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Summary 

Background and Objectives: The first confirmed case of severe acute respiratory syndrome 

coronavirus 2 (SARS-CoV-2) infection was reported in January 2020, and the transmission of its 

causative agent, coronavirus disease 2019 (COVID-19) has rapidly spread around the world. In 

the early phase of the epidemic, knowledge of the confirmed case fatality risk (cCFR) and basic 

reproduction number (𝑅0) are crucial to characterize the severity and determine the pandemic 

potential of an emerging infectious disease. Thus, in order to assess the risk of COVID-19, 

Chapter 1 statistically estimated these two epidemiological measurements of COVID-19, using 

the exported cases which allow for an estimate of the cumulative number of SARS-CoV-2 

infections in mainland China. In addition, Chapter 2 explored prospective exit strategies by 

projecting a second wave of the COVID-19 epidemic in Japan with different levels of restriction 

to suggest a more sustainable strategy than the current restrictive guideline. Lastly, the effective 

reproduction number (𝑅𝑡) has been used as an essential indicator for assessing the effectiveness 

of countermeasures during the COVID-19 pandemic. However, conventional methods relying on 

the reported case counts are unable to provide timely 𝑅𝑡 due to the time delay from infection to 

report. Chapter 3 suggested a simple statistical framework for predicting 𝑅𝑡 in near real-time, 

using timely accessible data of possible driving factors of SARS-CoV-2 transmissions (i.e., 

human mobility, temperature, and risk awareness).  

Chapter 1: Real-time estimation of the risk of death from COVID-19: inference using exported 

cases 

Methods: Using the exponential growth rate of the estimated cumulative incidence from 

exportation cases and accounting for the time delay from illness onset to death, the cCFR and 𝑅0 

were estimated. We modelled epidemic growth either from a single reported index case with 

illness onset on 8 December 2019 (Scenario 1) and using the growth rate fitted along with the 

other parameters (Scenario 2) based on 20 exported cases reported by 24 January 2020. Results: 

The cumulative incidence in China by 24 January was estimated at 6,924 cases (95% confidence 

interval [CI]: 4,885–9,211) and 19,289 cases (95% CI: 10,901–30,158), respectively. The latest 

estimated values of the cCFR were 5.3% (95% CI: 3.5%–7.5%) for Scenario 1 and 8.4% (95% 

CI: 5.3%–12.3%) for Scenario 2. The 𝑅0 was estimated to be 2.1 (95% CI: 2.0–2.2) and 3.2 
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(95% CI: 2.7–3.7) for Scenarios 1 and 2, respectively. Discussion: Based on these estimates, we 

argued that the current COVID-19 epidemic has a substantial potential for causing a pandemic. 

The proposed approach provides insights into early risk assessment using publicly available data. 

Chapter 2: Projecting a second wave of COVID-19 in Japan with variable interventions in high-

risk settings 

Methods: We quantified the next-generation matrix, accounting for high- and low-risk settings 

of SARS-CoV-2 transmissions. Then, the matrix was used to project the future incidence in 

Tokyo and Osaka after the first state of emergency is lifted, presenting multiple post-emergency 

scenarios with different levels of restriction. Results: The 𝑅𝑡 for the increasing phase, the 

transition phase and the state-of-emergency phase in the first wave of the disease were estimated 

as 1.78 (95% credible interval (CrI): 1.73–1.82), 0.74 (95% CrI: 0.71–0.78) and 0.63 (95% CrI: 

0.61–0.65), respectively, in Tokyo and as 1.58 (95% CrI: 1.51–1.64), 1.20 (95% CrI: 1.15–1.25) 

and 0.48 (95% CrI: 0.44–0.51), respectively, in Osaka. Projections showed that a 50% decrease 

in the high-risk transmission is required to keep 𝑅𝑡 less than 1 in both locations—a level 

necessary to maintain control of the epidemic and minimize the burden of disease. Discussion: 

Compared with stringent interventions such as lockdowns, our proposed exit strategy from 

restrictive guidelines, focusing intervention efforts on the high-risk setting, allows 

socioeconomic activities to be maintained while minimizing the risk of a resurgence of the 

disease. 

Chapter 3: Predicting the effective reproduction number of COVID-19: inference using human 

mobility, temperature, and risk awareness.  

Methods: A linear regression model to predict 𝑅𝑡 was designed and embedded in the renewal 

process. Four prefectures of Japan with high incidences in the first wave were selected for model 

fitting and validation. Predictive performance was assessed by comparing the observed and 

predicted incidences using cross-validation, and by testing on a separate dataset in two other 

prefectures with distinct geographical and climatological settings from the four studied 

prefectures. Results: The predicted mean values of 𝑅𝑡 and 95% uncertainty intervals followed 

the overall trends for incidence, while predictive performance was partially diminished when 𝑅𝑡 

changed abruptly, potentially due to superspreading events or when stringent countermeasures 

were implemented. In addition, the predictive performance of the best-ranked model on the 
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separate test data indicates the applicability of the proposed model to other geographical settings. 

Discussion: The described model can potentially be used for monitoring the transmission 

dynamics of COVID-19 ahead of the formal estimates, subject to time delay, providing essential 

information for timely planning and assessment of countermeasures. 

Conclusion: Since the SARS-CoV-2 emerged, it has posed an enormous threat to healthcare 

systems all around the world. The present dissertation has contributed to a better knowledge of 

COVID-19 infection dynamics, which is crucial for controlling the ongoing COVID-19 

pandemic and devising timely and proper COVID-19 response strategies. First, it estimated the 

risk of death and transmissibility of COVID-19 for the early risk assessment. In addition, it 

projected the future dynamics of COVID-19 by reconstructing the next-generation matrix 

accounting for high- and low-risk transmission settings, and quantitatively assessed the impacts 

of possible exit strategies on the SARS-CoV-2 transmissions in Japan. Lastly, it suggested the 

statistical framework for providing timely prediction of the effective reproduction number, that 

can be used before a formal estimate is available. Despite uncertainties surrounding new SARS-

CoV-2 variants, these series of studies can shed light on a better understanding of the infection 

dynamics of COVID-19 and the establishment of evidence-based response strategies for 

minimizing the burden of the ongoing COVID-19 pandemic. 
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Introduction 

In early December 2019, a cluster of pneumonia cases of unknown etiology has emerged in 

Wuhan, China. A rapid virological investigation identified the causative pathogen as a severe 

acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and the disease was named 

coronavirus disease 2019 (COVID-19). Originally the main mode of SARS-COV-2 

transmissions was considered as a common-source zoonotic exposure in a local wet market in 

Wuhan (Chinese National Health Commission (NHC), 2021). However, even after shutting 

down the market, sustained transmissions were reported across China, and the human-to-human 

transmission was found later to be common (Jung et al., 2020a).  

As the COVID-19 was rapidly spread to other countries through international travelers, a risk 

assessment of the severity of infection and transmissibility was highly required to quantify the 

pandemic potential of the COVID-19 and anticipate the likely impact on healthcare settings by 

the end of the epidemic. Despite early risk assessment of a newly emerged disease is challenging 

due to the underestimation in the reported case counts, the exported cases that were confirmed 

outside China could provide an avenue to inferring the actual cumulative case counts in China 

(Nishiura et al., 2020a). Thus, Chapter 1 presented early estimates of the confirmed case fatality 

risk (cCFR) and basic reproduction number (𝑅0) —the average number of secondary cases 

generated by a single primary case in a naïve population—of COVID-19, using the growth rate 

of the estimated cumulative incidence from exportation cases and accounting for the time delay 

from illness onset to death. 

With the rapid spread of COVID-19, a various set of non-pharmaceutical interventions (NPIs), 

including the closure of bars and restaurants and voluntary limitation of non-household contact, 

was implemented in many of the heavily affected areas (Perra, 2021). As the upsurge of COVID-

19 incidence was observed in April 2020, the Japanese national government also declared the 

first state of emergency and such stringent interventions greatly contributed to suppressing the 

disease incidence of COVID-19 in Japan (Ministry of Health Labour and Welfare, 2020a). 

However, given its considerable socioeconomic impacts, these restrictions must eventually be 

replaced by a more sustainable strategy. To characterize such an exit strategy from the restrictive 

guidelines, Chapter 2 quantified the next-generation matrix accounting for high- and low-risk 
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settings. Then, based on the reconstructed next-generation matrix, future waves of SARS-CoV-2 

infections with different levels of restriction were projected to provide an evidence-based 

guideline for sustainable response strategy that allows society to be resumed while minimizing 

the risk of a resurgence of the disease. 

