integral formulas,
i g —2m m 1
dooexp [—ub;;dep] = ( )™ (detM) ™, (4.164)
/dXOeXp[Mijxéxé} = detM, (4.165)

we proceed as follows.

o0

o IT i / [[astasliiavias;

X exp [—tﬂ(sﬁf(alﬁgg¢z¢” 10 KL + B Ky ng;] (4.166)

g ﬁ(__1>m(—tﬁ)mdet(éijKéﬁ)det(éiﬂ(a;) (4.167)
seo 7o L35 det (65K K7,) |
=1 rraptrav
= lim ¢|,,. (4.168)

5—00

Contribution from oscillation modes turn out to be 1. Next, we calculate integral of
zero mode part.

lim /dgbodx() smgo(pa,s)e_Lg

S—00

= lim s"¢(pa, 5) / dodxo exp|[—t(s*B; K, Kﬂl_¢g¢>0 — 805 K]uxoxo)]

= li_}m smgo(pa,s)/dqboexp[—tszﬁéﬁf(’éukzl{bg%} (4.169)

X /dXO exp[tsé KJMXOXO}
0 (Pas 5)det (05 K72)

S0P ) - (2mits)™ det (35K,
5—00 (tSQB)mdet((sinfwKil—) s—>oo det((sﬁK&MKil—)
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where we used § = 27i. Since lim, o0 ©(Pa, 8) = limy o0 (Ko — 5= R],,) = ©(Ka),
we obtain

Ka d t 6[.[?2*

i [ D600 plp)e o = ELEeI 00 Bl

800 det(agK&uKal—)

P(Ka)
= —— . 4.171
det(K},;) ( )
Since we already know 6|,, = K/, the above result is rewritten by
N
. (o)

lim < ¢ >= —— 4.172
lm <9>= 2 3em) #172)

By combining Proposition 1 and the result in the s — 0 limit, we obtain the Bott
residue formula in the case of this subsection.

Pp(T'M)[M] = %@j‘z)). (4.173)

Let us assume that E is a general holomorphic vector bundle on M and that zero set
of K is given by a discrete point set {p;,--- ,py}. In the same way as the discussion
of this subsection, we can derive the Bott residue formula:

o(E)[M] = %. (4.174)

a=1

This result corresponds to the example given in [8].

4.6 Derivation in General Case

In this subsection, we derive general case of the Bott residue formula, i.e., zero set of
K is given by {N,} where N, is a connected compact Kéahler submanifold of M. For
simplicity, we focus on one connected component N := N, in the following discussion.
We set codime(N) = v. In the s — oo limit, the path integral is localized to neigh-
borhood of N, we apply expansion given in Subsection 4.4 around the constant map
¢®o € N. But one subtlety occurs in this case. Since N is a Kahler submanifold of M,
local coordinates around ¢y € N can be taken in the following form:
(Zi> o azia Z\I\/—H? e ’Zﬁn)’

where points in N is described by the condition z{ = -+ = z¥ = 0. Then fields ¢,
x and ® are also decomposed into ¢ + ¢y, x1 + x| and ¥, + ) respectively. From
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now on, we use alphabets for L directions and Greek characters for || directions. Then
expansion in Subsection 4.4 is changed as follows.

$L=do+ Y dlafalz,2), ¢ =g +Z¢ Tn(2,2),

n>0 n>0
TL>0 TL>0
, 1
L= —az n n 8 n
wzJ_ nz>0 \/E_n J_nf 2, Z nzwwj_ \/— f (Z Z)
(4.175)
O = o+ D dnfalz,2), of = o+ D ol falz2),
n>0 n>0
X =xlo+ D Xtz 2), X =xfo+ D an 2, 2),
n>0 n>0
Yo = Zwlln a 2fn(2,2), U7 = Zwun 3 fu(2,2).
n>0 n>0
(4.176)

In other words, we decompose the integration measure as follows.
[ 20000 [ Depxiou [ oo 060000
N N,

4.6.1 Expansion of L up to the Second Order

By using the orthonormal relation (4.151) and (4.152), expansion L up to the second
order is guven by

L - Z [tEnéﬁgb,i + \/_Z \% 51]77Z}J_nXLn + \/—Z \% 5@]¢LnXJ_n

n>0

+ tEk 5L7—¢||TL ”n + \/_Z \/ 507'1/}||HX/HL77, + \/%Z V En5L?¢|,|LnX1|Z] ) (4177)

where we used local coordinates that make g;; and FZ(F%) into ¢;; and 0 respectively.
(gz‘j — 51‘37 Guo — 5uz7, Gip = 0)

4.6.2 Expansion of the Potential V/

In this subsection, we expand the potential term V' around neighborhood of p € N.

V= dzdz[ts*Bg s K K + tsg, 79 i K2 xMx! + sgp v, K1pMyl]. (4.178)

Ccp!



where subscripts I, J, M, --- run through all the directions 1,2,--- ,m.
First, we consider expansion of the second term of V. Let us consider the following
Taylor expansion around p . We use the coordinate system that satisfies

g17(p) = 015+ - (9;(P) = 053, Gus(P) = Oz, giw(p) = 0), (4.179)
Py = Ripg®" + 0Ty (o™ + - (4.180)
Moreover, p is in the zero set of K, we can use K = —K/2} +---. We neglect second

order or higher term each.
5917V K = 59150y K7 + T K"
= —s0;K5, — sRynirKi0h 0" — 56,057 Kigh o™ -
= —50; K3, — sR KL ¢ff — sRiu Kioh o)
— $07 708 ] Khdh o™ + - .
Since the last term does not contain holomorphic part of ¢ and contain ¢, it does not

contribute to Gaussian integration of ¢,y that will be done later. Hence we neglect
this term. Then we obtain

917V K" = —s63K — sRp,ui K507 ¢ — sRiur KT é (4.181)
and
sgraVirK XM = —s6 KL XTXL — sRpun KhoT oM X'
—SRIEZMK%¢T¢QXMXI- (4-182)

Since x = x| + x., we decompose
M. I __ i m. L o i m. i
XX = XX XX X XL XX

Then the part that corresponds to (4.182) is rewritten as follows.

/ dde{sngVMKjXMXI}

cpt
= [ dsde{ s KINTN - SRy K0T oY
cp

- SRmMK%@ﬁbTﬁbZLXMXI}-
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Then we use the expansion (4.175) and (4.176).

/(Cpl dzdz{ —s5,-;f(,%xfxi}

= —5513[?%)(?09(10 - 55z‘jfd Z XX s

n€Z(n#0)
/ dzdi{—nguMKzﬁﬁbﬁﬁﬁXMXI}
CP!
CP! n€Z(n#£0)

= [ dsas{ =R KT = st T
— $R,a KR Todl XX — R ¢ﬁ0xixi}
SRL];LVK ¢¢0¢ﬁ0XﬁoX||o SRL]MZ J*¢To¢ﬂboXioX|L|o
SRWWK ¢J_O¢‘0X||OXJ_O zyul ¢ ¢ﬁoXioXioy

/(CP1 dZdZ{ SRI]ZMK CbmébLX X }

_/ dZdZ{_SRIle 20T 0x X}
cpl ) .
77 4m gl T ) m n L
_Sijlﬂth¢J_0¢J_0Xﬁ0XHO - SRLEZFLK%@¢J_O¢ZJ_OXLOX||O
l g i 73 mo ol m
z]l,u ¢ ¢¢0Xﬁ0X¢o - SRijlﬁKg'n¢J_0¢J_OXJ_OXJ_O'

In this expansion, we neglect third and higher terms that contain oscillation modes.
Next, we expand the first term by using the same rule.

/ dzdz{sQBginil_(j}Z/ d2d5{3255i3K£an¢T¢i}

cp? Cp!

:/ dzdz{s255i3K;f‘(§{¢ + Y Tz 2))
CP!

n€Z(n#0)

<Aoo+ Y olufalz 2}

n€Z(n##0)
= B0 KL K0T 00+ Y 2RO KL Ko ol

neZ(n#0)

We can neglect the third term by applying tha same rule for expansion. As a result,
we obtain the following form.

/ dzdz{ 280K K7 + 5179 KTx™ f}
CP!
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= 3255i3K:ﬁKl]¢m 1ot Z QB%KZ Kj¢ - 352‘3[(%1)(7?0)(10

n>0
m [ 2N i om I L
— 80;; K Z LnXLn SRL]/U/K ¢m¢ﬁoXHoX||o SR ;.1 %(bmfbﬂboXmXuo
n>0
SRZ];WK] 10 ||0X||OXJ_O SRZJ/.LZK] 10 ||0XJ_OXJ_0

SRLM m¢Lo¢LoXH0XHo - SRij m(bJ_O(bJ_OXJ_OXHO

R K ¢ ¢10Xﬁ0X10 - SRijlﬁKZﬁ¢TO¢ZJ_OX7_OXiO'

From the above result, oscillation mode part is the same as the one in the previous
subsection. So, new things that we have to consider is integration of zero mode part.
We summarize the result of expansion of L 4+ V' in the following form.

L+V=Lo+Lj+1L, (4.183)

Ly:=1 Qﬁ%Kl K](bJ_O Lo — 59 KmXJ_OXJ_O
SRLJWK ¢¢0¢ﬁ0Xﬁ0X|L|0 SR 5.1 %ﬁbTo(ﬁﬁoXioXﬂo
— 5 R, K o @l XToX 1o — SRy dTodliox oX Lo
- SRszﬁ meTOQbIJ_OXﬁOX\L\O - SRijKg@To(?ioXiLoXﬂo

Rijip KK ¢ ¢ioXﬁoXiO - SRiilﬁK%(bTo(blloXEoXio} ; (4.184)
L F . TN : o\ T

n>0

L/J_ = Z{tEnég(ﬁ/ﬁn 'j tE ZézijnXJ_n tE Z(Szij_nXin

n>0

+ tﬁs25@Kﬁf(g ol — 865 Kﬁx’fnxﬂb — 530K /jn} (4.186)

4.6.3 Evaluation of lim, ,,, < ¢ >

First, we decompose Ly into L o+ Ljo. For this purpose, we transform variables in the
following way (n > 0).

_ _ . 1 . = 1 -
L s L un ) _ /17, 7 I /17
¢H0 - ¢||07 ¢||0 - ¢||07 10 — g 10» Plo= g L0’
¢ \/— m \/— //L i 1 l/z i 1 //z ( 4 187)
Xjo = VSXo » X||0 = V5Xo X10 = \/— X10 X10 = \/— X10 .
¢///L /% N 1 i oot
¢Hn | qun ¢||n7 1n — s 1no 1n — s 10>
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L T 7 1 7 7 1 3
_ ) 1 ) . 1 .
" i I _ " I _ "
@Dun Yijn » @Z’Hn Yiin in = _\/g Ln> in = —\/g 10 (4.188)

Let us focus on the measure:
dojodx)o = dgbﬁgldgbﬁ;l . dqb%dqbnﬁodxﬁ;rldxﬁarl . dxﬁf)dxm.
Transformation rule of the measure is given by Berezinian as follows.
djodxjo = d¢||o Xjlo-
As for the measure:
doodx o= dﬁbiodﬁblm T d¢iod¢ZOXmLoXmLo T dXIiodXim
transformation rule is given by
1 /! 1!
do odx 10 = ;dﬁbLode-

Integral measures of oscillation modes are defined as follows.

2e19x12Y = [ 5 o )
n>0

Xyl Ay dyfrdyl,

lIn

¢1U+1d¢m+1 . dqsl‘mdqﬁl‘mdx‘u—i-ldxm-i-l v dXHndXHn

[In lIn

¢/ X, 9Y, =[] At dd'y XL, - dX Y dX T,

1
: d /1
n>0 (27TZ)
x Ayl d't, - dp't AT,

These are invariant under the transformation.

D4{Ox|Y] = Def'Dx{ DY’

@qu@XL@wl — @¢/// ///@wl//

In sum, transformation of the whole integral measure is given by
/ D6100x10 | DoiDx0v] / 0610010 [ 96,000
N Ny

1
/ d¢”0 ”0/ d¢ /QQ%H U/@w/// ©¢/// //l@w///
N
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Let us consider ¢ at p € N. By using the above variables, A% is expanded in the
following form:

{
A= N4 Pl Y = s L) + VL T )

Since we neglect the third and higher terms that contain oscillation modes, F'|, does
2m

not depend on ¢;. Then we expand ¢(p) in the form: (p) = Z sggpk(p). Note
k=—2m
that g, (p) is written as p(A2 + szaquSVXg” ). We then look back at the expansion

of the potential term. Since we neglect terms that have negative powers in s, it is
represented as follows.

LO — t{ﬁé Kz K]¢//m //l 5 K] X,J/_%lxlfo
//,LL nlo_m

J mm //,u "o I 11
SRLj,uuK 10%)0 ||OXHO Lj,ul 100 J_0X||0

g oamm e i P UTNI
RWVK oh (bH()XHOXJ_O L]l,LL ¢ ¢J_OXHOXHO}

/ /1My T . mT . I . e
= Z [tEn(SﬁCb”n n T tEnZ(SLT@/)Hn X|n T tEnZ(SLT@/)HnX”n}, (4.189)
n>0
L= Z[W%KI R ml — to,5 KX 1oL, — BOG KL ”’]] (4.190)
n>0

Let us evaluate the contribution from the component N to lim, ,,, < ¢ >q. First, we
integrate oscillation modes in [|-part. Since each ¢(p) does not contain " and ¢,

we have only to perform simple Gaussian integral.
D ¢/// /// 77/1”/ ( ) L’
[

=) / D DX DU exp{ = I [tEubr ol + VBT + VBN |
n>0

/ 1 /// n n
= ¢'(p) H iy /dcb“n X|nd¥|jn

n>0

x exp{ = [tB, 06807 + VB 0,0+ v iEis vt}
tE, \m—v
= ¢'(p) H(E) = ¢'(p).
n>0 n

We mean by ¢'(p) the operator obtained from removing X”’

from ¢(p). Next, we

2m
integrate oscillation modes in L-part. We expand ¢'(p) = Z sigo;(p), (om(p) =
k=—2m
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Phm(p) = ©(Al + 5 Ffw X)), Then we obtain

/©¢/// ///@wl!l /( )exp(_L/l)

/g(b/// ///@w/// / exp{— Z{tﬂ(s -KZ K]¢/Ilm ///l . Zf5 K] X/J_//Zm 10

n>0

1in

s}
= G (7) H o [ a6t e { a0 Koo

n>0

/ " dlbl”n exp{t&iﬂ_{j X/L//;rlein 5515K1 77D///m ///] }

— "l (p) H (det (51'3}_(7]7%)‘1@@3}(;)
00 det (0;; K, K7)

= s"¢l,. (p) + (terms of lower power in s).

) + (terms of lower power in s)

At this stage, we can represent the contribution from N in the following form.

/ ddllodX|[0Pm (P )/ do’| odx" oy exp{—Lo} + (terms of lower power in s).
Nia

Finally, we integrate out zero modes in _L-part.

| ooy exp(-Lo}
Ny

:/N A6} exp| 1015 { B0 K K7 — R KIX[IT6 } 0 + ts R Ko Th 0 o)
€1

< [ axtoesp [t{55RANTNy + RaaRad oty + Rou Kao oot |
= | dolyexp]- d)”m{ﬁéﬁff%ff] Reima KX 010+ 15 P Kn o]
Ny

x [(—t)”det (5:K2) +

j ]
/dXJ_O €xp (tRL]ul J ,fg /H,gX/JI_OXﬁ(L) + tR’Lj/LVKJ ,fg h,gXﬂ(l)/XZJ_O)}

Then we preform Gaussian integral of exp( ”m{ﬁéw K K] meuK] Xﬁg ’H’é} i >

Note that terms except for (¢)”det (5@_[_(%) include fermionic variables. Hence by ex-
panding exponential, we only have to consider polynomial correlation function of ¢,

for these terms. But the matrix {ﬁégKﬁnf(J Rumquxﬂgxﬁ(‘)} takes the form A,
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and these correlation function all vanishes because they only have anti-holomorphic
variable ¢'7. As a result, we obtain

(—t)det{d;; K3}

—27?2')”
det{B86,; K3, K7 — RimaKi x5/}

/ d¢/iodX/io exp{—Lo} = ( ;
Ny

m
(2mi) et {6;K2,}
(B)det{0; K}, K7 + 3= R KX X6}

I

From R, = Ropjp = —5i3Rfmﬁ,
1

i i pi LY

det{Km + ﬂRmLﬂXﬁ()X”g}

/ dﬁb/iodX/io exp{—Lo} =
Ny

We remark ¢} (p) = p(A2 + inyﬁXg”Xgﬁ) = ¢(A,). By adding up contributions

2r 7~ a I
from all the connected components, we obtain the correlation function in the following

form.

: gp(Aa)
lim < ¢ >¢ = lim [ / doidx] . N _
§T700 v o s%ooza: Na ¢||0 Xllodet{lifn QZRinLﬁXﬁ(LJXﬁg

+ (terms of negative power in s)

P(Aa)
— d /! d " : £\ : .
;/Na Pllo X”Odet{K;n n ﬁR;uﬂX%Xﬁg

Lastly, we rewrite the determinant in denominator. K;: corresponds to the map 6”|y :
T'M|n/T'N — T'M|n/T'N. and beﬂxgxg‘ is nothing but the curvature (1, 1)-form
of T'"M|n/T'N ( R; = R%). As a result, we can rewrite the above result into the form:

. e(Aa)
1 < >o0= — - .
i <9 >0= 2 / . det{6y + Ry}

By combining the above result with Proposition 1, we finally obtain the Bott residue
formula:

(Aq)
P(B)[M] = Z/ det{é + LRy}

Appendix of Part I (Proof of Proposition 1)

We prove the correlation function is independent of parameter s. The basic idea comes
from [38] and [18]. Sigma model has two charge for fermion F4 and Fy. These charge
acts on the operator O, obtained from (p, ¢)-form w as follows.

Fs0, = (p+q)O., O, = (—p+q)0.,. (4.191)
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The symmetry Fj4 is broken by the potential term. So, observables are graded by
Fy. However, since F)y is counting total degree of differential forms, we can use it
for taking conjugation of operators (this idea was used in the discussion on Landau-
Ginzburg model in [18]). Let us consider e’ (X € R). Then e *M4(Q e M4 is evaluated

as follows.

e MaQ MO, = Q20 0, (4.192)

m

Next, we focus on the observable ;. We decompose observable ¢, into ¢, = Z sk Om—k-
k=0

Since ¢,,_, corresponds to (m — k,m — k)-form, we can compute e 4 erMaQ0,,.

e Magkp M0, = e s, 1O, (4.193)

Hence we obtain

e~ A e A = =2mA, (4.194)

Let us introduce vacuum vector |0 > and its dual < 0|. Then we can represent the
correlation function < ¢, > as < 0]p,|0 >. By using the relation (4.194), we obtain

< s> = < 0|ps|0 >=< 0leMaeMagp A=A >
= < 0[eMap,one A0 > 72,
Since our theory has 2m fermion zero modes x§, and X% (t=1,---,m), it is anomalous.

Therefore, if we assign |0 > charge (0,0), we have to assign < 0| charge (m,m).
Therefore, we have Fi4|0 >= 0 and < 0|F4 = 2m < 0]. Hence we obtain

< s> = < 0leMap e A0 > e
= 7 < 0)ge2r|0 > e72mA
= < 0]pge2n|0>
= < Pge2x > .

This completes proof of the proposition.
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Part 11

Evaluation of Euler Number of
Complex Grassmann Manifold
G(k, N) via Mathai-Quillen
Formalism and Schubert Calculus
by Fermionic variables

This part is an edited and reprinted version of the contents of [20] and [28].

1 Main result of Part 11

1.1 Cohomology Ring of Complex Grassmann manifold

In this section, we introduce some fundamental results of the cohomology ring. Com-
plex Grassmann manifold G(k, N) is a space which parametrizes k-dimensional linear
subspaces of N-dimensional complex vector space. First, let us introduce well-known
facts on Chern classes of holomorphic tangent bundle 7'G(k, N) of G(k, N) and the
cohomology ring G/(k, N). Let S be the tautological bundle of G(k, N) whose fiber of
A € G(k,N) is given by complex k-dimensional subspace A C CV itself (rk(S) = k).
Then universal quotient bundle @ ( tkQQ = N — k) is defined by the following exact
sequence

09 —=CY—Q—o. (1.1)
where C means trivial bundle G(k, N) x CV. Since T'G(k, N) can be identified with

Q ® S*, we obtain the following exact sequence:
0= S®S*—CV®S* — TGk N)— 0. (1.2)
Let ¢(E) be a total Chern class of vector bundle E. Hence the total Chern class of

*\\N
T'G(k, N) is given by % (Euler number of G(k, V) is obtained from integration
c
of top Chern class of T'G(k, N)). If we decompose S* formally by the line bundle L}
(i=1,2,- k)

5 — ,e’%l L (1.3)
(S*) =14 t"en(S*) = H(1 +2;), (2 :=ci(L})). (1.4)



Here, ¢;(S*)(: = 1,--- , k) is the i-th Chern class of S*. Since the relation of the i-
th Chern class of a vector bundle F and the one of its dual bundle E* is ¢;(E*) =

(_1)ici(E>’

(S ® 5*) = ((é Li) ® (j@l Lj)) —c (lél(Li ® L;f)) — ﬁ (L ® L)

7]2

= f_[ (1+ (L ®L*)):17:[(1+(xj_xi))
= lj )1+ (z; . — ;) = }:[(1 — (zi — x7)?). (1.5)
Then, we obtain |
(TG NY) = @)Y (1.6)

[T, (1= (2 —25)?)
Next, we recall the cohomology ring of G(k, N) [9]. The cohomology ring of G(k, N)
is given by
R[CI(S)) e 7ck(8)7 CI(Q)a T 7CN—k(Q)]
(c(S)e(Q) = 1)
To match our theorem, we denote this by ¢;(S*)(i = 1,---,k). Since ¢(E*) =
(—1)'c;(E), we can take ¢;(S*)’s and ¢;(Q*)’s as generators of H*(G(k, N)).
R[CI(S*)7 e 7Ck(S*)7 Cl(Q*)a T 7Cka<Q*)]
(c(5%)e(@%) = 1)

c(S*)c(Q*) = 1 is obtained by considering the dual of (1.1). On the other hand, the
relation ¢(S*)e(Q*) = 1 is rewritten by

H'(G(k,N)) = (1.7)

H™(G(k, N)) =

(1.8)

Q)= g (19
Then, if we expand c(—;'*) = 1/(1+ 1 (S*)t 4 co( SN + - - + cx(S*)tF) in powers of ¢,
1 > A
T a(S)t+ aSIE - (S ; ait' (1.10)
from rank@ = N — k, we can rewrite (1.9) as follows:
(@Q@)=a; (i=1,2,---,N—k), a;=0 (i >N —k). (1.11)
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Note that a; is degree ¢ homogeneous polynomial of ¢;(S*)’s (j = 1,2,--- , k). Hence
we can eliminate generators ¢;(Q*)’s from (1.8) and obtain another representation of
H*(G(k,N)).

Rle1(5%), -+, er(S7)]
(a; =0 (i>N—k))
Lastly, we include the Schubert cycles of G(k, N) [17]. It is the well known fact that
the Chern class of G(k, N) corresponds to the Poincaré dual of Schubert cycle. Here,
we introduce Schubert cycles. For a more detailed discussion, please refer to [17, 21].

For any flagV : 0 C V;, C Vo C --- C Viy = CV, the Schubert manifold 7,(V) is defined
by

H*(G(k,N)) = (1.12)

T.(V) :={A € G(k, N)|dim(A N Vy_gri—qa;) > i(1 <i<k)}, (1.13)

where a = (ay, -+ ,ax) is a sequence of natural number that satisfies 0 < aj, < a1 <
.- <a; < N —k. 7,(V) is an analytic subvariety of G(k, N) of codimension 321, a;.
Then, the homology class of 7,(V) is independent of the flag chosen. Therefore, let
7,(V') as the homology class be denoted by 7,. Let 7. be the Poincaré dual of the cycle
To- And we abbreviate 0 in a. For example, 7(q, a5, 4,0, ,0) 15 denoted by 74, 45.... a,,-
From the Gauss-Bonnet theorem,

G(87) = (~D'e(S) =75, ... 1 =T (1.14)
——

Therefore, the integral of Chern classes over Grassmann manifold represents the in-

tersection number of Schubert cycles. One of the results of the part II is that we can
perform this calculation using only fermionic variables. More details in Subsection 1.3.

1.2 Representation of Euler Number by Our Model (Main
Theorem in Part II)

In this section, we introduce Main theorem in this part. It is given in [20]. We denote
by U (k) unitary group that acts on complex k-dimensional vector space and by V,(CV)
Stiefel manifold of orthonormal k-frames in C¥. Then G(k, N) ~ V4 (CY)/U(k). We
introduce detailed informations of G(k, N) in Section 3. By applying Atiyah-Jeffrey
construction to the case when a manifold X and a Lie group G are given by V;(C¥)
and U(k), Euler number of G(k, N) is represented by the following finite-dimensional
path integral (unless otherwise noted, we use the Einstein convention).

Theorem 1. (Main Theorem of Part II) Euler number of G(k, N) is evaluated by
finite dimensional path integral:

XG0 3) = () = xORE)/0w)

= Dz / DyDypDGDADNDYsDxDH wexp(—Lyg), (1.15)
Vi (CN)
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where the Lagrangian Lyq, the projection operator w and the normalization factor (3
are given by

Lyg=0<x,H>+6<1a, A> +%5[< Vit > +<apiztd > (1.16)

N
-3 [Z HIH] — ((5 + o)) + widavs| + itr(99)

’Z

* % { } i + tr(AT (A + [ig, A]) — la)., (1.17)

= H [Z —I—Z 1/)] } b= = KGE+D) k - (118)

ij=1 s=1 22k( >k2+kN EN+=5— ( 1)5(!@—1)

In the above Lagrangian, ¢ represents supersymmetric transformation whose de-
tailed construction will be explained in Section 2. In this section, we briefly introduce
our notations and supersymmetric transformation. Let

2= (2. 2), (1.19)
2l = t(z{,zg,--- ,zf\,) (j=1,2,--- k), (1.20)

be local complex coordinate system of C*V. Here, we introduce some notation for our
model ( this notation is used in this section, Section 3, Section 4, and Section 5 ).

Definition 1. Let Xand Y be matriz variables used in our Lagrangian.
(1) We represent complex conjugate of X by X or *X. We also use the notation

(X)) = X] or (X) =: X;;. In our Lagrangian, ¢ and ¢ are diferent independent
fields, cmd we use *gb and *qﬁ to represent the complex conjugate of ¢ and .

(2) We represent transpose of X (resp. adjoint of X ) by X (resp. XT). (X1 := *X).
(3) We define inner product of matriz variables Xand Y of the same type by <
X,Y >i=tr((X)Y).

Then, V,(CY) is given by a set of points in C*V that satisfy
N —
Y a6y =0 (i,j=1,2,-- k), (1.21)
s=1

where zg represents z_;;, and ¢;; is the Kronecker’s delta. 1’s are complex fermionic
variables that correspond to super-partner of z:

Q,D = (¢17¢27"' ,¢k), ¢j = t( {7¢%a 7¢§V) (122)

¢ and ¢ are k x k Hermite matrices (¢ = ¢, ¢ = ¢'). i¢ and i¢ plays the role of
generator of Lie algebra of the gauge group U (k). Note that ¢ is not complex conjugate
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of ¢. n is super-partner of ¢. Hence 7 is a grassmann and Hermite matrix (n = n').

¢11 O o o O

o=1 1+ . | o= 1 | (1.23)
Pr1 Ok PR PRk
N Mk

n = oo ) (1.24)
Mer = Tk

H is k x N complex matrix which plays the role of auxiliary variable in MQ-formalism.
X is super-partner of H. A is k x k complex matrix and 14 is super-partner of A.

H.=(H' ... H'), H/ = Y(HI ... H). (1.25)

xi=(x - %), = 0d ) (1.26)
Ay - Ay, ay e Yal

A e SR : g = S , (1.27)
A 0 A bap o Yan

The supersymmetric transformation ¢ of our model is given as follows.

6z =1, & = bz =iz'p, ox = H,0H = x + dyx = x +iX'0,
Sha = A+ 0,A = A+ [Aig], SA=14,00=0, §¢p =1, dn =046 =i[p,d]. (1.28)

0y and dj are infinitesimal gauge transformation generated by i¢ and i¢. In (1.16),
the terms Supersymmetric transformation for complex conjugate of X is defined as
complex conjugate of §X (6X := (6X)). & behaves like a fermionic variable. By
applying (1.28) to (1.16), we can obtain explicit form of the Lagrangian (1.17). Note
that the z variables satisfy (1.21), the defining equations of the Stiefel manifold V;,(CV).
On the other hand, 1, the super-partner of z, plays the role of the 1-form dz in the
supersymmetric path integral. Since (2!)T2/ —§Y =0 (i,j =1,2,--- , k), we also have
the constraint for dz:

N
D (deia] + 2idzl) =0 (i,j =1,2,--- k). (1.29)

s=1

By identifying dz! and dzil with ¢ and 1@. respectively, the above constraint is realized
by insertion of the following projection operator w:

k N

w =TT Dol + =) (1:30)

ij=1 s=1
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B is the normalization factor that normalizes volume of G(k, N) into 1.

k—1 .
B = 1Lz (1.31)

22k(_w)k2+kNﬂkN+@ (—1)5¢=D '
Note that the volume U(k) is given by
k 9 ﬂ_k(k;l)
vol(U(k)) = [ [ vol(S8¥ ") = e (1.32)
j=1 Hj:l J:
Then, we can rewrite § into the following form:
1
B = 1.33
5 (1.33)

k(_ﬁ)kQJrkN,/TkN(_1)%(’6*1)\701([](]{)) '

Lastly, we remark that the supersymmetry and ghost numbers for each variable. (This
topic is based on discussion with Professor Masao Jinzenji.) Atiyah-Jeffrey construction
is used to study mechanism behind Witten’s construction of the topological Yang-Mills
theory [3, 39]. Then, each field in this theory is given a ghost number in [39]. In this
part, it is given by (z,%,x, H, é,¢,n) = (0,1,—1,0,2, -2, —1) [37]. Supersymmetric
transformation also has a ghost number 1. However, since 0H = x + 4, the ghost
number of dH is not fixed. We introduce a bosonic variable ¢ for a ghost number
2. And we modify 0H to 0H = cx + dsx. In the same way, 014 is modified by
0pa = cA+ d,A. Then, the ghost number of § is fixed 1. Related to this, our
Lagrangian is not strictly invariant under the supersymmetric transformation, i.e.,
dLaq # 0, because our supersymmetric transformation is not nilpotent. For example,
we have the following relation.