As the pandemic continuous, monitoring of the effective reproduction number (𝑅𝑡) —the 

expected number of secondary cases arising from a single primary case at calendar time 𝑡—has 

played an essential role in understanding the infection dynamics and evaluating the 

countermeasures (Nishiura and Chowell, 2009; Thompson et al., 2019a). However, due to the 

time delay from infection to reporting, conventional methods relying on the reported case counts 

are unable to provide timely 𝑅𝑡 (Gostic et al., 2020). Accumulated evidence suggests that 

integrating human mobility with temperature and risk awareness reflects contact patterns as a 

function of time (Leung et al., 2021; Smith et al., 2021; West et al., 2020), and these data are 

more readily accessible than case counts. Therefore, Chapter 3 suggested a statistical framework 

to provide the proxy of 𝑅𝑡 in a near real-time manner, using the possible driving factors of 

COVID-19 transmissions. All three chapters of the present dissertation explored the infection 

dynamics of COVID-19 and provided an opportunity for developing proper and timely control 

measures in the corresponding periods of the COVID-19 pandemic.   
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Chapter 1: Real-time estimation of the risk of death from COVID-19: inference 

using exported cases 

Background 

In early December 2019, clusters of pneumonia cases of unknown etiology were reported in 

Wuhan, China (Jung et al., 2020b; Li et al., 2020b; The World Health Organization, 2020a). As 

extensive transmissions were observed, the World Health Organization (WHO) carried out an 

active virological investigation, and the causative agent was identified as “severe acute syndrome 

coronavirus 2” (Cui et al., 2019). The virus rapidly spread to other regions in China, resulting in 

a total of 4,515 cases including 106 deaths as of 27 January 2020 (Center for Disease Control 

and Prevention, 2020). In addition, 41 cases of SARS-CoV-2 infections were confirmed in other 

parts of the world, including other Asian countries, the United States, France, Australia, and 

Canada, indicating its considerable transmissibility. In response, the Chinese government 

imposed a lockdown on the city of Wuhan on 23 January 2020, shutting down inbound and 

outbound travels across the affected areas, along with placing all corresponding residents under 

stringent home quarantine (Lau et al., 2020). 

Since many of the cases in the initial cluster were associated with a local wet market—a place 

that sells seafood and wild animals—in Wuhan, a common-source zoonotic exposure was 

suspected as the main route of the transmissions (Huang et al., 2020). However, even after 

shutting down the market, sustained transmissions of SARS-CoV-2 were continuously observed 

across China, along with several household transmissions (Chan et al., 2020). Such evidence 

implies that human-to-human transmission has aided in the establishment of the rapid emergence 

of incidence (The World Health Organization, 2020b), and accordingly the reported case counts 

might greatly underestimate the actual number of infections in mainland China (Nishiura et al., 

2020a). 

With the accumulative evidence of human-to-human transmissions, the early risk assessment has 

become more essential to guide the extent and direction of control measures in the early stage of 

the epidemic. As seen in the severe acute respiratory syndrome (SARS) outbreak in 2003, 

developing timely response strategies based on those epidemiological indicators can 
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significantly reduce the ultimate burden of the disease (Kobayashi et al., 2020). Therefore, the 

early assessment of the severity of infection and transmissibility of COVID-19 is highly 

required, which can reveal important information about the likely number of deaths by the end of 

the epidemic and the pandemic potential of the disease. 

One important epidemiological indicator of the severity of the disease is case fatality risk (CFR), 

which can be measured by the following three approaches: (i) the proportion of the cumulative 

number of deaths out of the cumulative number of cases at a point in time, (ii) the ratio of the 

cumulative number of deaths to the cumulative number of infected individuals whose clinical 

outcome is known (i.e., the deceased or recovered), and (iii) the risk of death among confirmed 

cases (referred to as “cCFR” (Nishiura et al., 2009)) with an explicit consideration of the time 

delay from illness onset to death (Ghani et al., 2005). Estimating the CFR relied on the method 

(iii) (i.e., estimation of cCFR) can provide less biased insight into the severity of the disease, 

especially in a real-time manner, because the naïve CFR based on method (i) tends to be an 

underestimate due to the growth of fatal cases. For instance, right-censored cases with respect to 

time delay from illness onset to death may lead to underestimation of the CFR, since deaths 

related to the infection may yet occur after case identification (Garske et al., 2009; Ghani et al., 

2005; Nishiura et al., 2009). However, with a certain level of underascertainment bias in the 

number of cases, the cCFR may overestimate the actual CFR among all infected individuals 

(referred to as “IFR”). If patients with mild symptoms or undistinguished clinical signs 

(compared to other respiratory infections) are not fully recognized as suspected cases, the 

denominator of cCFR (i.e., confirmed cases) may include only part of actual infections unless 

active molecular diagnostic testing or seroprevalence survey is performed together. Nonetheless, 

the cCFR is still a valuable epidemiological measure showing the upper bound of the CFR 

among all symptomatic cases, particularly in circumstances with a high uncertainty such as the 

emergence of a new human pathogen like COVID-19. 

Moreover, estimating the basic reproduction number (𝑅0) —the average number of secondary 

cases generated by a single primary case in a fully susceptible population—can reveal the 

pandemic potential of the disease, given the definition of a pandemic as the worldwide spread of 

a newly emerged disease (Thompson et al., 2019b). Therefore, the present study aims to estimate 
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the cCFR and 𝑅0 of the COVID-19 in a real-time manner, using the growth rate of the estimated 

cumulative incidence in China from exportation cases and accounting for the empirically 

observed time delay from illness onset to death. 

Methods 

Epidemiological data 

Information on (i) exported COVID-19 cases confirmed outside China and (ii) COVID-19 

related deaths in China were retrieved from the first announcement date of the current outbreak 

(i.e., 31 December 2019) through 24 January 2020. The latter timeframe was determined to 

consider the impact of the ban on public transportation from Wuhan (including flights) which 

was imposed by the Chinese government on 23 January 2020 on the number of exported cases 

(BBC NEWS). All data were collected either from government websites or from media quoting 

government announcements. In detail, our data includes 51 exported COVID-19 cases and 41 

deaths related to the disease in China. 

Estimation of the Delay Distributions 

The number of newly infected cases by date of illness onset t, i(t), is modelled using an 

exponential growth model with the rate r: 𝑖(𝑡) = 𝑖0𝑒
𝑟𝑡, where i0 indicated the expected number 

of infected cases at time t = 0. The cumulative incidence, I(t), is an integral of i(t) over the time 

interval from 0 to t that can be written as 𝐼(𝑡) = ∫ 𝑖(𝑠)d𝑠
𝑡

0
= 𝑖0(𝑒

𝑟𝑡 − 1)/𝑟. The cumulative 

incidence is adjusted to the date of report by the factor u dependent on the parameters of the 

delay distribution. For the estimation of time delay distribution from illness onset to death, we 

borrowed parameters from an earlier study that accounted for the right-truncation (Linton et al., 

2020). Let 𝑓(𝑡; 𝜃) be the lognormal distribution with parameters 𝜃𝑑 = {𝑎𝑑, 𝑏𝑑}. Then, the 

cumulative incidence I(t) by date of report t can be adjusted to the time from illness onset to 

death and report by simply multiplying it by the factor 𝑢(𝑟, 𝜃𝑑), which is a consequence of the 

exponentially growing epidemic (Nishiura et al., 2009). The factor u is defined by the following 

integral: 
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 𝑢(𝑟, 𝜃𝑑) = ∫ exp(−𝑟𝑠) 𝑓(𝑠; 𝜃𝑑)𝑑𝑠
∞

0

 (1) 

The adjusted cumulative incidence then obeys 𝑢(𝑟, 𝜃𝑑) ⋅ 𝐼(𝑡). The cumulative number of deaths 

D(t) reported by date t is the result of binomial sampling: 

 𝐷(𝑡) ~ binom(size = 𝑢(𝑟, 𝜃𝑑) ⋅ 𝐼(𝑡), prob = 𝐶𝐹𝑅(𝑡)) (2) 

Let 𝑎𝑒 and 𝑏𝑒 be the shape and inverse scale of the gamma distribution modeling the distribution 

of time interval from illness onset to the report for observed exported cases. The cumulative 

incidence in China can be then adjusted by the multiplicative factor 𝑢̃(𝑟, 𝜃𝑒 = {𝑎𝑒 , 𝑏𝑒}). The 

number of exported cases E(t) can then be sampled from another Binomial distribution: 

 𝐸(𝑡) ~ binom(size = 𝑢̃(𝑟, 𝜃𝑒) ⋅ 𝐼(𝑡), prob = 𝑝) (3) 

where p describes the probability of finding a traveler from Wuhan among all travelers from 

China subject to the detection time window of the virus T = 12.5 days (Nishiura et al., 2020a). 

Given that the total volume of inbound passengers from China is M = 5.56 million passengers 

per year, the fraction of Wuhan travelers is 𝜙 = 0.021%, and the population of Wuhan is n = 11 

million, the probability p is given by 

 𝑝 =
𝜙𝑀𝑇

365𝑛
≈ 0.0036 (4) 

Statistical model 

First, we fitted the delay distribution of the time from illness onset to report Δ𝑇𝑒,𝑘 (𝑘 ≤ 𝐾𝑒) to the 

gamma distribution. We define the log-likelihood as follows: 

 
𝑙𝑜𝑔𝐿𝑒(𝜃𝑒| Δ𝑇𝑒,𝑘)

=∑log(gamma(Δ𝑇𝑒,𝑘 | shape = 𝑎𝑒 , scale = 𝑏𝑒)

𝑘

 
(5) 

and it was maximized to estimate the parameters 𝜃̃𝑒 = {𝑎̃𝑒 , 𝑏̃𝑒}, used in the following step.  
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Second, we fitted the observed counts of exported cases and deaths by considering two other 

likelihoods respective to each process: 

 
𝑙𝑜𝑔𝐿𝐸({𝑟, 𝑖0} | {𝐸(𝑡), 𝑡𝑒 ≤ 𝑡 ≤ 𝑇})

= ∑ log (binom(𝐸(𝑡) | size = 𝑢̃(𝑟, 𝜃̃𝑒) ⋅ 𝐼(𝑡), prob = 𝑝))

𝑇

𝑡=𝑡𝑒

 
(6) 

 
𝑙𝑜𝑔𝐿𝐸({𝑟, 𝑖0} | {𝐸(𝑡), 𝑡𝑒 ≤ 𝑡 ≤ 𝑇})

= ∑ log (binom(𝐸(𝑡) | size = 𝑢̃(𝑟, 𝜃̃𝑒) ⋅ 𝐼(𝑡), prob = 𝑝))

𝑇

𝑡=𝑡𝑒

 

(7) 

where 𝑡𝑒 and 𝑡𝑑 are the times at which the first exportation event and the first death are observed. 

The total log-likelihood is given by the sum of two log-likelihoods: 

 
𝑙𝑜𝑔𝐿Σ(𝜃Σ = {𝑟, 𝑖0, CFR(𝑡)}|𝐷(𝑡), 𝐸(𝑡))

= 𝑙𝑜𝑔𝐿𝐸({𝑟, 𝑖0} |𝐸(𝑡)) + 𝑙𝑜𝑔𝐿𝐷({𝑟, 𝑖0, 𝐶𝐹𝑅(𝑡)}|𝐷(𝑡)) 
(8) 

which is then maximized to determine the best-fit parameters {𝑟, 𝑖0, 𝐶𝐹𝑅(𝑡)}. 

We considered two possible scenarios to fit to the data. In the first scenario (referred to as 

“Scenario 1”), we fixed the parameter 𝑖0 as one on the date of illness onset for the first COVID-

19 confirmed case (i.e., 8 December 2019; assuming that the first confirmed case as a real initial 

case), providing a fixed starting point for the exponential growth of the cumulative incidence. 

Since there is still uncertainty using this date as a proxy for the beginning of exponential growth 

due to inconsistencies in reported illness onset for the earliest reported cases (Huang et al., 2020; 

Li et al., 2020b), we conducted a sensitivity analysis where the start date for exponential growth 

was varied between 1 December and 10 December 2019. In the second scenario (referred to as 

“Scenario 2”), all parameters {𝑟, 𝑖0, 𝐶𝐹𝑅(𝑡)} are variable, and the calculation begins on the date 

the first exported case was observed (i.e., 13 January 2020). For both scenarios, we validated 

sensitivities in the estimated growth rate, cumulative incidence, and cCFR value related to 

different cut-off times, values of the detection window T, and sizes of the catchment population 

of the Wuhan International airport n. 

The basic reproduction number 𝑅0 for the COVID-19 epidemic was calculated as 
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𝑅0 = 1 + 𝑟𝑆 (9) 

where r is the estimated growth rate for each scenario and S is the mean serial interval. The value 

of the serial interval was adopted from a published study (Li et al., 2020b) in which the gamma 

distribution was fitted to six infector-infectee pairs (mean = 7.5 days, standard deviation [SD] = 

3.4 days). 

In our analysis, we employed Markov chain Monte Carlo (MCMC) simulations with eight chains 

of 4,250 samples each, with 2,500 samples used for the tuning stage, leveraging the No-U-Turn 

sampler (NUTS) part of the Python PyMC3 package. However, one of the input variables for the 

Binomial distribution 𝑢̃(𝑟, 𝜃𝑒) ⋅ 𝐼(𝑡) or 𝑢(𝑟, 𝜃𝑑) ⋅ 𝐼(𝑡) was modelled with a continuous variable 

in our approach. We used the gamma distribution, matching the first two moments to obtain the 

transformation of the discrete Binomial distribution to its continuous approximation (Li et al., 

2018; Lipsitch et al., 2003). We avoided joint estimation of all parameters {𝜃Σ, 𝜃𝑒 , 𝜃𝑑} due to 

heterogeneity in the aggregated data—a similar issue is discussed in the previous study (Nishiura 

et al., 2009). Instead, we implemented sequential fitting, wherein first we considered only the 

likelihood 𝐿𝑒, then we fit the likelihood 𝐿Σ using the mean values of the estimated parameters 

obtained in the previous round. Finally, we verified the obtained fit by calculating pointwise 

estimates using maximum likelihood estimation with confidence intervals derived as profile 

likelihood-based intervals. We found that both approaches were in complete agreement in their 

results. 

Results 

Figure 1 shows the mean and SD of the time delay from illness onset to reporting (Figure 1A) 

and death (Figure 1B). The mean time delay from illness onset to reporting among exported 

cases was estimated as 7.1 days (95% confidence interval [CI]: 5.9–8.4), while the time delay 

from illness onset to death was 20.2 days (95% CI: 15.1–29.5) (Linton et al., 2020). 

The estimated cumulative incidence of COVID-19 in China using the exported case data and 

fitting an exponential growth curve for both Scenarios 1 and 2 were shown in Figure 2. As of 24 

January, when 20 exported cases were reported, the cumulative incidence in China was estimated 
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as 6,924 cases (95% CI: 4,885–9,211) in Scenario 1 and 19,289 cases (95% CI: 10,901–30,158) 

in Scenario 2. The exponential growth rates (r), derived from the growth rate of cumulative 

incidence, were estimated as 0.15 per day (95% CI: 0.14–0.15) and 0.29 per day (95% CI: 0.22–

0.36) in Scenarios 1 and 2, respectively. Table  presents the real-time update of the estimated 

cumulative incidence in China by the date of reporting as the number of exported cases 

increases. 

Figures 2C and 2D show the estimated cCFR value accounting for the time delay from illness 

onset to death under Scenarios 1 and 2, respectively. A total of 41 confirmed deaths were 

reported as of 24 January, the cCFR value was estimated at 5.3% (95% CI: 3.5–7.5%) for 

Scenario 1 and 8.4% (95% CI: 5.3–12.3%) for Scenario 2, respectively. Figure 3 shows the 

estimated 𝑅0 for the COVID-19 infection, using the estimated exponential growth (r) and the 

possible range of the mean serial interval. Given that the serial interval is 7.5 days (Li et al., 

2020b), the 𝑅0 was estimated at 2.10 (95% CI: 2.04–2.16) and 3.19 (95% CI: 2.66–3.69) for 

Scenarios 1 and 2, respectively. As the mean serial interval varies, the estimates can range from 

1.6 to 2.6 and 2.2 to 4.2 for Scenarios 1 and 2, respectively. 
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Figure 1. Estimates of the mean and standard deviation (SD) of the time from illness onset 

to reporting and death cases, accounting for right truncation, with novel coronavirus 

(COVID-19) infection in China, 2020 

Inference of A and B was conducted among (A) exported cases observed in other countries and 

(B) deceased cases in China. (A) Frequency distribution of the time from illness onset to 

reporting among exported cases employing a gamma distribution with a mean of 7.1 days (95% 

confidence interval [CI]: 5.9–8.4) and SD of 4.4 days (95% CI: 3.5–5.7). (B) Frequency 

distribution of the time from illness onset to death with a mean of 19.9 days (95% CI: 14.9–29.0) 

(shown in black) and SD of 11.4 days (95% CI: 6.5–21.6) employing a lognormal distribution 

and accounting for right truncation. For reference, the estimate of the mean and its 95% credible 

intervals without accounting for right truncation are shown in grey. The values for the 

distribution of time from illness onset to death are borrowed from an earlier study (Linton et al., 

2020). The blue bars show empirically observed data collected from governmental reports (as of 

24 January 2020).  



21 

 

 

Figure 2. Cumulative incidence and the confirmed case fatality risk of the novel 

coronavirus (COVID-19) outbreak in China, 2020. 