02 < aha, A > = Str(cAT(A + [ip, A]) — l04) (1.34)
= tr(cpl (A + [io, A]) + cAT(1ha + [ich, 1a])
— (cA+[A, i) + ¢l (cA + [A,ig)])) (1.35)

= tr(2c A+ cAT(Va + [id, a]) — (AT + [AT,ig])1ba + (c — 1) [ig, A])
= tr(2epl A + cAT[ig, 4] — [AT,idloa + (¢ — 1)l [ip, A])
= tr(2cph A + Alfig, ] — iAT g4 +id AT + (¢ — 1)l [ig, A)).

(1.36)
Since tr(i¢A%A) = tr(ATwAiqﬁ),
6 < a, A > = tr(2eh A + cATlig, ba] — Allid, wa) + (¢ = Dwhlig, A])
= tr(2e0} A + (c = 1) (A1[ig, va] + vifig, A])). (1.37)
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However, since our aim is that constructing a recipe for the Euler number of G(k, N),
we put ¢ = 1. Then,

2 <y, A>=2< g, A> . (1.38)

The reason for introducing of A and 14 and the modifying of supersymmetric transfor-
mations forA and H comes from our requirement that integration of A and H variables
produces top Chern class (Euler class) of tangent bundle of G(k, N). More explana-
tion will be given in Subsection 1.4. In some sense, we consider central extension of
supersymmetric transformation in order to obtain top Chern class of tangent bundle
of G(k, N) from the toy model version of topological Yang-Mills theory.

1.3 Schubert Calculus by Fermionic integral

As mentioned in Subsection 1.1, integrals of Chern classes can be computed using
integrals of fermion. In this section, we give an overview of the method and the results.
In our model, ¥(1 <i <kl < s < N — k) are important. We define the k x k matrix
whose elements are given by fermionic fields.

N—Fk wil e w;k
P ol (@il = i), (1.39)
s=L\ Rl Wk

Let A\; (i =1,--- k) be eigenvalues of ®'. Then, we define 0;(i = 1,--- , k) by

k
1+ to) + 2oy + - thoy == det (I, +td') = H(l + N\i). (1.40)
i=1

Then, we obtain following theorems. (They come from [20].)

Theorem 2. Let us define b; (i =0,1,2,---) by

1
— =N "t 1.41
det([k + t(I)/) mz ( )

Then, b,, =0 if m > N — k.
Theorem 3.

% / Dy (det(®)" " = 1. (1.42)

Theorem 4.

Rle1(57), -+, en(S7)]
(i =0 (i >N —k))

H*(G(k,N)) = ~ Rloy, - 00 (1.43)
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These theorems are proven in Section 4. Theorem 3 corresponds to normalization
condition of integration on G(k, N)[17, 40],

/ (ce(S )V = 1. (1.44)
G(k,N)

And Theorem 4 claims that x; and \; are identified. Since an element of is represented
by a symmetric polynomial g(zq, -, xy),

[T J! ,
g(xl, T ,xk) = —=N-1 . Dy 9(>\1; T ,/\k)- (1‘45)
G(k,N) 11 !

j=N—-kJ

Here, D' = Hivz_lk dw;dwg e dwfdwg In Section 5, we prove next result by using this
result. (This result comes from [28].)

Theorem 5.

k—1 .
szo J!

« _ 1.2
/ (7)) N = (Nk — k) =5 . (1.46)
G(k,N) [y J!
o enkay (BN =K — 2NN = k)(N = k+ Dk(k — 1) T} !
(7-1(1)) (7-1(2)) - 2 N—1 0
G(k.N) [lj=n 7!
(1.47)
. EN—Kdr (kN — k2 — 4)]
| )N g ) = bk = DV = DY~k + 1)
G(k,N) 4

X [k:(k; )N = k)N —k — 1)+ 2(k — 2)(k — 3)(N — k)
IT)= J!
[y i d!

Here, we assume that N and k in (1.47) and (1.48) satisfy kN — k* —2 > 0 and
EN — k? — 4 > 0, respectively.

YAk —2)(N — k- 1)] . (1.48)

We note that these are intersection numbers of 7,41) and 7y¢2). Results of (1.46) are
already known [16, 11], but we prove these results by using fermionic variables.

1.4 The New Feature of Our Model

Explicit evaluation of the path integral in the Main Theorem of Part II will be given in
Section 3 and Section 4, but in this subsection, we briefly explain feature of our model.

The new feature of our model is that integration of A, H and their super partner
1, x produces total Chern class of T'G(k, N) instead of top Chern class. This is
because it was difficult for us to produce top Chern class of T'G(k, N) by using only H
and x, which are standard in usual MQ formalism, with Atiyah-Jeffrey construction.
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Instead, we consider two vector bundles, CV ® S* and S ® S* that correspond to H, x
and A, 14 respectively. Moreover, we introduce the extension of the supersymmetric

transformation in order to produce total Chern classes of these vector bundles instead
k

of top Chern classes. Precisely speaking, integration of H and yx results in H(l + )Y
i=1

1
Then, x;(i = 1,--- , k)

[, (1 = (z—;)%) -
are represented by elements of 7¢p But after the integration of ¢, the matrix 7¢p whose
(i, j)-element is replaced by < 4’ 7 >. More details are provided in Section 3. The
integration of the fermionic variable i) corresponds to integration of differential form

on G(k, N), only the contribution from the top Chern class survives and we obtain the
Euler number of G(k, N).

and integration of A and 4 produces

1.5 Organization of Part 11

This part is organized as follows. In Section from 2 to 4, we prove the main theorem.
These discussions are presented in [20]. In Section 2, we give an overview of MQ
formalism and Atiyah-Jeffrey construction. In Section 3, we construct Lagrangian that
counts Euler number of G(k, N) by applying these techniques. Then we integrate
out fields except for ¢ and show that the Euler number is represented by fermion
integral of the Chern class represented by the matrix i¢ whose (i, j)-element is given
by < ap?,4p7 >. This calculation is a bit complicated, so we will introduce integration
results of ¢ and A as formulas and calculate the omitted parts in Appendix. In Section
4, we prove our main theorem by showing that the representation of the Chern class
by the fermionic variables give the desired Chern class as an elements of cohomology
ring of G(k,N). In the process we prove Theorem 2, 3 and 4. Especially, validity
of normalization factor § will be verified. We think that combinatorial aspects in the
discussions in Section 4 is quite interesting for mathematicians. Since Chern classes are
represented by fermion fields, the integration of Chern classes is given by the fermion
integral. In Section 5, we compute some integral of Chern claases using the fermion
integral. This process is shown in[28].

2 Mathai-Quillen formalism and Atiyah Jeffrey con-
struction

In this section, we explain outline of Mathai-Quillen formalism and Atiyah Jeffrey

construction. For more details, see the literatures [5, 6, 30, 37, 41]. ( The discussion in
this section is based on Imanishi [19] and discussion with Professor Masao Jinzenji.)
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2.1 Overview of Mathai-Quillen formalism

Mathai-Quillen formalism provides us with a recipe to construct Thom from of a vector
bundle by Gaussian integrals and fermion integrals. Here, we briefly explain outline
of Mathai-Quillen formalism. Let 7 : E — M be a vector bundle of rank n on n-
dimensional compact manifold M. We assume that each fiber 77!(x) has metric (or
inner product) that varies smoothly as x € M varies. We denote by { f1,--- , f,} alocal
orthonormal frame of 7= (U) (U is some open subset of M) with respect to this metric.
Let Q4(M, E) be vector space of E-valued differntial g-form on M (Q°(M, E) ~ T'(E) is
vector space of smooth section of E) and V¥ : Q4(M, E) — Q471 (M, E) be a connection
compatible with inner product on E. V¥ satisfies Leibniz rule for g € Q4(M), s € ['(E)

VE(g5) = (dug)s + (~1)'g A (775), (2.49)

where dy; is exterier derivative on M and Q9(M) is vector space of smooth g-form on
M. Let us define a connection form w! by

vEf =Wl f; (2.50)

where w! = —w}. Curvature of V¥ is given by (v¥)? := R”. R” for the local orthonor-
mal frame is represented in the following form:

(REY. f; = (VE)2f; = VE(w] ;) = duwl f; — wl AW fi
= (dyw] —w Aw))fj. (2.51)

Next, Let 7 E be a pullback bundle of £ by 7. Its tautological section ® € I'(E, 7*F) is
defined by the smooth section whose image of u € E is given by x(u) = (u,u) € 7*E.
The connection form w’of V : QU(E,7*E) — QUtY(E,7*E) is then given by pull-
backing w! by 7. Let {ey, - - - , e, } be local orthonormal frame for I'(z = (U), 7* (7~ 1(U)))
that corresponds to { f1,-- -, fu} of T(U, 7~ 1(U)). Then, x(u) € T'(z~(U), 7*(x~1(V)))
is represented by x(u) = u'e; where (z,u) = (z,u'f;) € 71 (U) (z € U). Accordingly,
we introduce connection of 7*F|

Ve, = w;jej, (2.52)
and the curvature form R’ of V. R’ under the local orthonormal frame is given by

= {dpw! — wF AW Ye; (2.53)

Since w? = 7*w! and dgm* = 7*dy;, R is given by 7*(RF)!.
From now on, we assume n = 2m. Let u = ‘(u', -+ u*") be coordinates of fiber
77 (z) of E and  be a fermionic variable: y = f(x!,---,x*™), which correspond to
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super-partner of u. And let R;; be (R')! (R;; is skew-symmetric). With this set-up,
Thom form &g (FE) constructed in MQ-formalism is given as follows.

1 2 1
Py (E) = ——e Il /Q/Dxexp — 'Ry +i"(Vu)x | . (2.54)
(2m)™ 2
2m 2m 2m
lul? = Z(ui)Q, HVu)x = Z(Vu)ixi = Z(dEu’ + wiu?)x". (2.55)
i=1 i=1 i=1

Let Ly be a Lagrangian defined by
1
= |ul*/2 — XRX —i Y(Vu)x. (2.56)
Then we define supersymmetric transformation as follows:
o' =it du' = V' (2.57)

Here, we assume the following.

Assumptions for §

1. 4 behaves fermionic. Hence § is anti-commutative with dg.
2. 0 acts only fiber variables and dw = dR = 0.

Then we can show that £, invariant under ¢ transformation.

5(lul?/2) = Zu Vu)' (2.58)

(5 Xy) = %(—5(%)3@% FXRYS(0)) = i Ry (259
S~ {(Vu)x) = —i i(é((vmi)xi ~ (Vuyd(x)) (2.60)
_— Z ~dpS(u) — S — i(Vu)u) (2.61)

_ —ZZ —dp(Wiu?) — S dp? + wPub)X - i(Vu)id)  (2.62)

= i(—(dmwﬁ — )y — i(Vu)) (2.63)

_ imﬁw ~ (Vu)ul) = iRy iwuw. (2.64)
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Hence 6Ly = 0. Let us integrate out ®y(F) on a fiber 771(x). Since x € M is fixed,
R = w = 0. Then we can derive

/ Oy (E) = 1. (2.65)
71 (z)

Explicit derivation is given as follows.

2m
/ Do (E) = (2m) ™ (— 1) / e lul?/2 / Dx [J(1 +idux)
m—1(z) m—1(z) p—

_ (_1) €—|u|2/2 wh) - (du2my 2T
= g L e Patanti) ey

1

—\u,|2/2 1, .. / 2m 1 (‘3 66)
- € dU u == 1. .
(2”) /7 Hx)

(2m—1)(2m)
2

(2.65) is one of the two features that characterizes Thom form of E. The other one is
given by

s5(Pv(E)) = eov(E), (2.67)

where so : M — E is the zero section of E and ey (F) is Euler class of E. This can
be easily seen as follows:

S(05(E) = g [ Dxesp (53R = i P(RE)
— v (E). (2.68)

where we used that u’(so(x)) = 0,s*(R') = (s*(x*R”))) = R and that R” is skew

symmetric. Integration of Euler class egv(E) on M gives Euler number of E, which is
denoted by x(FE). Therefore, we have

\(E) = /M 53(Dv(E)). (2.60)

At this stage, we include auxiliary bosonic variable H* and modify the supersym-
metric transformation as follows.

§x' == H', §H' := R;;x’. (2.70)

Now we intoroduce ¥ := <X: % — zu> where < A, B >:= 'AB is inner product of A
and B. We also use the notation |A|? :=< A, A >. Then §V is given as follows.

U =6 <x, g — m> = "(6x) (g — @u) — 'y (%H - ¢(5U)>

2m

1 S ul> 1 , 1 ,

=5 Z(Hz —iu')? + % -3 "'YRx —i "(Vu)x = 5|H —iul* + Ly (2.71)
=1
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Here, we assume y and Vu are anticommutative. 0¥ can be identified with £y, modulo
the relation H* = iu® (equation of motion of H). We can easily see that &y (F) is
obtained by integrating exp(—0W¥) by H and Y.

Oy (E) = W/Dx/pﬂexp <—%|H—iu|2 —co)

— W /DX/DHexp (—(5 <X7 g — ZU>> (2.72)

Let s : M — FE is any smooth section of E, then we can easily derive

esv(E) = s*Oy(E) = W /DXDH exp (—5 <x, g - zs>) (2.73)

Since s is homotopic to the zero section sg, e; v belongs to the same cohomology class
as egv(£). Hence we obtain the following equality.

\(E) = /M ov(E) = /M s (E)
- W /M DaDyDyDH exp (—5<X,§—is>>. (2.74)

where x is local coordinate of M and v is a fermionic variable that plays the role of
differential form dz on M.

2.2 The Case when M is an Orbit Space

In this subsection, we search for the Lagrangian that produces Euler class of M when
M is given as an orbit space, by using Atiyah-Jeffrey construction. Atiyah-Jeffrey
construction is an extension of M(Q formalism for vector bundle whose base space M
is given as an orbit space X/G (G: Lie group). Let us consider first behavior of §? of
the transformation (2.70).