(A & B) Observed and estimated cumulative number of cases in China by the date of report. An 

exponential growth curve was extrapolated using the exported case data. Scenario 1 extrapolated 

the exponential growth from December to the first case on 8 December 2019, while Scenario 2 

started the estimation of the exponential growth only from 13 January 2020. The black line and 

shaded area represent median and 95% credible interval of the cumulative incidence in China, 

respectively. The blue bars show the cumulative number of reported cases from the government 

of mainland China. The cumulative number of reported cases was not used for fitting, but it was 

shown for comparison between the cumulative number of reported and estimated cases in China. 

There is a decrease in the cumulative number of reported cases in early January, because only 41 

cases tested positive for the novel coronavirus among the reported 59 cases on 10 January 2020. 

Left-top panels on both A and B show the cumulative numbers of exported cases observed in 

other countries and the cumulative number of deaths in China, represented by dark and light 

green bars, respectively. (C & D) Confirmed case fatality risk (cCFR) by the date of reporting. 

Each value of cCFR was estimated as the ratio of cumulative number of estimated incidences to 

death at time t. The points and error bars represent the median and its 95% credible interval of 

the cCFR. All 95% credible intervals were derived from Markov chain Monte Carlo simulations.  
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Table 1. Exportation events and estimated incidence in China, 2020 

 

Importing Locations Date of Report 

(2020) 

Cumulative 

Count 

Estimated Incidence in China (95% CI) 

Scenario 1 Scenario 2 

Thailand 13 January 1 1,828 (1,397–2,288) 1,369 (1,003–1,782) 
Japan 16 January 2 2,120 (1,605–2,672) 1,829 (1,392–2,309) 

Thailand 17 January 3 2,458 (1,845–3,119) 2,444 (1,894–3,033) 

South Korea 20 January  4 3,832 (2,802–4,962) 5,882 (4,252–7,629) 
Taiwan, United States 21 January  6 4,443 (3,220–5,792) 7,901 (5,425–10,662) 

Thailand 22 January  8 5,151 (3,700–6,761) 10,626 (6,897–15,003) 

Singapore, Vietnam 23 January  11 5,972 (4,252–7,892) 14,308 (8,661–21,250) 
Japan, Nepal, South Korea, Singapore, 

Thailand, United States 

24 January  20 6,924 (4,885–9,211) 19,289 (10,901–30,158) 

CI: confidence interval (the 95% CI was derived from the Markov chain Monte Carlo method). 

Scenario 1 indicates the estimated exponential growth rate with the assumed illness onset date of 

the first COVID-19 case (i.e., 8 December 2019), while Scenario 2 presents the estimated 

exponential growth rate from the date of the first exportation event (i.e., 13 January 2020).
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Figure 3. Basic reproduction number of novel coronavirus (COVID-19) infections in China, 

2020. 

Black lines and grey shades represent the median and 95% credible intervals of the basic 

reproduction number. Panel A shows the result of Scenario 1, in which an exponential growth 

started from the assumed illness onset date of the index case, while Panel B shows the result 

from exponential growth from the first exported case (Scenario 2). The 95% credible intervals 

were derived from the Markov chain Monte Carlo method.  
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Discussion 

In the present study, we estimated the risk of death of COVID-19 among confirmed cases 

(cCFR) while accounting for two major biases which may happen in the early stage of the 

epidemic. First, the underascertainment bias in the reported case counts in China was corrected 

by using exported cases data diagnosed outside China. We then used a right-censored likelihood 

in the estimation of risk of death in order to adjust the count of deaths with respect to time delay 

from illness onset to death. The cCFR was estimated as 5.3% (95% CI: 3.5–7.5) when the date of 

illness onset for the index case was fixed a priori on 8 December 2019 (Scenario 1), and 8.4% 

(95% CI: 5.3–12.3%) when the timing of the exponential growth of the epidemic was fitted to 

data along with other model parameters (Scenario 2). In addition, the basic reproduction number 

(𝑅0) was estimated in the range of 1.6–2.6 for Scenario 1 and 2.2–4.2 for Scenario 2.  

Our main finding suggests that the severity of COVID-19 is not as high as that of other human 

coronavirus diseases, including SARS which had an estimated CFR of 17% in Hong Kong 

(Donnelly et al., 2003; Ghani et al., 2005; Nishiura et al., 2009), and Middle East respiratory 

syndrome (MERS) which had an estimated CFR of 20% in the Republic of Korea (Mizumoto et 

al., 2015). In addition, given that only approximately 9% of all infected individuals are identified 

(Nishiura et al., 2020b), the infection fatality risk (IFR; the risk of death among all infected 

individuals), would be in the range of 0.5% to 0.8%. Nevertheless, considering the massive scale 

of the ongoing epidemic and the considerable transmissibility of the disease, a 5–8% risk of 

death among confirmed cases is by no means insignificant. Furthermore, although the 

heterogeneity in the risk of death was not investigated in the present study, the actual burden of 

the disease can be substantially amplified if the fatality risk is higher in individuals who are 

relatively more susceptible to SARS-CoV-2 infections (e.g., individuals with underlying 

diseases). A more precise risk assessment should be done in the future study once detailed 

information is made available.  

In addition, our estimated 𝑅0 with a range of 2–4 is consistent with other preliminary estimates 

posted on public domains (Imperial College London-MRC Centre for Global Infectious Disease 

Analysis, 2020; Read et al., 2021; The University of Hong Kong-HKUMed WHO Collaborating 

Centre for Infectious Disease Epidemiology and Control; Zhao et al., 2020), and is comparable 



25 

 

to the 𝑅0 of SARS, which was in the range of 2–5 during the 2003 outbreak in Singapore 

(Lipsitch et al., 2003). These estimates imply that the COVID-19 has substantial pandemic 

potential, allowing it to spread very rapidly via human-to-human transmission. However, it 

should be noted that 𝑅0>1 does not guarantee that a single untraced exported case would 

immediately lead to a major epidemic in the destination country, since the currently planned 

infectious disease response strategies, including border control and contact tracing with case 

isolation, could reduce opportunities for transmission to occur (Boldog et al., 2020; Kucharski et 

al., 2020; Thompson, 2020). In addition, in order to develop an optimal response strategy during 

the containment stage, the next key question is the presence of presymptomatic transmission, 

which can determine the importance of intensive contact tracing along with the overall 

predictability of the ongoing epidemic (Fraser et al., 2004; Thompson et al., 2016). 

In both cCFR and 𝑅0, Scenario 2 yielded higher values than Scenario 1, and it is mainly driven 

by the higher growth rate of incidence (r) in Scenario 2. Considering the uncertainty surrounding 

the illness onset date of the index case, two different approaches were applied to estimate the 

growth rate of incidence. However, as the SARS-CoV-2 was sequenced on 7 January 2020, a 

primer for molecular testing was widely distributed to other countries, resulting in a gradual 

increase in the number of confirmed cases outside China via a rapid laboratory identification. As 

a result, the estimates based on Scenario 2, which is fully reliant on the growth rate of exported 

cases, could be overestimated. On the contrary, the growth rate in Scenario 1 was estimated 

based on the date of illness onset of the index case, which relies on empirical reports of the 

earliest onset date for a case. However, the information on the index case is highly likely to be 

uncertain, particularly in the early stage of the epidemic, thus, the extrapolated exponential 

growth in Scenario 1 also has a certain level of uncertainty. Nevertheless, we conducted a 

sensitivity analysis by varying the symptom onset date of the index case in Scenario 1 and 

ensured that the resulting statistical estimates would not greatly vary from our main results. 

Despite the abovementioned limitation, it should be emphasized that the proposed approach can 

be especially useful for the early risk assessment of newly emerged infectious diseases when 

local surveillance is likely to be underascertained whereas exported cases and disease-related 

deaths are better identified. However, extending the use of the proposed method for the COVID-

19 epidemic should be done with caution. As all movement in and out of Wuhan (including 
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international and domestic flights) was banned from 23 January 2020 (BBC NEWS), this 

intervention abruptly changed the human migration network. Furthermore, despite the decrease 

in outbound travel from Wuhan, there is a significant risk that other cities will become the next 

epicenter of SARS-CoV-2 transmissions considering the rapid spread of the disease and the 

possibility of underreported cases in other regions. 

There are three more limitations to be discussed. First, the present study explored the cCFR, 

which only addresses the risk of death among confirmed cases. For the precise risk assessment, 

an in-depth understanding of IFR is required based on a better estimation of actual incidences 

and COVID-19 related deaths. It can be done in a future study when more information becomes 

available (e.g., seroepidemiological data or outpatient clinic visits for the incidence; excess 

mortality with pneumonia for the death counts). Second, our study relied on limited empirical 

data that were extracted from publicly available sources. As all estimates can vary depending on 

the number of imported cases, future studies with larger samples are needed. Nevertheless, we 

believe that this study provides critical insight into the situational assessment of the ongoing 

epidemic. Third, the detection window time T has an uncertainty, which could lead to an 

overestimated COVID-19 incidence in China. However, since active epidemiological 

investigations have been implemented outside China, we believe that the sum of the incubation 

period and the infectious period is a plausible assumption of the detection time window. 

In conclusion, the present study has estimated cCFR to be on the order of 5–8% and 𝑅0 to be 

1.6–4.2, endorsing the notion that COVID-19 infection in the ongoing epidemic possesses the 

potential to become a pandemic. The proposed approach can also help direct risk assessment in 

other settings with the use of publicly available datasets. 
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Supplementary materials 

Sensitivity analysis by varying the starting point of exponential growth of cumulative COVID-19 

incidence from 1 December to 10 December 2019 

In Scenario 1, the exponential growth of cumulative COVID-19 incidence was assumed to start 

from the reported illness onset date of the index case (i.e., 8 December 2019), whereas it was 

allowed to vary in Scenario 2. We conducted a sensitivity analysis by varying the starting date 

from 1 December 2019 to 10 December 2019 to account for the uncertainty about the illness 

onset date of the first reported case in Scenario 1. Table S1 and Figure S1 show the estimated 

growth rate, cumulative incidence, and cCFR for different starting points of the exponential 

growth.  
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Table S1. Sensitivity analysis with varying the start point of exponential growth in 

cumulative incidence with the range of 1–10 December 2019 in estimation Scenario 1. 

The start point of 

exponential growth 

Exponential growth rate 

(95% CI) 

Estimated incidence in 

China on 24 January 

(95% CI) 

cCFR on 24 January 

(95% CI) 

1 December 0.12 (0.11–0.12) 4,718 (3,328–6,278) 5.33% (3.50–7.58) 

2 December 0.12 (0.11–0.13) 4,896 (3,473–6,472) 5.35% (3.57–7.61) 

3 December 0.12 (0.12–0.13) 5,087 (3,584–6,733) 5.40% (3.59–7.62) 

4 December 0.13 (0.12–0.13) 5,392 (3,730–7,024) 5.44% (3.62–7.68) 

5 December 0.13 (0.12–0.14) 5,506 (3,908–7,309) 5.48% (3.66–7.74) 

6 December 0.14 (0.13–0.14) 5,733 (4,067–7,583) 5.53% (3.68–7.80) 

7 December 0.14 (0.13–0.15) 6,089 (4,317–8,099) 5.52% (3.68–7.76) 

8 December 0.14 (0.14–0.15) 6,266 (4,435–8,285) 5.64% (3.74–7.96) 

9 December 0.15 (0.14–0.16) 6,565 (4,663–8,687) 5.69% (3.79–8.03) 

10 December 0.15 (0.14–0.15) 6,924 (4,885–9,211) 5.27% (3.51–7.45) 

cCFR: confirmed case fatality risk. CI: confidence interval (the 95% CI was derived from the 

Markov chain Monte Carlo method). 95% confidence intervals are shown in parenthesis.  
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Figure S1. Sensitivity analysis with varied starting points for the exponential growth of 

cumulative case incidence from 1–10 December 2019. 

The estimated values of the: (A) exponential growth rate, (B) cumulative incidence, and (C) 

confirmed case fatality risk is shown by varying the start date of exponential growth in Scenario 

1. Each line and shaded area present the estimate and its 95% confidence interval (derived from 

the Markov chain Monte Carlo method). 
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Sensitivity analyses by varying the data cutoff date from 15 January to 24 January 2020 

Since the present study relies on real-time data, the estimates (i.e., growth rate, cumulative 

incidence, and cCFR) using different numbers of cutoff dates are shown in Figure S2 (Scenario 

1) and S3 (Scenario 2). 
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Figure S2. Sensitivity analysis in Scenario 1, varying the data cutoff date between 15 and 24 

January 2020.  

The estimated values of the (A) exponential growth rate, (B) cumulative incidence, and (C) 

confirmed case fatality risk depend on the data cutoff date (i.e., the end point of each estimation). 

Each line and shaded area indicate the estimate and its 95% confidence interval. 
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Figure S3. Sensitivity analysis in Scenario 2, varying the data cutoff date between 15 and 24 

January 2020. 

The estimated values of the (A) exponential growth rate, (B) cumulative incidence, and (C) 

confirmed case fatality risk depend on the data cutoff date (i.e., the end point of each estimation). 

Each line and shaded area indicate the estimate and its 95% confidence interval. 
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Sensitivity analyses by varying the detection time window (T) and catchment population size in 

Wuhan airport (n) 

In the estimation of actual COVID-19 incidence in Wuhan, the detection time window was set at 

12.5 days, assuming that the time window is identical to the sum of the incubation period and 

infectious periods. In addition, the catchment population in Wuhan airport was fixed as 11 

million. As part of the sensitivity analysis, Table S2 shows the estimated growth rate, cumulative 

incidence, and cCFR by varying the detection time window, while Table S3 shows the estimates 

with different catchment population sizes and a fixed detection time window for Scenarios 1 and 

2, respectively. 
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Table S2. Sensitivity analysis varying the detection time window (T) with a catchment 

population in Wuhan airport of 11 million 

Scenario 
Detection 

window time 

Exponential growth 

rate (95% CI) 

Estimated incidence on 

24 January (95% CI) 

cCFR on 24 January 

(95% CI) 

1 3.6 days 0.18 (0.18–0.19) 30,094(21,524–39,513) 1.82% (1.20–2.58) 

1 7.5 days 0.16 (0.15–0.17) 12,024 (8,642–15,838) 3.54% (2.36–4.99) 

1 10 days 0.15 (0.14–0.16) 8,343 (5,920–11,040) 4.61% (3.06–6.48) 

1 12.5 days 0.15 (0.14–0.15) 6,924 (4,885–9,211) 5.27% (3.51–7.45) 

2 3.6 days 0.33 (0.25–0.40) 80,925 (45,517–12,7347) 2.77% (1.72–4.14) 

2 7.5 days 0.31 (0.23–0.38) 34,795 (19,653–54,114) 5.31% (3.37–7.87) 

2 10 days 0.30 (0.23–0.37) 26,042 (14,602–41,034) 6.64% (4.24–9.82) 

2 12.5 days 0.29 (0.22–0.36) 19,289 (10,901–30,158) 8.39% (5.34–12.26) 

cCFR: confirmed case fatality risk. CI: confidence interval (the 95% CI was derived from the 

Markov chain Monte Carlo method). 95% confidence intervals are shown in parenthesis. 
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Table S3. Sensitivity analysis by varying the catchment population size in Wuhan airport 

(n) with a fixed detection time window of 12.5 days 

Scenario 

Catchment 

population in 

Wuhan 

airport 

Exponential growth 

rate (95% CI) 

Estimated incidence on 

24 January (95% CI) 

cCFR on 24 January 

(95% CI) 

1 11 million 0.15 (0.14, 0.15) 6924 (4885, 9211) 5.27% (3.51, 7.45) 

1 15 million 0.15 (0.15, 0.16) 9225 (6546, 12187) 4.29% (2.85, 6.04) 

1 19 million 0.16 (0.15, 0.17) 12463 (8892, 16416) 3.46% (2.30, 4.88) 

2 11 million 0.29 (0.22, 0.36) 19289 (10901, 30158) 8.39% (5.34, 12.26) 

2 15 million 0.30 (0.23, 0.37) 27494 (15549, 42771) 6.41% (4.06, 9.49) 

2 19 million 0.31 (0.23, 0.38) 36005 (20348, 56273) 5.19% (3.27, 7.68) 

cCFR: confirmed case fatality risk. CI: confidence interval (the 95% CI was derived from the 

Markov chain Monte Carlo method). 95% confidence intervals are shown in parenthesis. 