Therefore, 6 corresponds to “infinitessimal rotation of fiber coordinates generated by
R;;”. Then Atiyah and Jeffrey modified the above relation into the following:
6% = by, (2.76)

where 0,4 is the infinitesimal gauge transformation generated by ¢. It corresponds to
infinitesimal rotation of infinite dimensional Lie group G. Note that ¢ is nilpotent when
we consider orbit space X/G. Then ¢ can be regarded as infinite dimensional version
of equivalent derivative d — ¢, w € Lie(G) on X/G.

0 d— 1y, (2.77)
5% = dp & (d — 1) = —diy, — 1d = —L,, (2.78)
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where L, is the Lie derivative. With these considerations, ¢ transformation is modified
as follows.

0r =, 5 = by, ox = H, OH = 64, 5¢p =0, (2.79)

where x is coordinate of A, 1 is the fermion coordinate that plays the role of dz, x is
fermion coordinate of £ and H is auxiliary field and super-partner of y.

In the previous subsection, £y, the Lagrangian obtained from the MQ-formalism
was represented as 0V := 9§ < ¥, % —1s >. In Atiyah-Jeffrey construction, Lagrangian
L g, which is expected to produce Euler number x (&) of the vector bundle £ on A/G,

Y(&) = / DxDYDHDYDe exp(—Lg), (2.80)
is given by
Lo = 0(V + W) (2.81)

The term dW,,,; plays the role of projecting out gauge horizontal direction (direction
parallel to orbit of G) in integrating ¢ over T*A. In other words, exp(—0V,,.;) can be
regarded as projection operator from T*A to T*(A/G). In (2.80), we add ? above =
because &, the vector bundle of infinite rank, is not clearly stated in [3] and x (&) is not
well-defined. Indeed, the Lagrangian £q is used to produce Donaldson invariants of
M, in context of topological Yang-Mills theory [39].

Let us explain outline of construction of W,,,;. On G-principle bundle A — A/G,
group action for x € A is given by G. Let C : g (Lie algebra of G) — T,.A be dif-
ferentiation of group action on x € A. Let 6 be an element of g. Then, C6 is given
by

CO = dyz. (2.82)
C' is defined as adjoint operator of C
(CM,0) = (¥, C8), (2.83)

where (%, %) in the L.h.s. is inner product of g and (%, *) in the r.h.s is inner product of
T*A. If ¢ € KerCT, we obtain

Clip=0=0=(CM,0) = (1, CO) = (¥, ). (2.84)

So, KerCT € T* A corresponds to vertical direction of gauge transformation. Then we
have to restrict integration of 7 into KerCT. At this stage, we introduce additional

boson field ¢ and fermion field 7. Supersymmetric transformation for these fields are
defined by

56 =n, o = G40, (2.85)
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where ¢ is gauge transformation parameter (element of g). Then U,,,; is defined in the
following form.

Uinoj 1= (¢, CP) - (2.86)
We obtain
W moj = 6 (CT1p, @) = (6(CT), 9) — (CM,6(6)) = (8(CTp), ) — (CTp,m) . (2.87)
From equation of motion of 5, we obtain

5
570 Uoroi =0 & Cly = 0. (2.88)

Hence multiplying exp (—dW,,,;) can restrict ¢ integration to KerCT. When we consider
the case of zero section (s = 0), the Lagrangian becomes

H _
Larg = (X, = ) +i0 (¥,C9). (2.89)
where supersymmetric transformation is given by

jo=0, o= 1) = 646, (2.90)
This is our starting point of construction of the Lagrangian (1.16) and of the su-
persymmetric transformation (1.28). But what we aim to compute is x(G(k, N)) =
X(T'"G(k,N)), we have to modify the above settings further. Some points of modifica-

tion are already mentioned in Subsection 1.1 and Subsection 1.2. We will discuss again
points of modification in Subsection 3.2.

3 Construction of Lagrangian and First Half of Eval-
uation of Path Integral

In order to apply MQ formalism on the Grassmann manifold, it is necessary to consider
the Grassmann manifold G/(k, N) as an orbit space X/G. G(k,N) is a space which
parametrizes all k-dimensional linear subspaces of the N-dimensional complex vector
space CV.

G(k,N) :={W c C"|dim¢ W = k}. (3.91)

We consider the Stiefel manifold V;,(C"). Its point is given by a set of k unit vectors
which are orthogonal system on CV.

Vi(CY) = {(z"---2") e C*N|z' e CN, < 2,27 >=6;; (1,5 =1,--- ,k)}.  (3.92)
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Let < z1,- -+, 2F >¢ be a vector space spanned by ( s 2By (2 2R (2 2R €
Vi(CN) satisfy the relation < 21, | 2F >e=< 2t ... 2% >¢ if

k
There exists (Uy;)1<ij<x € U(k)such that 2" = Z Ujz? (i=1,--- k). (3.93)

J=1

Hence, we define the equivalence relation of U (k) by above form. G(k, N) ~ V,,(CN)/U(k).
Since V4(CV) is regraded as quotient space U(N)/U(N — k) and volume of U(N)
N

is given by HVOI(S%*l) (S#¥~1 is the (2j — 1)-dimensional unit sphere) [12, 14], we

j=1
obtain

(3.94)

3.1 Lagrangian that counts Euler Number y(G(k, N))

In this section, we construct the Lagrangian for Ly;o by applying MQ-formalism
and Atiyah-Jeffrey construction outlined in the previous section to the orbit space
G(k,N) = V,(CN)/U(k) From now on, we set section s used in Subsection 2.2 to zero
section.

Let us mention again the fields used in our Lagrangian. The variable z that describes
a point of Vi(CY) is given as follows.

2= (2! 2" e C*V, (3.95)
2= Y ), (=12, k), (2012 =69 =0(i,j=1,2,-- k). (3.96)

This corresponds to the variable z in Subsection 2.2. Other fields are represented in
the following form.

)= (), W= 0, 0. (3.97)
o1 Onk i o Onk

p:=1 + - . oi=1 - ], (3.98)
Pk Ok Pr1 v Ok
o Mk

n = oot : (3.99)
k1 Mk

x o= (x! X" ), X =0, o) (3.100)

H:=(H' - H'), H .= Y(H],---  H}). (3.101)



¢ and ¢ are Hermite matrix (3, = 92, &;j = &ﬁ) They are the generators of the

elements of U(k). ¢ is not the complex conjugate of ¢. These fields play the same
roles as the corresponding fields in Subsection 2.2. Next, we introduce the field A and

its superpartner 14 in order to produce the part W in the total Chern class
c
C(S*)N
c(S®S*)
A o A w,lau w,lfu
A= bar= 1 (3.102)
A o Aw T/J,lclk w,}ka

At this stage, we define supersymmetric transformation for each variables. We define
supersymmetry for each variables. Supersymmetric transformations are given by

dz =1, 0P =204z, Ox=H, OH = x + 0gX, 0A =y,
§6=0, 6b=n, o =040,  Oha=A+0,A=A+]A,igd). (3.103)
Let the gauge transformation of U (k) for z is defined by

Zl Z/l Zl Zl

S S R P L R B Bl O )

K Ik K Sk

s S s S (3.104)
We neglect second or higher order of ¢. Then, §,z := iz ‘¢. We define J,A as

e A = A+ [Aid] + O(¢?) =1 A+ 5,4+ O(¢?). (3.105)

Therefore,

Si=yl B midel O = HL  OHI = (5 + b,

SAL =, 5y = 0, 0bi; = iy, Sha = A+ [A,ig). (3.106)

These are fundamentally obtained from applying the construction in Subsection 2.2 to
the orbit space G(k, N) = Vi (CY) /U (k) but we modified the transformation of H and
Y4 from the standard version 6H! = ig;;x and dihs = [A,i¢]. This modification is
done in order to produce total Chern class instead of top Chern class.

With these set-up’s Lagrangian is defined as follows:

Lro=0<x,H>+8 <ty A> +%5{< 0, Cé>+* <, 06>} (3.107)

where C'¢p = 0p2 = izt¢. Except for the term 6 < 14, A >, this Lagrangian is obtained
from applying discussion of Subsection 2.2 with s = 0 to the orbit space G(k, N) =
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Ve(CN)/U (k). Then we can derive (1.17) from (1.16) by straightforward computation.
Each term is calculated as follows.

(x.H) = iixi—ffi- (3.108)

5(x.H) = ii{axiﬂz — i)
= Z{Z HIH! — X(8; + i) x1} (3.109)
- Ek;<HH> — (X +1'9)) (3.110)
(:00) = (4.052) = (w'iz '6) = ZZWW (3.111)

a(s.c0)

Z{ iGim 2T Guzt — Yinazl — Yidyyl}

= Z{z‘@-mz?éazé + izl + it}
s=1

(3.112)
From ¢y, = ¢m; and Zivzl 2l — 5 =,
i (v, Co) = i i+ S (s + Vi) = x(0B) + 3 (Wit + )
ij=1 s=1 s=1 3.113)
= i(6,0) + (¥, 2 )y + (W', 97 )iy = i6,6) + (¥, ') + (0,4 ').
(3.114)

In the same way,

is *<w’ Cq3> ) (i\f: @/J;qsdzé) = iv: {zqﬁ;ngnquizg - @52771'1’2’; - @D;Q;zﬂbg}
s=1

s=1

i > (vt gt} = in(6d) — S {inged i)
s=1 s=1

(3.115)

= (08) (00 (9 = (8}~ (o) (0.

(3.116)
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Therefore,

. N N
SH<U.Co> + 7 < 0,06 >} = itr(69) + Y widyvl + % > {wiel — iz
- - (3.117)
6 < ha, A>=05(tr(phA)) = tr((AT + [ATig]) A — ¥lia) (3.118)
Since tr(ipATA) = tr(ATAig),
5 <, A>=tr(ATA + AligA — AT Aip — l4)
= tr(AT(A + [ig, A]) — ¥l 4). (3.119)

Lastly, we write again the path integral that will be evaluated in the remaining part
of this part.

Zyg =0 Dz/D¢D¢D¢DADanDH wexp(—Lyg) (3.120)
Vi (CY)

Lrg=0<x,H>+6<a, A> +%5[< WV, 120 > +< 1, iz >}
= (HH) = (oxtTe+i'0)) +i(0.6) + (4,0 ')

+3 {<¢ ‘ t”> - <¢7 2 t77>} + tr(AT(A + [ig, A]) — ¥liba) (3.121)

O |

I
WE

k
IS il — (5 + id)d) + widavl] + i (69)
=1

1 4=

N
> { el — et} g + tr(AT(A + [ig, A]) — vl

s=1

Vo)
Il

_l_

N | —

As we have already mentioned, [ is normalization factor for Chern class. and w is
projective operator along tangent space of Vj,(CY). They are given as follows.

k N _ ~ Hk?_l j'
w=TI [ wis +=wd)]|, 8= Ll . (3122
Zﬂl ;( ) 22k(_7r)k2+kN7rkN+k(kTH)(_U%(Icfl) ( )

3.2 First Half of Evaluation of the Path Integral
3.2.1 U(N) x U(k) Symmetry of the Lagrangian

Lemma 1.

Zug=f Dz / Dy DpDDADnDY4DxDH wexp(—Lag)
Vi (CN)
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= ﬂvol(Vk((CN))/DngbD(bDADanADxDH w'exp(—Ly0)-

k

o = Z[ HEH: — (a8 + id)x0) + Vit | + itr(66)
s=1 i=1
k
3 3wk -l (AN A+ i, A]) — 0.
ij=1
k k } .
= TTTT i + o). (3.123)
i=1 j=1

Proof. (The proof is based on discussion with Professor Masao Jinzenji.) First, we
note that projection operator w is rewritten as follows:

I

= (—1) 7 (W+1) /DQ exp (<, 20 > +< 1,210 >), (3.124)

where 6 is fermionic Hermite matrix.
Hence we can rewrite Zy;q by

Zug = (~1)T0 Dz
Vi (CN)

< [ DUDODEDADYDUADXDHD exp(~Larglz, 6.6, A v, x. H.6)

%(%%Q (57A7wA777X7 H7 6)
= ‘CMQ(Zawaqba (rgv A7 wA7777X7 H)+ < ?1)7 z t@ > +< ¢7Z >, (3125)

If we transform y, v, ¢, ¢, m, A, z, H, 0 in the following way,

Y = UNX,Uk, w — UN1/J,Uk, Cb — tUk¢/ >1<Uk'7 Qg _ tUkQ;/ *Uk,
n= tUkn/ *Uk, A= tUkA/ *Uk, 5 = UNZIUk, H = UNHIUk,
0= Ut *U*, oy =, (3.126)

we can easily see that ZJ\\/[/Q has U(N) x U(k) symmetry. From UFU* = UMU* = I,
and UNUNT = UNTUN = Iy, we obtain ¢' = *Uk¢ 'U*, ¢/ = *U*¢'U*, ¢’ = *U*0 'U*
and ' = *U*n 'U*. Since n, 0, ¢, ¢ are Hermitian matrices, 1/, ¢', ¢' are Hermitian

70



matrices. The Lagrangian can be expressed in the following form.

ZZPPHZ = tr

s=1 1=1
<X,X(]k—|—z >:tr f ]k—|—ztgb> (3.128)

tr UNX/Uk: TUNXIUk([ t( tUk¢/ *Uk))>

JH) =tr(UNH'UNIUNH'UY) = e (H'TH')  (3.127)

e (U TR UHRUE 4 Ut g U))

(#'
(x
((
tr(U AU (I + iU Ly Uk))
(
(

tr( VI (I, +i ') ) = <x’,x’(fk +i t¢’)>~ (3.129)
tr(¢'¢) = tr(( ‘U “UR) 'UFG *U*)

(TR U UG U = (1) = (6.6). (3130)
(1 '¢) = tr(UNYTUR UNWU 11U *UF))
(UMY GUR) = (T ) = (W), (3.131)
tr(yplz ') = (U URYTUN ZUR LUk *U*))

(#:9)

(.0 '9)

(551

= (UM UP) = (e ) = (0, ). (3.132)
<1, 210> =tr(¢Tz '0) = e (UNY'UR)TUN U 1 TUR *U"))
— (UMY OUR) = (1) = (0,2, (3.133)
tr(AT(A + [ig, A]) = tr(( 'URA *URT('URA *U* 4 [i( 'URY *UP), tUR A *U*))

= tr(ATA) +ite( 'UFAT UR (U CUN U A U

_ otk g ek tde)/ *Uk))

= tr(ATA") +ite('UFAT U 'URG A FUN — TURAY UY))
= tr(ATA") +itr(AT (¢ A — A'¢)) = tr(AT(AT +i[¢/ A))).

(3.134)
Therefore,
Larg(2 ¢ @ Ay X H,0)
:Z_]:/[_ZQ(ZJ#,Q&,Q;,A,@Z)A,’I],X,H,Q). (3135)

On the other hand, we can confirm that the integral measures of each variable is also
U(N) x U(k) invariant: DX = DX’ (X is each variable). We confirm it for z and ¢.
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To do so, consider the following equation.

N (9 N
(H dzl - dzf) — det (—ZZ,) [0 d=. (3.136)
s=1

s=1
N — o\ X
-1 kY _ 1 —rk
(1:[1 dz- --dz§> — det (a_z) sljldzg . dFE (3.137)
k 96\ -
[T dé - - dog, = det (%) [T aé% - dds. (3.138)
=1 =1
We compute det (%) and det (g—;f,). From z = UNZ'U* and ¢ = 'U*¢ *U*, 2 =
UazlUs(1 < s.a Saf;]’ 1 <5 < k) and ¢ = ('U)adf, ( *U*)my = Ulgy, Uy .
Oz, _ [IN[Tk i _ kTR
Then (97,/3 == UEanw 8(;5%; = UZzUmE
0z} 0z} 0z} 0z}
= SEREENP - JERRRNN- ST
R 02k 0z} z'k
a 1 1 N N
(a—z) e T T A (3.139)
o oz, 024 0:4, oz,
= NREEI = JEREERS = SEETI =
o2k o2k, o2k o2k,
e TN = SR SRR
Ui]\llUikl e Ui]\llUl_fl o Ui]\J[VUTkl T Ui]\J/vU/%
GNUL - UNUE - ORUE - URO,
- SR : : (3.140)
N 17k N 77k N g7k N g7k
UnUty - UgnUp - UgyUnn - UgnUp
N 77k . N: k ) N: k ) N: k
UniUne - UniUe o UnwUne - UnnUni
= 5 : =U"® 'U* (3.141)
N t7k N k
Ug, 'UF oo Ugy U

® means Kronecker product. det (£%) = (det UV)*(det U*)N. UY and U* are Unitary

matrixes:
0z 0z
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Therefore, Dz = DZ'. In the same way,

9911 .. Op1 .. 91y .. 91y
005, 007y 095 09
(F) - 5 : : : (3.143)
(b 001 .. Om .. 0% .. 9¢m
01, 003 095, 0%
Ot ... 9w ... m ... O%m
01, 003y 095 09
k 7k k 77k kTrk k 77k
UnUi - UpUg - Upli - URUg
k 7k k 7k k 77k k Tk
Unbi - UnUg - UpUng o UnUg
= : : : : (3.144)
k 7Tk k 77k k 7Tk k [Tk
UplUin - Ul - Ul - UpUi
k 77k kTTk k 7Tk k 7Tk
UnUp o UnlUg - UpUg - UnUg
k 77k k 77k
UkuU T Uk U 1
- : : =U* g UM, (3.145)
k 7Tk k [Tk
UkU LI UrU 1

Since det ((%5,) = (det UF)*(det U*")* = 1, D¢ = D¢'. Integral measures for other

variables are confirmed in the same way (note that the Jacobian for fermionic variables
acts in reciprocal). Let us define Fi;g(z) by

2 _
Fug(z) = (=1)7*+0g / Dy D¢DdDADnDv o DxDHDO
X eXp<_ZJ\\/I_;(Z’¢7¢a &7Aa¢A7naX7H7 0)) (3146)
Then we obviously have
ZMQ = / DZFMQ(Z). (3147)
Vi (CY)
Then by using (3.135) and invariance of integral measure, we obtain,
2 _
Fuglz) = (=1)7®+0g / Dy D¢DoDADnDvp o DxDHDO

exp(-%(z7 ¢7 ¢7 QE, A7 ¢A7 5 X, Ha 0))
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= (- 1)% (K+1) g / Dy D$DGDADnD 4Dy DH DO
exp(~Larg(+ 0/, &, A Wy X ', 0))
= (- 1)% (413 / D' D¢’ D' DA’ Dy Dy, DX' DH' D¢’

X eXp<—»CMQ<Z 777Z) 7¢ 7¢ 7A,7¢A777 » X ’H/76)>

For each 2 € V;(CY), we can choose UN € U(N) and U* € U(k) that satisfy

UN U = ( L ) =: 29, (3.149)

ON—k K

where I is k x k-type unit matrix and On_x is (N — k) X k-type zero matrix. Hence
we obtain

Zuo = / D2Fuo() = / D=Fuo(z0) = vol(Va(CV) Fasa(2). (3.150)
Vi (CN) Vi (CN)
This is nothing but the assertion of the Lemma. O]

3.2.2 Integration of Fields except for ¢

Note that we have integrated out z in the previous subsubsection. Next, we integrate
out Y4, H and Y.

[ Doaexp(utvlon)
_ / dpatdipat - AR - dipbdipal - - dipabdipal

2

k
x T+ 9afval) - (14 agai) } = (=D)F.
=1
N k _
/ DH exp (- > H;H;’)
s=1 i=1
N i ~ ~ N k ~
= / H(E)kdﬁgdﬂgmdﬂfdﬂg exp <—Z H;jH;’) = kN, (3.152)
s=1 s=1 1=1
N - .
/DX exp (Z X5 (05 + iﬁbz‘j)Xi)
s=1
N N _
= / [T dxidxs- - dxtdyk exp <Z X5 (05 + igy; xs>
s=1 =1
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N B B N B
= (¥ / [T dxiaxt - - dxtdxt exp (Z Xe (6 + icbij)xi)
s=1 s=1
= (=1 (det (I, + i)™ . (3.153)

Then let us integrate out . We set

I, —/Dnexp<

We abbreviate {@/}% — @Z)f } as o/ and obtain

S {vi -} rr) (3.154)

7,7=1

o) HH

<(5) cote o T

(2

_ (;)k2 (_1)§(k2+1) [HHO‘U] ‘ (3.156)

i=1 j=1

H 11 aw] (3.155)

i=1 j=1

We also abbreviate {@/}% + @Z)f } as A% and evaluate Iw. Since

1l

i=1j=1

TI1I ﬁij] = (~1)7 ¢+ [H 11 oe”ﬁ“] : (3.157)

i=1 j=1 i=1 j=1

and o 37 = (gL — ) (I 4+ 9]) = =2¢791 | we obtain
k2 k k o kK k o
Lw = ) [HHOX%’”] =TITI¢v

—1

2 e o
=1 j=1 =1 j=1

k —

[T v

(
Ezl (1) (1)

Hw;‘w%) (Hwﬁw%w;wf) (Hw) (H wfwf¢;ﬁw§>)

1<) 1<)

) H H Wi, (3.158)

i=1 j=1
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Then the result of these integrations is given as follows.

me =P Vi (CN) DZDwDQSDJ)DA (_1)k2+w(—ﬂ)lm (det (1), + Z¢))N
exp ( {Z ng)zzwl + itr(p¢) + tr(AT(A + [ip, A }) 11 1_[1 WW (3.159)

In order to integrate out ¢ and ¢, we we decompose complex fields ¢, ¢ and 1) into real
parts and imaginary parts:

jg = ¢y + gy, bij = f} — gy, (3.160)
i + Z¢7,J7 ij - Z¢ (3161)
¢Z sz + “Z}Is’ QW 77Z}Rs “ﬁ]s? (3162)

and define integration measures for ¢ and ¢ as

D¢ = quﬁ H doftdor, (3.163)
Jj=i+1

D¢ = qu&R H dojider. (3.164)
Jj=i+1

Note that ¢f; = ¢ = 0 and ¢ff = ¢, of = ¢f, ¢l = —¢l, ol = —¢L,(i # j)
since both ¢ and ¢ are both Hermltlan matrices. Normally, we should consider the
integral measure of ¢ because ¢! and ¢§ are Grassmann variables. However, we skip
this process. Since the reverse transformation is done, the integral measure of v is not
changed. Then integration of ¢ and ¢ results in the following lemma:

Lemma 2. Let \;(i = 1,2,--- , k) be eigenvalues of ¢. Then we have,
/ Déexp (—m ¢¢) — ZW%W) {Ha (% + 22%%) }
N
x {H 11 6( +Z (Vhst1, - %%) ( -2 sz¢;s+¢3s¢;s>>}.
s=1

i=1 j=i+1
(3.165)

2
71-k

Hl<j(1 - (i)‘l - i)‘j)2>.

/ DAexp (—tr(ATA + Al[ig, A))) = (3.166)
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We prove it in Appendix. By using the above lemma, we obtain

(=1)2E=D(27)% (=) 6N (det (I, + ig))"™
2RE=D T, (1 — (0 —iA5)?)

k N ‘ ‘ k—1 k N ‘ A ' A
{Ha (@#22%%) } {H 11 6( Y (WhT, — JR5>>
=1 s=1 s=1

Zng =B / Dy/'DzDé

i=1 j=i+1
N E k )

x 0 (%ﬁ =Y (Uhths + @Dﬁstﬂs)) } TTTT ¢ (3.167)
s=1 i=1 j=1

Then, integration of ¢ results in replacement of ¢ fields by the following composite of
1 fields.

N N
s=1
= —zZ Uiy +i07) (U — i0,) = @ZW : (3.168)

s=1

N
i = ﬁ + Z¢]Iz - Z{_(w}cs — YU ) + Z(szsz + Ut )}
s=1

N
=i Y {Vhshe + V100, + i (k0T — Vi) (3.169)
s=1

N N
=iy wwl=—i)y vl (3.170)
s=1 s=1
At this stage, let us introduce the following anti-Hermitian matrix:
AT A N
D, = SRR . Di=) D, (3.171)
YRl L gk s=1
Then the result of integration of ¢ is summarized by replacement of ¢ by —i®. Let
Ao (1=1,--- k) be eigenvalues of the ®. Then integration of ¢ and ¢ results in,

5 (k1) gkpk® (_)k* +kN (det (I, + @)™
A = IV D |||| Jo 0
MaQ BVO k / ¢ Hl>j( _( 1_/\9) =1 j= 1¢¢

(3.172)
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On the other hand, we obtain from (3.94),

k—1
Bvol(Vi(CN)) (—1) 2 b Dok ph® () R2kN rj&—l‘” (3.173)
Hj:N—kj!
and reach the final expression of Zyq in this section:
Oj det Ik + (I)
Zg - A0 ] PTG HHWW- (3.174)
] N i) Hl>] —( i=1 j=1

4 Second Half: Proof of the Main Theorem

4.1 Free Fermion Realization of Cohomology Ring of G(k, N)

In the previous section, we reached the expression (3.174). Then what remains to prove
is the following equality‘

1
] N kJ

Hz>] 1_()‘/ @1]1
_ / «(T'G(k, N)) (4.176)
G(k,N)
_ H?:l(l + ;)
a /G(k,N) [15;(1 = (21— 2;)?) (4.177)

_ (jkv ) (4.178)

where ¢(S*) = []i_,(1 + z;). First, we note that the factor J[r_, z/;{wg_' allows us to
neglect 17, wg (1,7 = 1,2,--+ ,k) in the integral measure and the remaining part of
the integrand. Hence we only have to consider the fields wf , Q/Jg (t=k+1,--- ,N,j=
L,-+- k). At this stage, we redefine ¢y, ¥ ; by !, ¢/ (i =1,--- N —k, j =
1,---k) and introduce

N—Fk w; e w;k B
=" (Wi = yiyd), (4.179)
s=L\ Rl
N—k i .
Dy = [ [ deidis- - dpfdyt. (4.180)
s=1
Let A\; (i = 1,---,k) be eigenvalues of the matrix ®’. Then (3.174) is rewritten as
follows.
o J! (det (I + )Y
Zng = J = / Dy’ : (4.181)
j N kJ Hl>] ( - )‘j)Q)
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Here, we prove Theorem 2. We represent Theorem 2 again.
Theorem. Let us define b; (i =0,1,2,---) by
Zb . (4.182)

det [k+t(I)/
Then, b,, =0 if m > N — k.

Proof. (Proof of Theorem 2. (The proof is based on discussion with Professor Masao
Jinzenji.))
By using Gaussian integral of complex variables X7, --- , X, we obtain the equality:
1 —
det(I;, +t®)  Jen

where X = (X, -, X},) and integral measure is given by DX := deldXI s dXpd X

(R.HS)= | DX exp{ it Z wi) X }

Cn

DX exp{(— "X (I; + t9")X)}. (4.183)

_ [ DX{e WPt EIE ey

0o N-k
1 o\
— —|x? ij X~
— | Dxe X E:ﬁ(—ti Wl XiX;)

Z Z Wit wbnin [ DX XX X X5 X, (4.184)
=0 m) (i1, cr
(] Jm)
Here, | X|? represents Zle X;X;. Weremark that 1 <y < N—k, 1 <45 <k, (I=
1,---,m). By Wick’s theorem of Gaussian integral, we can easily see that the integral

in the last line of (4.184) does not vanish if and only if {i1, -+ ,im} = {j1, -, Jm}-
Hence we obtain

3

DX exp{(— X(I +t9)X)}

C'V’L
- Z Z Z Sym Zla b ‘ ) Lllzd(l) o 'wLTniU(M)
m=0 (’i1 ’Lm) oESm
/ DX e X H X5, % (4.185)
7=1
where Sym(iy, - - ,4,,) is symmetric factor of the m-tuple (i, - ,4,,) given by
i 1

Sym(iy, -+ ,im) = : —>

ym(@h b ) Emul((zl,--- ,Zm)§])!
mul((é1, -+ ,4m);7) = ( number of I’s that satisfy i, = j). (4.186)
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Then let us fix (g1, ,pm) and (i1, -+ ,4,), and assume that there exists a pair
(2,7) (1 <14 < j < m) that satisfy p; = p;. Without loss of generality, we can further
assume that py = py = p. Obviously, for any o € S, we can uniquely take o’ € S,,
that satisfy ¢’'(1) = 0(2), ¢'(2) = o(1), o'(i) = o(i)(i = 3,4,---m). Then, we can
easily see

ilfg(l) Z.ng.@) ’L’320<3) ing(m) ilia/(l) ’l’2;0./(2) i3go”(3) imza/(m)

o W W Wy, TW C W

1ig(1) 12942 13%(3) Zmla(m> llla(z) i2i5(1)  1375(3) tmio(m)

wo W Wy W +w Wp  Wug Wy,

0 (4.187)
because wu (2) i2i (1) wzlwu (2)w22 (1) wzlwu (Dwzg (2) _wul (UWMQ (2)_ Hence
. ’leo-(l) imig(m)
E Sym (g, -« i )Wy Wy,
UGSm

in the last line of (4.185) vanishes if some p;’s in the m-tuple (g, -, jtm,) coincide.
Since 1 < p; < N — k, it follows that the summand in the last line of (4.185) vanishes
ifm>N —k. O

Here, we note the explicit form of b; in Theorem 2. Since

— [ dzdz|z*"e = m! (m=0,1,2,---), (4.188)
2T C
n (4.185),
m k
DXe XTI 17 = [ [ mul((r, -+ i) )L (4.189)
cr j=1 =1

Therefore, Theorem 2 is rewritten as follows.