 

Chapter 1 was originally published as:  

Jung S-m, Akhmetzhanov AR, Hayashi K, Linton NM, Yang Y, Yuan B, Kobayashi T, 

Kinoshita R, Nishiura H. Real-time estimation of the risk of death from novel coronavirus 

(COVID-19) infection: inference using exported cases. J Clin Med. 2020;9(2)523. Minor 

formatting modifications and edits have been made for the dissertation. 
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Chapter 2: Projecting a second wave of COVID-19 in Japan with variable 

interventions in high-risk settings 

Background 

Since the first imported COVID-19 case was reported on 15 January 2020, the virus rapidly 

spread to the local community in Japan. (Furuse et al., 2020; The Novel Coronavirus Pneumonia 

Emergency Response Epidemiology Team, 2020). With the sustained SARS-CoV-2 

transmissions, the Japanese government aimed to suppress the epidemic by imposing NPIs based 

on the “cluster-buster” strategy, which combines active contact tracing with a call for the 

voluntary reduction of “3C” contacts (i.e., closed spaces, crowded places, and close-contact 

settings) (Oshitani, 2020). Despite containment efforts with various combinations of NPIs, the 

number of local cases was upsurged in late March 2020 due to the untraced imported cases 

(mostly returnees from countries with a high COVID-19 prevalence). In response, the 

government declared the first state of emergency for seven prefectures (Tokyo, Saitama, Chiba, 

Kanagawa, Osaka, Hyogo, and Fukuoka) on 7 April 2020, when the country reached a 

cumulative count of 3,906 COVID-19 cases, excluding 672 cases diagnosed on the Diamond 

Princess cruise ship (Ministry of Health Labour and Welfare, 2020b); the state of emergency 

area was later expanded nationwide. In detail, the nightspot-related industries (including bars, 

restaurants, and host and hostess clubs) were asked to close or to curtail their opening hours, and 

residents were asked to limit non-household contact on a voluntary basis (i.e., self-restraint-

based reduction of physical contact). The state of emergency was initially scheduled to last until 

6 May, but this was later extended until 21 May for all prefectures except Hokkaido, Saitama, 

Chiba, Tokyo, and Kanagawa. The state of emergency was lifted for all prefectures on 25 May 

2020 (Ministry of Health Labour and Welfare, 2020a). 

In the absence of available prevention or treatment measures (e.g., effective vaccines or antiviral 

treatments), physical distancing is essential to bring the ongoing epidemic under control. 

Consequently, many of the most affected areas have requested that their citizens reduce non-

essential outings, and some countries even have enforced stringent countermeasures, such as 

locking down the entire city (Anderson et al., 2020; Gilbert et al., 2020). In Japan, despite that 

the state of emergency has relied on people’s voluntary actions, the incidence of COVID-19 was 
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greatly reduced shortly after the declaration was issued, easing the burden of the disease on 

healthcare facilities and public health centers. However, these stringent restrictions on people’s 

lives seen under the state of emergency could not be maintained for an extended period, 

considering its non-negligible economic, social, and psychological impacts. Thus, the next key 

questions are whether, when, and to what extent we can maintain socioeconomic activities while 

sustaining successful suppression of the epidemic. Before effective COVID-19 vaccines become 

widely available, it is unlikely that sufficient population-level immunity will be established. In 

addition, despite improvements in the COVID-19 treatment (e.g., treating critically ill patients 

with dexamethasone) (The RECOVERY Collaborative Group, 2020), a considerable number of 

deaths have still been documented around the world. Accordingly, resuming the society without 

proper restraints may lead to a “second wave” of the epidemic in Japan, accompanied by an 

upsurge in severe cases that may exceed the current capacity of the healthcare system. To avoid 

such tragedy, a reopening strategy that is balanced between epidemic controls and people’s 

socioeconomic activities needs to be considered. Furthermore, the need of developing such a 

well-tailored exit strategy might be highlighted even more in countries like Japan where the 

proportion of immunized individuals is relatively low. 

Even after the level of control measures is tapered, physical distancing should remain the 

primary control measure at least until the healthcare system is well secured by effective 

pharmaceutical interventions (e.g., nationwide vaccination or utilization of antiviral treatments). 

However, we could narrow the target of physical distancing such that social functions are 

minimally affected. Multiple empirical reports have suggested that the transmission of SARS-

CoV-2 involves substantial individual-level variation (the majority of cases tend to generate no 

or only a few secondary transmissions), implying that the current epidemic is mainly driven by 

“superspreading events” (defined as an unusually large number of secondary cases infected by a 

single individual in a short period). In addition, since such uneven transmissions have been 

frequently observed in specific settings with 3C contacts (Liu et al., 2020; Nishiura et al., 2020c), 

stringent control measures were imposed primarily on settings they deem to be high-risk in most 

countries (e.g., restaurants, and bars, and mass gathering events) (Ministry of Health Singapore, 

2020). Therefore, if we focus intervention efforts on such high-risk settings and minimize the 

risk of superspreading events, we may be able to bring the epidemic under control while 
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allowing other parts of society to gradually resume a normal life. Such a political decision should 

be guided by quantitative assessment, comparing different targets and levels of interventions. 

In this respect, projections of future waves using a mathematical modelling approach can provide 

valuable insight into an optimal exit strategy. Thus, the present analysis aimed to assess the 

impacts of possible exit strategies for two of the most populous regions in Japan (i.e., Tokyo 

Metropolis and Osaka prefecture), classifying the population into high- and low-risk settings. 

Using the estimated growth rates of COVID-19 incidence, we quantified the risk-based next-

generation matrix and projected future epidemic scenarios with different levels of restriction. 

Methods 

Epidemiological data 

The daily incidence of confirmed COVID-19 cases in Tokyo and Osaka were retrieved from 24 

January (the earliest date of case reporting in Tokyo) through 26 May 2020. In detail, 

information on those cases, including dates of illness onset and laboratory confirmation, were 

obtained from the Ministry of Health, Labour and Welfare (Ministry of Health Labour and 

Welfare, 2020c) and from prefectural government websites (Osaka Prefectural Government, 

2020; Tokyo Metropolitan Government, 2020a). A total of 6,540 confirmed symptomatic 

COVID-19 cases were included, whereas a total of 26 symptomatic cases with neither report of 

illness onset date nor laboratory confirmation date were excluded from the dataset. 

Back-projection 

The dates of illness onset for 915 and 22 confirmed symptomatic cases in Tokyo and Osaka, 

respectively, were unknown. Therefore, the onset date of these cases was back-projected from 

the date of laboratory confirmation using the empirically observed delay distribution between 

these dates. First, we fitted the right-truncated time delay from illness onset to laboratory 

confirmation, employing a Weibull distribution. The likelihood was defined as: 

𝐿(𝜃|𝑆𝑘, 𝑂𝑘, 𝑇) =∏
ℎ(𝑆𝑘 − 𝑂𝑘|𝜃)

𝐻(𝑇 − 𝑂𝑘|𝜃)
,

𝐾

𝑘=1

    (1) (10) 
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where 𝑆𝑘 is the date of laboratory confirmation of case k, 𝑂𝑘 is the date of illness onset of case k, 

and 𝑇 is the latest calendar date of observation (27 May 2020). The functions h(∙) and H(∙) are 

the probability mass function and the cumulative distribution function of the Weibull 

distribution, respectively, and θ is the set of relative parameters (i.e., shape and scale 

parameters). The best-fit parameters were determined by maximizing the likelihood to be used in 

the back-projection. 

Second, using the parameterized delay distribution and the R package ‘surveillance’ (Höhle, 

2007), based on the non-parametric back-projection algorithm, all cases with unknown illness 

onset dates were back-projected. The back-projected cases by date of onset were then aggregated 

with cases with known dates of onset. We also accounted for the right-censoring with respect to 

the time delay from illness onset to laboratory confirmation. The “nowcasted” number of new 

cases with the date of illness onset t (𝑖(𝑡)) was calculated as: 

𝑖(𝑡) =  
𝑖𝑟eported(𝑡)

𝐻(𝑇 − 𝑡)
, (11) 

where 𝑖reported(𝑡) is the number of newly reported cases on date t. In the analysis, the nowcasted 

incidence for the latest 3 days was unreliable because the value of H(∙) was too small; therefore 

we excluded these dates (24 May 2020 onward) from the analysis. 

Model and statistical analysis 

We then conducted the projection analysis relying solely on the nowcasted date of illness onset. 