Z YD w o) imiaon - (4190)

=0 (#17 "num) (Z1, "’lm) S

MZ

det Ik —+ tq)/

3

Next, we prove Theorem 4. We represent it again.

Theorem.
R[Cl(‘s’*)7 T ’Ck(S*)]
(a; =0 (i>N—k))

H*(G(k, N)) = ~Rloy, -, 0] (4.191)

Proof. (Proof of Theorem 4. (The proof is given by Professor Masao Jinzenji.))
o; (7 =1,2--- k) is defined by

k
L+ oyt + - + opt® == det (I, + 1) = [J(1 + M\2). (4.192)

j=1
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Then, let us define a ring homomorphism f : Rlc;(S*), -+, ¢x(S*)] — Rloy, -+, 0% by
FeiS ) =0y (G=1,2, k), (4.193)
It is a surjection by definition. Then,
Rle1(S%), -+, ex(S™)] /ker(f) = Rloy, -+ , 04 (4.194)
On the other hand, the cohomology ring of G(k, N) is given by

Rle1 (57), - -+, ek (S™)]

H*(G(k,N)) = (a;=0 (i>N—k))’

(4.195)

from Subsection 1.1. Then let us consider the ring R[oy, -+ ,0x]. Since in

N—

Z ! ! : (4.196)

— det (I}, + t®") 1+01t+---+aktk

b;=0 (i>N-— k) from Theorem 2. Since f(a;) = b, = 0(i > N—k+1) from (1.9) (the
expansion of o by ¢;(5%)) and Theorem 2, {a; =0 (i > N—Fk)} C ker(f). Therefore,
the surJectlve map f R[21(5(‘)*)(Z>;[k(5)))] — Rle1(S*), -+, ex(S%)] /ker(f) =~ Rloy, -+, o%]
is induced by f. )

We prove that f iSNinjective. We assume that ker(f) # {0}. Then Ja € R([sli% )(725;}31_(%))]
such that a # 0 and f(a) = 0. Here, we note about degree of R[ci(5%),- -, cx(S*)] and
Rloy,- -, 01]. Let us define the degree of 0;(j = 1,--- , k) and ¢;(S*) by j. The degree

of o; is the number of w" contained in each term of ;. Then, Rlci(S*), -+, cx(S*)]
and R[oy, -, 0] are graded ring and f preserves degree. Therefore, R([;?(:%*)(’;;}f]’g_(i;)ﬂ

is a graded ring and f preserve degree. We fix the degree of a as i(1<i<kN-—Ek?).
Since G(k, N ) is a compact oriented manifold, from the Poincaré duality theorem,

Jb € IR([?(% )( N (k)) such that the degree of b is Nk — k% — i and b satisfies

a-b=(cp(S*))NE. (4.197)

- means the exterior product of differential form. Therefore, f(a -b) = (03,)N~*. Here,
we remark Theorem 3.

Theorem.
|
HJ—“/W det(@)V ™ = 1. (4.198)
H] N— k
It tells us that (0x)V~* is a non-vanishing element of R[oy,--- ,04]. Therefore,
f(a) #0. =
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In Subsection 1.1, we have introduced formal line bundle decomposition S* =
@®F_| L; and the relation:

k

(8 =[[(A+zt) (z;=er(Ly)). (4.199)

j=1

Theorem 4 shows that x; and A; are identical. Normalization condition of integration
on G(k,N) is given by

/| G

Therefore, Theorem 3 also leads us to the following equality:(1.45)

]'
/ g(xlv"' 7Ik)_ ] 0 /D,lvb )‘17 ) )7
G(k,N) J N kJ

where g(z1, -+, xy) is a symmetric polynomial of 1, - - - , ) that represents an element
of H*(G(k, N)). By combining (4.181) with (1.45), we obtain
o J! (det(I, + @)Y
Zug = J = / Dy
] N kJ Hl>j ( - >‘)2)

= JO]' / Dy 111+/\) _ H?:1(1+xi)N
Hl>j ( j) ) G(k,N) Hl>j (1 - (931 - xj)2)

- / c(T’G(k, N)) = / op(T'G(E, )
G(k,N) G(k,N)
N
= x(G(k,N)) = (k) (4.200)
In the last line, x(G(k, N)) = ( ) is given by the cell decomposition [24]. (x(G(k, N))
is given by solving the excersice 2.13 (ii) in [24] but it is given by only counting the

number of bases of each chain. So, we omit its detail.) This completes proof of the
main theorem. [

4.2 Proof of Theorem 3

(The discussion of this section is given by Professor Masao Jinzenji.) We consider how
to represent coefficients of the power of the determinant of k£ x k£ matrix X.

Definition 2. Let M; be set of k x k matriz M;:

My==| + . |, (4.201)
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whose (i, j)-element mﬁd is given by non-negative integer that satisfies the following
conditions:

k
- et

Definition 3. Let Sy be symmetric group of size k. For o € Sy, we define k X k matrix
R(o):

R(o) == S : (4.203)

where ¢; ; is Kronecker’s delta symbol.
Then, we obtain the poroposition as follows.

Proposition 1. We denote by (n,)ses, o sequence of k! non-negative integers labeled
by o € Sk. Let Nj be set of (ny)ses, s that satisfy ZUESk ne = 1. Then ¢ : Nj — M,
defined by

o((No)oes,) = > _ naR(o) € M, (4.204)

og€ESy,
1S a surjection.

Proof. In the [ = 1 case, assertion of the proposition is obvious because ¢ : N7 — M,
is a bijection. Then we can prove the proposition by induction of I. We assume that
o : Ni — M, is a surjection. By definition, any element of M, is represented by
M, + R(1), M, € M;,7 € Sk. By the assumption, there is (n,)scs, € N; such that
©((ng)ses,) = ZUESk nyR(c) = M,;. Then, let us define (m,)ses, by m, = n, + 1 and
My = Ng(0 # 7). Since Y g My =1+ 1, (My)ses, € Nija. O

Remark 1. For general k and I, ¢ is not injective. For example, in the k =1 = 3
case, we have the following equalities:

111 100 010 00 1
11 1) =010 |+[001]+[100
111 00 1 100 010
00 1 010 100

= (o1o0]+]l100|+[001 (4.205)
100 001 010

Definition 4. Let X be kxk matriz whose (i, j)-element is given by x; ;. For M; € M,
we define integer mul(M;) by the following expansion:

k
—_— ml
X['= ) mul(My) [ s (4.206)
M;eM; a,b=1
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Proposition 2. r/n\Jl(Ml) is explicitly evaluated as follows.

I Hoesk <sgn(0)> "

mul(M) = > Tl (4.207)
e((no)oes;,)=M o€Sk "
Proof. First, we explicitly expand |X|' by using definition of | X|:
k !
IX|' = (Z sgn(U)Hxa,a(aO
€Sk a=1
- Y T (e TT)
(nJ)UESkEM o€Sk Mo oES
k
— nO'(SU(cL),b
= 2 T (Geato T =)
(nU)JESkEM ngsk oESK a,b=1
k
Zo’ nd(so'(a),
= > H N 11 ( sgn(o))™) [ zor =™ " (4.208)
(no)oes;, €N oesy ! o€Sy a,b=1

> oes, Mols(a)p is nothing but the (a,b)-element of > ¢ n,R(c) and ) ¢ n,R(0) =
©((ny)ses,,) € M,. Then assertion of proposition immediately follows from (4.208). [

Here, we introduce important property of rfn\Jl(Ml)

Lemma 3. The following equality holds,

mul(M) = Y sgn(o)mul(My — R(0)), (4.209)
€Sk
where we set mul(Mys, — R(0)) = 0 if My, — R(o) ¢ M,.
Proof.
_— k ml+1
IX[* = T mul(Mig) [ o
My1€EMiy a,b=1
= |X]"- |X]
—_— k l k
- Z mul(M;) H xmg"’] X [Z sgn(o)Hwaa(a)]
MeM; a,b=1 €Sy, a=1
. +6
— Z Z sgn(o mul (M) H ag’b ol
M;eM; c€Sk a,b=1
. l+1
= Z Z sgn(o)mul(M; 4 — H z,
M 1€EMi41 0€ES) a,b=1
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With above preparation, Theorem 3 is shown.

Definition 5. Let ¢! (s =1,---,1, i =1,--- k) be complex fermionic variable and
WPt be its complex conjugate. We denote by ® a k x k matriz whose (i, j)-element is

given by Zizl Vil Then we define C(1, k) as follows.

C(l, k) ::/(HHdew)det( . (4.210)

s=11=1

We prove Theorem 3 by finding the recurrence relation of C'(I, k) for . For brevity,
we introduce the following notations.

l k
Dy = J]]dvidvs,

s=1 i=1

wi = iy, (4.211)

S

We note here the equalities:

F— Wik =0, (4.212)

(Wi)? = wiuw,
which plays an important role in proof of the next lemma.
Lemma 4.

Clk)y= > [H(m b)]mul(Ml). (4.213)

M;eM; La,b=1
Proof. By substituting ® for X in (4.206), we rewrite (4.210) as follows.

S mul(M) / Dy H (Z wab>

C(l, k) = / Dip(det®’)! =

M;eM; a,b=1 s=1
ab ab

= mu]_ Ml /D¢H(m b Z w}lb.”wmla,b)>

MZEMZ a,b=1 mflb Sab

p< <8,y <l

_ 3 ab ab
=Y mul(Ml)[ ]/sz > H “’ab“'“’mz,b)' (4.214)

MeM,; ab=1 m! ab=1 Sab

1<sl  <o<s, 2P <l
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In going from the first line to the second line, we used an equality:

l N ~ ~
<§ wgb) =m0 Wi w ), (4.215)
s=1 a,b
1

which follows from (w®)? = 0. Let us define S, := {shp 80"} (ISap] = mhy)
l

associated with the sequence 1 < s;, < --- < SZLZ‘I’ < [l in the last line of (4.214). Since

wilwik = Wikl = 0, S,’s associated with non-vanishing Ha b1 w“{’ -~-w“ij satisfy

!
a,b
Sa,b

the following condition:

k
HSa,b - {]-aal} (b:]-)uk)a
a=1

[[5 = {11} (a=1,--- k). (4.216)

We denote by {Sap} set of Sqp’s (a,b = 1,--- k) that satisfy [Sqs| = ml, and the
condition (4.216). We also denote by S(M;) set of {S,;}’s associated with the matrix
(mfkb) = M; € M,. Then we can further rewrite C(l, k) into the following form:

k=Y E(Ml)[ﬁ(mg,b)! /D¢< 3 Hw aéz ).(4.217)

MeM, a,b=1 {Sa b}ES(Ml) a,b=1

b b
We take a closer look at the sum Z H w;‘i T -w®, . For a fixed element

ml
Somyesayabst " fad”
{Sap} € S(M;), we can construct a sequence (1,0, - ,0;) of permutations o, €
Sk (s = 1,---,1). This is because for each s € {1,2,--- I}, we can fix unique
permutation o, € Sy that satisfy s € S, 5,(a) (a = 1,---,k) by using the condition

(4.216). Obviously, the sequence (01,09, -, 0;) satisfy the following condition:

l

> R(o,) = M. (4.218)

s=1

Conversely, for a sequence (oq,---,0;) that satisfy (4.218), we can construct unique
{Sap} € S(M;) that satisfies s € Sy, @) (¢ = 1,---,k). Hence we have one to
one correspondence between {S,;} € S(M;) and a sequence (o1, --- ,0;) that satisfy
(4.218). Since we can construct ﬁ different elements of S(M;) from a fixed

oesSy "9
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(no)ses, that satisfies o((ny)ses,) = M;, the following equality holds.

k
fro 3, Tt waazb)

{Sap}ES(M;) ab=1 Sa,b
l

- ¥ el |
@((na)oesk) O'ESk J =

Then we obtain

c(l, k)

= Y wul(My)| I (k) 2.
k

MieM, 1 [e((0)oes,,)=M Hoes, ™

= > mul(M)| [T (mip)! > H oy Lo

MieM,; La,b=1 4 [el(no)oes, ) =M,
. -
= Z mul(M;) H(mfl,b)! mul(M;).
M;eM; La,b=1 |

In going from the third line to the last line, we used (4.207).

/D@”H 7y,

kos(k)>

(4.219)

]

Here we introduce the following Lemma [15]. In [20], an other proof is given using
a fermion integral. But we do not present here. For details, please refer to [20].

Lemma 5. (cf. [15])

ngn (Haxwa> X[+ = (k—l—l) X[

€Sk

The recurrence relation of C'(I, k) for [ is given as follows.

Lemma 6.

(I +k)!
I

Cl+1,k) = Ol k).

Proof. We start from Lemma 4 applied to C(l + 1, k).

CU+1,k) = ), [H (mi:rbl)!] mul(M, )

My 6M1+1 a,b=1
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By combining the above equality with (4.209), we obtain

Cl+1k) = > Y

MH_leMH_l o,TESE

xmul(My1 — R(o))mul(M., — R(7)). (4.223)

H '] sgn(o)sgn(7)

a,b=1

We set M; = M1 — R(0) and rewrite further the above equality.

k
C(l+1,k) = Z Z H Lo T Oo(a)n) ‘] sgn(o)sgn(7)mul(M;)
MeM; o,7€Sy La,b=1

xmul(M, + R(c) — R(7))

= 2 2 H(mfz,b+5o<a>,b)!]Sgn(U)Sgn(T)rﬁﬁ(Mz)

M;eM; o,7€Sk La,b=1

xmul(M, + R(c) — R(7))

= ) [H(m‘ b>]mul(Mz) >, [H(mfw(aﬁl) sgn(o)sgn(r)
M;eM; La,b=1 o,7€S}E, La=1
xmul(M, + R(o) — R(T)). (4.224)

Hence in order to prove the lemma, we only have to confirm the following equality:

Z [H(mz,a(a) + 1)

o,7€SE La=1

(k+1)!

i mul(M,).

sgn(o)sgn(r)mul(M; + R(o) — R(1)) =

(4.225)

Ifo=r, sgn(a)sgn(T)r/rTJl(Ml + R(0)— R(7)) obviously equals Hfl\l—l/l(Ml) Let us use the
representation M; = . S, ne R(0’). If o # 7, we have the following representation:

M+ R(o) = R(r) = Y noR(c") + (n(o) + 1)R(o) + (n(r) — 1)R(). (4.226)
o'#o,T

Applying (4.207) carefully to these two cases, we obtain
sgn(o)sgn(r)mul(M,; + R(o) — R(7))

> % [T (sea(0))"™" (o =),

M~
g o'eSk

w((ng1)pres, ) =M
N ] ) o O
Ha,eskng/! Ny + 1 & ’

o(no)ores, ) =M )
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Hence we can rewrite the Lh.s. of (4.225) as follows.

3 (H(mgﬂ(a) + 1))sgn(a)sgn(7)n’m(Ml + R(0) — R(T))

o,T€ESE a=1
b Al Ny
=2 (Moo +0){ ¥ g T ()
ceS, a=1 W((”a/)o’esk) M, o'eSy T o'eSk

XY i L))

720 @((ny1) g5, )=Mi o'€S)

= Z (H(mfl’g(a) + 1)>{ Z ﬁkn/' H (sgn<0-/)>na’

o€SE a=1 (p((ng/)a/esk)ZMl ' o’eSy,

l! l—n ngs
+ <ot 1 () 7}
Z HU’ESk nU’! Ne + 1 H Sgn(a )

w((n, ’)a—’esk):Ml o'€Sk

= Z (H o T 1)> Z (L+1) H (sgn(a'))nd,.

ne + 1 Ny !
oc€S; a=1 o((n /)glgsk):Ml( 0’+ )Ho”ESk o’/ o'€Sy

(4.228)

In going from the second expression to the third expression, we used the equality:

ZnT = Z Ny —ng =1 — ng. (4.229)

T#0 TESK

At this stage, we explicitly compute the Lh.s. of Lemma5 >~ ¢ sgn(o) (Hl;:l ML()) | X |1+
a1 o(a
a,b=1 xa Z '

m

by using the expansion |X|"*! = DMy eMusy I/IH(MlH) 1

Z sgn(o (H 0% ao(a) )‘X’Hl

oESk
k
(1+1)!
=D sgulo (H ) ) > Moo
=1 Myp1EMiqq W((”T)TES;C):MLH TESE T

o€ESy, a

0z,
k
X [ sgn(r ] H
TESK ,b=1
[+ 1)!sgn(o | £ 1MoL
Yoy y kel ﬁfjjnf! 1 ()| [Tt

€S Mip1€EMiyy o((nr)res,, )=Mit1 TESK
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In the last expression, ¢((n;)res,) = Mi41 that corresponds to non vanishing summand
satisfies the condition n, > 1. Hence we can set M1 = M;+ R(c) with p((m,),es,) =
M;. Then we can further rewrite the above expression

I+ 1) 9 mr
P PRI VR mm'(g“( ) [H(sgnm) ]

€S, MeM; Lp((mq-)fesk TESE

| Tk 1 W]H Il

a=1 a=1 :
(b#0(a))

[+ 1) mr
— Z Z Z (maErIr)l_)[T p— [H (sgn(T)) ]

€S, MeM; go((m,—)fesk TESE

k k
ml
X [H(mi,a(a) + | [T =i (4.231)
a=1 a,b=1

By combining, the above derivation with assertion of Lemma 5,

> st (] st

oc€Sk

-y oy oy T ()

MieM; o((mr)res, )=M; 0€Sk €Sk

k
X [H(mz,o(a) + 1)

ml

|
Tp" = (kl%l) Z mul(M,) H xab , (4.232)

a,b=1 M eM; a,b=1

we obtain

Z Z TmT! [H <Sgn(7)>mT] [ﬁ(m?a@ +1)

= oESE a=1
> er(T)

(kD)
=

mul(M;). (4.233)

By comparing (4.228) with (4.233), we reach the equality:

k
— k41! —
Z [H(miﬁ(a) + 1) [sgn(o)sgn(7)mul(M; + R(o) — R(7)) = ( I ) mul (M),
o,7€S), La=1 ’
(4.234)
which completes the proof of the lemma. n

90



Proof of Theorem 3

Proof. C(1,k) is calculated as follows.

c(1.k) = Y senlo) [ Dovtof® - uh®

€Sk
= > sgnl@)? [ Duviul - utvf = 1=k (@28)
og€ESy, oESE
Then successive use of Lemma 6 leads us to
k-1
[+k—-1)!  (k+1)! !
cur =L |> . i Yo r = kng =0 J (4.236)
(-1 1! [ 'H] il
k-1 .
Hence in the case of Theorem 3, the Lh.s. HI;I_J IOJ f Dy (det('))N " equals
Hfl,n;\’kl HflnNkll 1—[;\71'
T OOV k) = TS i
O

5 Application of the Fermion Representation

In this section, we prove Theorem 5.

Proof. First, we prove (1.46). From (4.179),

8

det (I}, + t®') = exp {tr(log(I; + tP"))} = exp {tr ﬂt]@’j) }

! {Z (_1]_)]_ . tr(@’j)}

j=1

=

3

= exp {Zl (_1],)]_ t/ tr(@’j)} = ZO

m

—

1 N Loy 4o
Zm! tir(®) — St tr(27) +

m=0

1 1 1 ?
1+ ttr(®') — 5752 tr(®”) + 3 {ttr(cb’) - §t2 tr(qﬁ)} ..

— 1t (D) + %t2 (t(®'))? — tr(@?)) + - - (5.237)

91



Therefore, oy = tr(®) and oy = % ((tr(P'))? — tr(P"?)). From (4.180), (4.192) and

(1.45),
kN —k2 Htlj! , g2
/ <’7'1*(1>> = %'/DQﬁ (tr ((D ))kN k
G(k,N) [1 7!

j=N—k
k-1 . N—k k . kN—k?

_ %/sz (Z Z¢g¢g) . (5.238)
j=N—kJ* s=1 j=1

From the multinomial theorem and conditions of fermionic variables ¢/t = Wil =0,
we get the following result.

N—-k k

EN—k? ]
[ (i)™ = o2 = [ e TN
G(k.N) poler iy
k—1
— (kN — kz)!HJ—OJ (5.239)
H =N—kJ*

Second, we show (1.47) and (1.48). In the same way as for (1.46),

4!
/ (Tf(1))kN_k2_21(Tl*(2)) = /Diﬂ kN K- ( g)l (l = 1,2). (5.240)
G(k,N) ] N L]
(5.241)

Since 0 = £{(tr (9))? — tr (9?)},

/ Do) N F A o) = o / Dy {tr (@)1 (0 () — 1 (87))' (5.242)
- m;)( ) / D (tr ()Y 2 (1 (92))" (5.243)

Let us define
/Dw (tr (@)Y 72" (1 (@2))™ (m =0,1,2). (5.244)

Py = (kN — k?)! from the calculation of (1.46). We obtain the following result for P
and PQ.

Proposition 3.
Py = (kN — k* = 2)Ik(N — k)(N — 2k). (5.245)
Py= (kN — k* — k(N — k) [k(N k)P —2(N — k)2(k2 +2)

+ (N — k)(K® + 10k) — 4k% — 2} . (5.246)
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We prove these results later. Since

[ Do) 2 = SR - P

= %(k:N — k= 2)k(N — B){(EN — k* — 1) — (N — 2k)}

= %(k:N — k> = 2N —k)(N — k+ Dk(k — 1), (5.247)
We obtain (1.46).
/ Dy )N R ()2 — 711<P0 _ 9P+ P) (5.248)

1
"]
4 (KN — k2 — 4) k(N — k) [k(N — )P —2(N — k)2(k2 +2)

((k;N . 2[(kN ~ K2 = 2)k(N — k) (N — 2k)

(N — k) (K® + 10K) — 4k? — 2]) (5.249)
We put A := N — k. Then,

}l(PO — 2P + Py) = i((kA)! —2[ (kA ~ 2)kA(A - )]

(kA = )RA[RA® — 2A4%(K +2) + A(K® + 10k) — k% — 2] ) (5.250)

_ (’“A; 4)!k;A((kA ~ 1)(kA — 2)(kA — 8) — 2| (kA — 2) (kA — 8)(A — )

+EAS — 2A2(K2 + 2) + A(K® + 10k) — 4k? — 2) (5.251)

_ (’“A; 4)!kA<(kA ~1)(A — 5kA +6) — 2[ (kA ~ 2) (kA — 3)(4 — k)]

+EAS — 2A2(K2 + 2) + A(K® + 10k) — 4k? — 2) (5.252)

- (’“A; 4)!kA<(k3A3 — 5k2A% + 6kA — k2A? + 5kA — 6)

—9 [(kw ~ kA4 6)(A — k)| £ kAP — 242k £ 2) + AGK® + 10k) — 4k — 2)
(5.253)

— (kA; 4)!k:A<(k3A3 — 6k2A% + 11kA — 6)

—9 [kQA?’ — 5kA® 1 6A — KPA? + 5k2A — Gk]

+EAS — 2A2(K2 + 2) + A(K® + 10k) — 4k? — 2) (5.254)

- —(M; 4)!k;A((k3A3 — 6k2A% + 11kA — 6)
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—9 [kQA?’ + A2(—kP — 5k) + A(5k% +6) — ﬁk]

+RAS — 2A2(K2 + 2) + A(K® + 10k) — 4k? — 2) (5.255)
= @kﬂ((lf’ — 2% + k)A® + A*(—6K® + 2K + 10k — 2k* — 4)
+ A(11k — 10k — 12 4 kP + 10k) — 4> 4+ 12k — 2 — 6) (5.256)
= (kA; 4)!kA (k(k — 1)2A4°% + A%(2k* — 8k + 10k — 4)
+ A(K® — 10k + 21k — 12) — 4k* + 12k — 8) (5.257)
(5.258)
From the identity A>—A = A(A+1)(A—1) and (k—1)(k—2)(k—3) = k3 —6k*+11k—6,
- Mm(m C1)2AA+1)(A - 1) + A2k — 1)(k — 2)(k — 3)
+2(6k* — 11k + 6) — 8k* + 10k — 4)
AGK — 10K + 21k — 12+ k(k — 1)) — 4(k? — 3k + 2)) (5.259)
_ (kA; 4)!kA<k(k: CPAA+ 1) (A= 1) + A2k — 1)k — 2)(k — 3)
FAR? — 12K+ 8) + AGR® — 10k + 21k — 12+ &® — 2k2 + k) — 4(k — 2)(k — 1))
(5.260)
- <kA4_ 4)!kA<k:(k: —1PAA+ 1A = 1) + A2k — 1)(k — 2)(k — 3)
4k = 2)(k — 1)) + AQ2K® — 12K 4+ 22k — 12) — 4(k — 2)(k — 1)) (5.261)
- <k’44_ 4)!kA<k(k —1)2A(A+ 1)(A— 1) +2(k — 1)(k — 2)(k — 3) A
F A2k — 2)(k— 1) + 20k — 1)(k — 2)(k — 3)A — 4(k — 2)(k — 1)) (5.262)
= ““‘44_ 4)!kA<k(k —1PA(A+ 1)(A 1)+ 2(k — 1)(k — 2)(k — 3)A(A + 1)
+4(k = 2)(k — 1)(42 - 1)) (5.263)
- <k‘44_ Dk~ A4+ 1) (k(k C1)A(A— 1) +2(k — 2)(k — 3)A + 4(k — 2)(A — 1))
(5.264)
_ (kN ‘f — D= 1)V — B)(NV — ki + 1) (Kl = DN = K)(N — k— 1)
£ 2k —2)(k — 3)(N — k) + 4(k — 2)(N — k — 1)). (5.265)
O
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5.1 Proof of Proposition 3

Proof. (Proposition 3)
Let w” be SN F iyl By definition,

r (®7) Z W = Xz(cu”)2 + Z ww (5.266)
i,j=1 i=1 i#]
n - / D 0 (@) (11 (02)), (5267
EN—k2—2 EN—k*—2

= D@D( w"”) w™)? + D1/1< > ww’t (5.268)
> oo (3 >/

_ Z Z k:N k? - 2) /Dl/) (H(wnn)pn> (wz‘z‘)2

+ ZZ (kN = #” —2) /D¢ (H(wnn) )ww (5.269)
Z 7 Tl n=1

an means summing so that kN —k?>—2 > py, -+, pi > 0 satisfy condition 22:1 D =
kN —k*—2. For the fermion integral to be non-zero, in the first term p, = N —k(n # i)
and p; = N—k—2, since each w” (i = 1,--- , k) needs to be N—k. And p, = N—k(n #
i,j) and p; = pj = N — k — 1 in the second term.

k

B (kN — k* — 2)!
Pl‘z;((N—kn“N i /D‘”( )

1=
) k) (wuwgg)N*kfl Wi

(kN — k2 — 2
L WA /D‘”<
(5.270)

(Fa¥)

n#i,j

From w"” = )" "¢t | multinomial theorem and conditions of fermionic variables

WIv] = il =0,

+;<<N_ T /w(Hme) " ”N’“<wawtwt>.

n#i,j =1 s,t=1

(5.271)

In the second term, (w"w)N=5=1 contains N — k — 1 ¢itbi’s and ¢/ys, it must be

95



s = t from conditions of fermionic variables.

Py = (kN — k> —2)k(N — k) (N — k — 1)

L (kN — k2 —2)! N N
—ZZK(((N_ k_m; / Dy (H HWW) (W) (wiiudvl)

i#) s=1 n#i,j =1

(5.272)
— (kN — k> = 2)Ik(N — k)(N —k — 1)

N—k N—k N—k B _ B i
=) > (kN -k —2)! / Dij (H 1T ww) T viviviv; (w;’w;iwzw;)
q=1

i#j s=1 n#i,j =1 =

q#s
(5.273)
= (kN =k = 2)lk(N = k)(N =k —1) = ) N_k(k;N — k2 —2)! (5.274)
i#j s=1
= (kN — k> = 2){k(N — k)(N —k —1) — (N — k)k(k — 1)} (5.275)
= (kN — k* — 2)\k(N — k)(N — 2k). (5.276)

We compute P.

P, = / D) (Z w””) <Z(w”)2 + Zw”w”) (5.277)

k EN—k%2—4 i#k
_ /Dw (Z wnn) [Z(wiiw]‘j>2 ) Z Z(wmm)2wijwji
n=1 i m=1 i£j
+Y % w“bwbawijwﬂ] . (5.278)
a#b i#j

Let us define

& EN—K2—4
Ql — Z/Dw (Z wnn) ((,U”WJJ)Q,
i n=1
’ k k EN—k2—4
Qg =2 Z Z/Dw <Z w"”) (w™™) 2 7, (5.279)
n=1

m=1 i#j
& kN—k%—4
Qs = Z Z / Dy (Z w"") Wb Tt (5.280)
a#b i#j n=1
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First, we consider ).

S (z) s [ (z)

i#]

— k? — 4)! )
_Z{N kl}klN k — 4 /D@DH

(kN — k? — nnkaz
O [ oI

(EN — k? — 4 (EN — k? — 4 )
_Z N k — 4) ;{N k—QI)}Z((N_k)!)
(kN—kQ— 4)! (EN — k? — 4)! )
=y N R R D E s (Y R
= (EN — k> —4)\k(N —E){(N =k —1)(N —k —2)(N — k — 3)
+(k—=1)(N —k)(N —k—1)*}. (5.281)

Next, we calculate Q5.

L kN—k2—4
Q2 =2 Z / D <Z w”") (W) 2wt
n=1

i#j

kN—k2—4
+2 Z / Dy (Z w"”) (W)

i#j

+QZ Z /D@/} (Z w"”) (wW™™) 2w w7, (5.282)

i#] m#L]
From w¥wi® = wiiw® if we replace i with j and j with ¢ in the second term, it is the
same as the first term.