Our main model consisted of three components: (i) exponential fitting, (ii) offspring distribution 

fitting, and (iii) next-generation matrix reconstruction. First, we fitted the exponential increase 

function to the observed case counts to estimate the time-dependent reproduction numbers. We 

then constructed offspring distributions corresponding to the estimated reproduction numbers 

and approximated them by a mixture of two distributions for two types of hosts: low- and high-

risk transmission settings. Finally, using the median value for the two types of hosts, the next 

generation matrix was reconstructed. 

Estimation of exponential growth rates 
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Let i(t) be the incidence of infection (i.e., the number of newly infected individuals at time t). 

Given the constant next-generation matrix, we expect that i(t) will converge to an exponential 

curve. We split the time axis into multiple periods (e.g., Period 1 [𝑡0 < 𝑡 < 𝑡1], Period 2 [𝑡1 <

𝑡 < 𝑡2]), during which the next generation matrix 𝐾𝑛 (𝑛 = 1, 2, … ) was assumed to stay 

constant, and we assumed that i(t) in each period would swiftly converge to the asymptotic 

exponential curve such that i(t) is well approximated by joint exponential curves: 

𝑖(𝑡) = 𝑖𝑛(𝑡)−1 exp(𝑟𝑛(𝑡)𝑡), (12) 

where n(t) represents the period number to which t belongs (i.e., 𝑡𝑛(𝑡) < 𝑡 < 𝑡𝑛(𝑡) + 1), and rn is 

the growth rate during Period n. The value of i(t) at the beginning of Period n is represented by in 

− 1 = i(tn − 1). Because we observe incidence using onset jt rather than infection i(t) itself, the 

observation is delayed by the incubation period (whose relative frequency is represented by f(τ)). 

The corresponding likelihood function is therefore: 

𝐿(𝒓; 𝒋)  =  ∏Pois(𝑗𝑡; (𝑖 ∗ 𝑓)(𝑡))

 

𝑡

, (13) 

where (𝑖 ∗ 𝑓)(𝑡)  =  ∑ 𝑖(𝑡 −  𝜏)𝑓(𝜏)𝑡
𝜏 = 1  represents the expected incidence of illness onset. The 

values of the incubation period distribution (f(τ)) were adopted from a previous study (mean = 

5.6 days, standard deviation = 3.9 days) (Linton et al., 2020). 

We used the following three time periods: (i) the early invasion period (before 26 March 2020 

for Tokyo and before 18 March 2020 for Osaka), (ii) the period after an alert was declared by the 

prefectural governor of each region (26 March–7 April 2020 for Tokyo and 19 March–7 April 

2020 for Osaka) and (iii) the period after the governmental declaration of a state of emergency (8 

April–25 May 2020 for Tokyo and 8 April–21 May 2020 for Osaka). We fitted our model to the 

back-projected incidence by onset through 23 May 2020. The growth rates for the three periods 

(r1, r2, and r3) were estimated by the Markov chain Monte Carlo (MCMC) method. Instead of 

directly sampling r1, r2 and r3, we sampled i(t) at the change points (i.e. in [n = 0, 1, 2, 3]), the 

logarithms of which had improper flat priors (log(in) ≈ Unif(-∞, ∞)). We ran 200,000 MCMC 

iterations to obtain 2,000 thinned samples, and we discarded the first half as burn-in. We 
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confirmed that the effective sample size of the resulting 1,000 MCMC samples was larger than 

500 for all parameters. The sampled in was then translated to rn as: 

𝑟𝑛 = (
𝑖𝑛
𝑖𝑛 − 1

)
−(𝑡𝑛− 𝑡𝑛 − 1)

. (14) 

We used R program (version 3.6.2) and the “LaplacesDemon” package to implement the MCMC 

(version 16.1.4). 

Approximation of the offspring distribution 

Assuming that the generation time follows a gamma distribution with a mean (T) of 4.8 days and 

a coefficient of variation (v) of 0.5 days (Nishiura et al., 2020d), we can obtain the converted 

value of the effective reproduction number from the growth rate using the Euler–Lotka equation 

(Nishiura et al., 2009; Wallinga and Lipsitch, 2007): 

𝑅𝑛 = (1 + 𝑟𝑛𝑇𝑣
2)

1
𝑣2 . (15) 

The offspring distribution of COVID-19, defined as the distribution of the number of secondary 

transmissions reproduced by a single primary case, has previously been modelled using a 

negative binomial distribution with the most plausible value of the overdispersion parameter k ≈ 

0.1 (Endo et al., 2020). The mean of the negative binomial distribution, by definition, 

corresponds to the reproduction number. We assumed that the overdispersion parameter remains 

constant regardless of the reproduction number (i.e., the coefficient of variation is conserved) 

and that such a negative binomial distribution can be approximated as a mixture of two offspring 

distributions corresponding to low- and high-risk transmission subgroups: 

𝑝̂(𝑥) = 𝑎𝑝𝐿(𝑥) + (1 − 𝑎)𝑝𝐻(𝑥), (16) 

where a is the mixture proportion (i.e., the proportion of the total secondary transmissions that 

are low-risk transmissions). Let RL and RH (RL < RH) represent the mean values of 𝑝𝐿(𝑥) and 

𝑝𝐻(𝑥), respectively. 

For each of the negative binomial offspring distributions corresponding to different reproduction 

numbers 𝑅𝑛 (n = 1, 2 and 3): 
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𝑝𝑛(𝑥) = NegBin(𝑘 = 0.1,mean = 𝑅𝑛), (17) 

we estimated the mixture distributions 𝑝̂(𝑥) that provide the best approximation, where 𝑝𝐿(𝑥) 

and 𝑝𝐻(𝑥) are both assumed to be geometric distributions. We measured the deviation between 

𝑝̂(𝑥) and 𝑝(𝑥) by the Kullback–Leibler (KL) divergence (truncated at x = 300 for computational 

convenience): 

𝐷KL(𝑝(𝑥)||𝑝̂(𝑥)) =  ∑ 𝑝(𝑥)log(
𝑝(𝑥)

𝑝̂(𝑥)
)

300

𝑥 = 0

,  (18) 

and we minimized this value to find the best 𝑝̂(𝑥). We obtained the two means, RL and RH, for 

each MCMC sample for each period (n = 1, 2, and 3). We ensured that the minimized value of 

the KL divergence was less than 0.01. We used Julia-1.4.1 and the “Optim.jl” package for 

optimization, which were called from R with Version 0.17.1 of the “JuliaCall” package. 

Reconstruction of the next generation matrix 

From the mean values RL and RH, corresponding to the low- and high-risk transmission 

subgroups, we reconstructed the next generation matrix. The two-by-two next-generation matrix 

K = (kij) is expected to satisfy the following conditions: (i) the column sums are equal to RL and 

RH, (ii) the eigenvalue of the matrix corresponds to Rn, and (iii) the off-diagonal entries of K 

satisfy 𝑞𝑘𝐿𝐻 = (1 −  𝑞)𝑘𝐻𝐿, where q represents the relative size of contact in the high-risk 

subgroup (assuming that the risk of transmission is proportional to the contact rate). To ensure 

that the estimated next-generation matrix is positive-definite, we found that the parameter value 

of q has to be within the range of 0–0.01 given the value of a, RL, and RH in Period 1 (See 

Appendix 1). Thus, the value of q was assumed to be 0.01 in the main analysis, and a sensitivity 

analysis was carried out adopting a smaller value of q (0.001). 

Let R and ρ be the two eigenvalues of K (i.e., R > ρ) and 𝑉 = (
𝑎 𝑏

1 −  𝑎 1 −  𝑏
) be the 

corresponding eigenvector matrix. We can then decompose K as 

𝐾 = (
𝑎 𝑏

1 −  𝑎 1 −  𝑏
) (
𝑅 0
0 𝜌

) (
𝑎 𝑏

1 −  𝑎 1 −  𝑏
)
−1

, (19) 
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where a, b and ρ are unknowns to be determined by the binding conditions: RL = kLL + kHL and 

RH = kLH + kHH. From condition (ii), we get 

𝑅𝐿 =
(1 −  𝑏)𝑅 − (1 −  𝑎)𝜌

𝑎 −  𝑏
,   

𝑅𝐻 =
𝑎𝜌 −  𝑏𝑅

𝑎 −  𝑏
 

(20) 

When we fix a as a constant, the above simultaneous equations for (ρ, b) have a solution if and 

only if 𝑅 = 𝑎𝑅𝐿 + (1 −  𝑎)𝑅𝐻. Suppose the value of a satisfies this condition; such an a 

corresponds to that in Equation (16). Under such conditions, the two equations in (20) are 

reduced to a single equation: 

𝜌 =  𝑅𝐻 −  𝑏(𝑅𝐻 − 𝑅𝐿). (21) 

In addition, to satisfy condition (iii), we require 

(1 −  𝑞 −  𝑎)𝑏 = (1 −  𝑎)(1 −  𝑞), (22) 

which only has a solution when q ≠ 1 − a. We solved the simultaneous equations given by 

Equations (21) and (22) and obtained K from Equation (19) for each MCMC sample. 