EN—k2—4
QQ = 42 / D¢ (Z w””) (wu)2wl]wji

. EN—k2—4
23> / Dy (Zw""> (™) W (5.283)
i#j m#i,g
k
_ 422 k‘N k2 4) /Dw <H(wnn>pn> (wm>2wzjwji
i#]  Pn q 1pq n=1
k
+22 Z Z (kN — k;2 4)! /D@/) (H(wnn)pn) (W™ Y2 7, (5.284)
1#j m#i,j Pn q lpq n=1
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an means summing so that kN —k?—4 > p;,--- , p > 0 satisfy condition ZZ=1 Pp =
kN —k?*—4. From the condition of integration and the condition of fermionic variables
Yit =0, in the first term, p, = N —k(n#4,j) andp; =N —k—3,p; =N —k — 1.
In the second term, p, = N —k(n #4,j,m) andp; =p; =N —k—1,p, =N —k—2.

k? N o
= 42 I(N — k —1)! /D¢< II wfw?) ()Nl

n#i,j =1
(EN — k2 — 4)/(N — k)!
2
* ;gy N—k—2(N—k—1))?

/ D (H H op %) BTN =k=1 i 500, (5.285)

n#i,j =1

Here, the integral value is calculated in the same way with P;. In i # 7,

/Dw <H H 1/11 wl ) wjj)kaflwijwji — —(N _ k)((N k- 1)!)2. (5286)

n#i,j =1
B (EN — k? — 4)/(N — k)!

_4§ (N —k —3)!

(EN — k? — /(N — k)N — k

_2;77;) N)<k—2))( ) (5.287)
_ kN _(]\]; __i(g!_ k)'k(k —-1)

(kN — k2 — /(N — k)I(N — k)
—2 N k9 k(k—1)(k—2)
= (kN — k> — 4)\k(N — k)(k — 1)[-4(N —k — 1)(N — k —2)
—2(N = k)N —k—1)(k—2)]. (5.288)

Finally, we compute Q3.

kN—k2—4
Qs = ZZ/Dw (Zw”n> Wbyt (5.289)

a#b i#j

The sum >, >,; can be divided into the following seven cases.

Sum patterns of (i, ) and (a,b)

Wi=a j=b (2)i=bj=a B i=a j£b di=0bj#a (5)i#a
j=0b.(6)i#b j=a. (7)i#a,bj#a,b.

From the symmetry of a, b and 4, j, (1) and (2) have the same form. Similarly, (3),
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(4), (5) and (6) have the same form. Therefore,

Qs=2) / Dy (Z wnn) e (a2

i#j
EN—k*—4
> /Dw <Zw > b i
i#£] b#i,j
kN—k2—4
+ Z /Dw (Zw"”) Wbt (5.290)
(4,5,a,b)

Here, Z/(Z Jab) implies that 7, j,a, and b sum so that they are different each other.

— k2 4)!
_2; N - k: “2((N — k —2)1)?

(-

(kN — K2 — 4)1
+4;b¢2” N RSN =k — 21N —k = 1)1)?

/D¢ (niw b

(kN — k2 —
2> (V= KD (N k—l 4/“”(

) k) (wz’iwjj)N—k—Q (wijwjz’>2

nny —k) (wm')N—k—2 (wbbwjj)N_k—l Wittt it

W™ —k> (waawbbwiiwjj)N—k—l

(ivjvaab) n;éa b 7 ]
X Wbyt (5.291)
(kN — k* — 4)! o N—k—2
o3 5 [ oo [T IT vret ) (o)
(N —k—2)!
z;éj n#i,j =1
x( > LUkl z‘mz;wz;)
§1,82,t1,t2
(k:N k2 — 4)!
42>
ot (N =k = 2) /(N =k — 1)!)?
N k—2 i\ N—k—1
o (o) e
n#i,j =1
X ( Z 17/}; wt1¢tl : ‘;ngngg>
$1,82,t1,t2
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!/

kN — k? o N—k—1
5§ (o 1] o) e

(i7j7a7b) n;ﬁa b,i ,J =1
( > vt gl il ;wz;w;) : (5.292)
51,52,t1,t2

We consider sum of sq, s9,t1,ts. In the first term, the summation can be divided into
two ways, (s1 = t1, So = to, $1 # S2) and (s1 = ta, S = 11,51 # S2). In the second term,
it must be (s; = t1, s = ta, $1 # s2). In the third term, it must be (s = t1, so = t3).
Since the first term is symmetric for s; and so, and ¢; and s,

03 X IS oo (T T eret ) iy

1#£j 51;£52 n#i,j =1
R 5 i g o
X( S1 78178178 S9 1752 782 7)
kN k2 — 4)!

2D ROV kT

i£j bFi,j 517552

« [0 (H me) )2 (v v )

n#i,j =1
X Z Z N kk_—l %)L /Dw ( H H w?wl> aa bb lejj)N*kfl
(4,5,a,b) s1,52 n#a,b,i,j =1
(2 2 U b L L e, ) (5.293)
_422 (kN — k2—4)'+4zz > (kN -k -
175] s1#52 i#] b#i,j s17#s2

+ Z Z (kN — k* — (5.294)

= (kN - k2 — ) [dk(k — 1)(N — k)(N —k —1)
+4k(k —1)(k —2)(N —k)(N —k - 1)+ k(k —1)(k — 2)(k — 3)(N — k)]
(5.295)

= (kN — k> — 4)k(N — k)[4(k — 1)>(N —k — 1) + (k — 1)(k — 2)(k — 3)(N — k)].
(5.296)

From above results,
P3=0Q1 + Q2+ Q3
= (kN — k> —4)k(N —E){(N -k —1)(N —k —2)(N — k —3)
+ (k= 1)(N—k)(N —k—1)*}
+ (kN — k* = D)k(N — k)(k — 1)[-4(N —k = 1)(N — k — 2)
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—2(N = k)(N =k = 1)(k - 2)]
+ (kN — k* — 4)%(]\1 E)4(k — 12N —k —1) + (k= 1)(k — 2)(k — 3)(N — k)]
(N

= (kN — k> —4)k(N — k) [(N —k —1)(N —k —2)(N — k — 3)

k
+(k—=1)(N—=k)(N -k =14+ (k= D{-4(N -k —1)(N -k —2)
— 2N —k)(N -k — 1)(k —2)}

+4(k—1)*(N —k = 1)+ (k—1)(k —2)(k — 3)(N — k)|. (5.297)
Here, we put A := N — k.
= (kA — 4)RA[(A = 1)(A = 2)(A—3) + (k — 1)A(A - 1)’
+(1€—1){—4(A—1)(A—2)—2A( —1)(k=2)}
FAk — 1D2(A - 1) + (k — 1)( A]
= (kA - 4)'kA[( 1)(A2 — 54+ 6) + (k — 1)A(A2 — 24 + 1)
— 4k — 1)(A2 = 3A+2) — 2(A% — A)(k — 1)(k — 2)
Ak —12(A— 1)+ (k—1)(k — )(k—3)A]
- (kA—4)!kA[A3—5A2+6A—A2+5A—6+(k— 1)(A3 — 24% + A)
—4(k —1)(A% —=3A+2) — 24%(k — 1)(k — 2) + 2A(k — 1)(k — 2)
Ak — 1A — Ak — 1)+ (k — 1)(k — 2)(k —3),4] (5.208)
— (kA - 4)!kA[kA3 — A2+ 114 — 6+ (k — 1)(—2A2 + A)
—4(k —1)(A% —=3A+2) — 2A4%(k — 1)(k — 2) + 2A(k — 1)(k — 2)
Pk — 124 — 4k — 12 + (k- 1)(k — 2)(k —3)A] (5.299)
= (kA - 4)!kA[kA3 — A%+ 11A— 6 —2(k — 1A%+ (k — 1)A
—4(k —1)A* +12(k — 1)A — 8(k — 1) — 2A%(k — 1)(k — 2) + 2A(k — 1)(k — 2)
+4(k—12A—4(k -1+ (k- 1)(k—2)(k — 3)A

~—

| IS

~—

— (kA — 4)lkA [k;A3 FA2(—6—2(k—1) — 4k —1) — 2(k — 1)(k — 2))
+ AL+ (k—1)+12(k = 1) +2(k — 1)(k — 2) + 4(k — 1)* + (k — 1)(k — 2)(k — 3))
68k —1) —4(k — 1)2} (5.300)

W

— (kA — 4)lkA [mﬁ A6 — 6(k—1) — 20k — 1)(k — 2))

+ AL+ 13(k — 1) + (k — D2(k — 2) + 4(k — 1)?) — 8k + 2 — 4(k? — 2k + 1)]
(5.301)
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— (kA — 4) kA kA + A2(—6k — 2(k — 3k +2))
FA1L+13(k— 1)+ (k—1)2(k+2)) — 8k + 2 — 4k> + 8k — 4 (5.302)

= (kA — 4) kA [EAP + A2(—2k% — 4)) + A(13k — 2+ (k2 — 2k + 1)(k + 2)) — 4k — 2]
) (5.303)
= (kA — 4) kA KA + A2 (—2k* — 4)) + A(13k — 2+ & — 2k + k + 2k — 4k + 2)

— Ak — 2} (5.304)

— (kA — 4)lkA [mﬁ —2A%(K? +2)) + A(K® + 10k) — 4K% — 2] (5.305)

— (kN — k2 — 4)1k(N — k) [k:(N k)P —2(N — k)2(k +2))

+ (N — k) (K + 10k) — 4k2 — 2} . (5.306)
O

Appendix of Part II (Integral formula for ¢ and A)

We prove Lemma 2.

Proof. Here, we calculate the integral of ¢ and A in section 3. First, we consider

N
I = / Dé exp (— > viidy; — itr(é&)) : (5.307)
s=1
Since ¢ is a Hermite matrix, we define
k—1
D¢ = H <d¢u 11 d%d%) dgy,. (5.308)
Jj=i+1

The exponent term is summarized as follows.

—itr(¢9) — Zw Wiy

k

2

k
= i>]

=1 s=1
k

2

i<j

N
_i¢ji$5j - Z WJ?&%]
s=1

(5.309)

N
_i¢ji$5j - Z ¢;¢g$€]
s=1
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k N
=> [—i%% -y %2@%]

=1

k N = . _ N - .
+ Z _Z'((bji(gfj + Q%éji) - Zzﬂéw;@z - Z w;wﬁ@]] : (5.310)
1<j s=1 s=1

From ¢€j = ¢ﬁ and Qz%j = €2_5an

k - N o
=1 s=1
N = p— - p—
1<J s=1
k ~ N o
i=1 h ) s=1 ) . 7 7 7 7
+ Z i{¢ji¢fj + *(¢jz¢b)} - Z{wéwi% - *(¢;¢§¢Zg)}] (5.312)
1<j s=1
J v )
ZZ[{%4§MMM4
=1 =1
N
T Z —2iRe( ¢J1¢U Z Im(#’;d’i@;)}] . (5.313)
1<J s=1

To evaluate the integral of ¢, we represent ¢;;, ¢7;(i # j) and ¢! with ¢w’ qbfj (they are
real variables) and v}, ¥}, as follows. (¢ is a real variable from ¢;; = ¢,;.)

wi = wﬁés + Wfrsa Vs = Ve — W, (5.316)

Then, ¢ff = ¢, ¢, = —¢l, and ot = %, ¢, = —¢l,. Since doy; A doj; = —2idpf A
do;,

k—1
zwﬂ@ﬂmmw% (5.317)

j=i+1
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= YhWhs + Vistls + Wk, — Vihy)- (5.318)

I (YL i) = O (Vg + Veth) + SR (Wiythy — Ve, (5.319)
G5ty = (¢ﬁ + Z%ﬂ)(&g + Z@I])

= ¢jidi; — &0y +i(-+) (5.320)

Re(¢;:03) = dji01; — 05,015 (5.321)

We obtain the following result by changing the order of integral.

— (H / des; exp ( G + 2 Z ¢Rs¢ls}¢u>>
. ( [ detans ex (—zz'{ (68 + S Whath, — vhovh) )5
s=1

=1 j=1+1

~ (ot - Zwﬁqs%s + U5 ) o) }) ) . (5.322)

s=1

By the integral formula

/00 drexp(ifz) =2m(f) (f : field), (5.323)
we obtain
_ N N .
/ debi; exp (—z‘{% + 22%%}%) = 270 (¢ + 22%%) (5.324)
s=1 s=1
and

/ doldgL; exp (—22'{ (0% + iwzsw}; ~ V0h.) ) OF
s=1
- (dh - Dkt + st}
s=1
N

2 2 N ‘ ‘ ‘ ‘ | | | |
27;) 5 <¢§3 + > (Wt — @b}s%s)) 5 (cbj’-i =) (Vhths + V0 }8)) . (5.325)
s=1

s=1

—~

Therefore,

I = Qkk 1 {H5<¢zz+2Zsz¢15>}

=1 j=1+1 s=1
(5.326)
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Next, we calculate

]A;:L/z)Aexp(—m(AU4+fUﬁ¢wﬂ))-DA*: (E)H’

2
i=1 \j=1
(5.327)
An Aty
A= : (5.328)
Ap Ay
¢ is diagonalized to ¢ = PAP!. P is unitary matrix
A 0
Py Py, ' o
P = : , A= ) ) (5.329)
P Prs 0 Y

tr (ATA) = tr (PATPIPAPT) = tr (ATA) = Z |AL|? (5.330)

3,7=1

tr (ATgA) = tr (PATPI¢PA'PT) = tr (ATAA') Z AN AL

i,l,p=1
k k
= ) A\, AL ZA A=Y NALP. (5.331)
ilp=1 il=1 ij=1

tr (ATAg) = tr (PATPTPA'PTg) = tr (ATA'N) = Z AT AL A

il,p=1
Z A AL N0y ZA’ AL _i\Agjmj. (5.332)
zlp 1 il=1 i,j=1
tr(ATA + Alig, A Z|A 2(1+vV=1(\ = \)))

i,j=1

_Z|A P+ AL P+ V=1 = A))

i<j

+Z|A 21+ V=1 — \))). (5.333)

j<i
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We define

i=1

N k
7
DA = <§> 11 ( dA;jdA;j> : (5.334)
Jj=1

From A;; = przl P;lAg—ijﬁ, the integral measure is invariant. DA = DA’. Therefore,

k
L= [ Daexp(= ST 1A4LP = 3 4GP+ VAT - )
=1

= 2P VEIG - )

= [H{/dA;idA;ieXp(_‘AgiP)}

X H{/dAgjdAgjexp(—M%jF(l+\/—_1()\i — Aj)))}

X H{/dA;jdA;j exp(—| AL (1 + vV=1(\ — Aj)))} (5.335)

- <H (T+i(\ - Am) <H (T+i(h - Aj») T L= G = ir)?)
(5.336)

0
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