Projection of newly reported cases 

For the future projections, four different scenarios were considered: Scenario 1, going back to the 

pre-emergency period (i.e., assuming the next-generation matrix resumes, taking on values 

observed in Period 1), and Scenarios 2−4, with 10%, 30%, and 50% decreases in high-risk 

transmission (i.e., assuming the normal low-risk transmission rate [kLL and kHL] but a 10%, 30%, 

or 50% decrease in the high-risk transmission rate [kLH and kHH]). Thus, in the scenarios 

assuming a decrease in high-risk transmission, the low-risk transmission fully returns to the 

original level from 21 May 2020 and 25 May 2020 in Osaka and Tokyo, respectively, whereas 

the high-risk transmission is partially suppressed. 
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Using the growth rates in each scenario derived from the adjusted next-generation matrices, the 

number of newly infected cases at time t, 𝑖(𝑡), was projected for each city as an exponential 

curve, and the expected incidence by the date of illness onset t was calculated as: 

𝐸(𝑗𝑡)  =  ∑ 𝑖(𝑡 −  𝜏)𝑓(𝜏)

𝑡

𝜏 = 1

. (23) 

The median and 95% credible intervals (CrI) were produced from the MCMC samples. 

In order to compare our projection with the actual post-projection incidence, the reported number 

of cases by the date of illness onset during the projection period (25 May–30 July 2020 for 

Tokyo; 21 May–30 July 2020 for Osaka) was back-projected from the date of laboratory 

confirmation. However, it should be noted that since the information of the date of illness onset 

of all cases in Tokyo was not available from June onwards, this post-projection data no longer 

represents the same data source as the data used for projection, which may have caused a small 

discrepancy in incidence at the connecting point in the time series (Figure 4). 

Results 

Table 2 demonstrates the quantified next-generation matrix (K) for each time period in Tokyo 

and Osaka. The effective reproduction numbers for Tokyo were estimated as 1.78 (95% CrI: 

1.73–1.82) in Period 1, 0.74 (95% CrI: 0.71–0.78) in Period 2, and 0.63 (95% CrI: 0.61–0.65) in 

Period 3. In Osaka, although the estimated reproduction number in Period 2 (i.e., after the 

request for self-restraint from the governor of Osaka) declined compared with that in Period 1 

(1.58 [95% CrI: 1.51–1.64]), the estimated value in Period 2 was still above one (1.20 [95% CrI: 

1.15–1.25]). In Period 3, the reproduction number was estimated at 0.48 (95% CrI: 0.44–0.51). 

Transmission rates from low-risk subgroup to low-risk subgroup (kLL) in both regions (Tokyo 

and Osaka) were essentially constant across all three time periods, while the other three 

transmission rates (kLH, kHL, and kHH) in Period 3 were less than half of their Period 1 rates. In 

addition, the estimated next-generation matrices produced very similar results in the analysis 

excluding cases with unknown dates of illness onset. 
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Figure 4 shows the projection of new infections and cases in Tokyo and Osaka. In Tokyo, the 

projected number of newly infected cases in Scenario 1, assuming the same reproduction number 

as in Period 1 (𝑅1 = 1.78), showed a rapid resurge after the reopening the society on 26 May and 

reached the same value as the peak incidence during the pre-reopening period (i.e., 223 cases) on 

4 July 2020. The estimated reproduction numbers in Scenarios 2 and 3 were 1.62 (95% CrI: 

1.58–1.66) and 1.30 (95% CrI: 1.27–1.33), respectively, also indicating resurgence. However, in 

Scenario 4 (assuming a 50% decrease in high-risk transmission), the estimated reproduction 

number was below the value of one (0.98 [95% CrI: 0.95–1.00]), and the projected epidemic was 

on the verge of dying out (Figure 4A). Likewise, in Osaka, only Scenario 4 could prevent a 

resurgence of cases; with all reported cases, the estimated reproduction numbers for Scenarios 2, 

3, and 4 were 1.44 (95% CrI: 1.38–1.49), 1.16 (95% CrI: 1.11–1.20) and 0.87 (95% CrI: 0.84–

0.90), respectively. The projected numbers of new cases by date of illness onset were aligned 

with the overall trend of observed case counts, as shown in Figures 4B and 4D, implying that our 

model accurately reconstructed COVID-19 transmission dynamics in both regions. In particular, 

the reported number of cases in Tokyo during the projected period was consistent with Scenario 

1, while those in Osaka exceeded all our projections.  
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Table 2. Estimated next-generation matrix of COVID-19 by time period in Tokyo 

Metropolis and Osaka, Japan 

Region Period 1* Period 2  Period 3  

Including back-projected cases 

Tokyo 

Metropolis 

kLL = 0.02 

(0.02–0.02) 

kLH = 6.09 

(5.97–6.21) 

kLL = 0.03 

(0.03–0.03) 

kLH = 3.08 

(2.98–3.19) 

kLL = 0.03 

(0.03–0.03) 

kLH = 2.70 

(2.63–2.77) 

kHL = 0.06 

(0.06–0.06) 

kHH = 1.56 

(1.52–1.60) 

kHL = 0.03 

(0.03–0.03) 

kHH = 0.61 

(0.58–0.64) 

kHL = 0.03 

(0.02–0.03) 

kHH = 0.51 

(0.49–0.53) 

𝑅1 = 1.78 (1.73–1.82) 𝑅2 = 0.74 (0.71–0.78) 𝑅3 = 0.63 (0.61–0.65) 

Osaka 

Prefecture 

kLL = 0.02 

(0.02–0.02) 

kLH = 5.55 

(5.37–5.72) 

kLL = 0.02 

(0.02–0.03) 

kLH = 4.49 

(4.34–4.63) 

kLL = 0.03 

(0.02–0.03) 

kLH = 2.18 

(2.04–2.30) 

kHL = 0.06 

(0.05–0.06) 

kHH = 1.38 

(1.32–1.44) 

kHL = 0.05 

(0.04–0.05) 

kHH = 1.03 

(0.98–1.07) 

kHL = 0.02 

(0.02–0.02) 

kHH = 0.38 

(0.34–0.41) 

𝑅1 = 1.58 (1.51–1.64) 𝑅2 = 1.20 (1.15–1.25) 𝑅3 = 0.48 (0.44–0.51) 

Excluding cases with an unknown illness onset 

Tokyo 

Metropolis 

kLL = 0.02 

(0.02–0.02) 

kLH = 5.99 

(5.87–6.10) 

kLL = 0.03 

(0.03–0.03) 

kLH = 2.94 

(2.83–3.05) 

kLL = 0.03 

(0.03–0.03) 

kLH = 2.85 

(2.77–2.92) 

kHL = 0.06 

(0.06–0.06) 

kHH = 1.53 

(1.49–1.57) 

kHL = 0.03 

(0.03–0.03) 

kHH = 0.57 

(0.54–0.61) 

kHL = 0.03 

(0.03–0.03) 

kHH = 0.55 

(0.53–0.57) 

𝑅1 = 1.74 (1.69–1.78) 𝑅2 = 0.70 (0.67–0.73) 𝑅3 = 0.67 (0.65–0.70) 

Osaka 

Prefecture 

kLL = 0.02 

(0.02–0.02) 

kLH = 5.58 

(5.39–5.75) 

kLL = 0.03 

(0.03–0.03) 

kLH = 4.21 

(4.07–4.35) 

kLL = 0.03 

(0.03–0.03) 

kLH = 2.35 

(2.22–2.48) 

kHL = 0.06 

(0.05–0.06) 

kHH = 1.39 

(1.32–1.45) 

kHL = 0.04 

(0.04–0.04) 

kHH = 0.94 

(0.90–0.99) 

kHL = 0.02 

(0.02–0.03) 

kHH = 0.42 

(0.39–0.45) 

𝑅1 = 1.59 (1.52–1.65) 𝑅2 = 1.10 (1.06–1.15) 𝑅3 = 0.53 (0.49–0.56) 

The values of kij describe the transmission rates from group j to group i, and 𝑅𝑛 is the 

reproduction number in Period n derived from the estimated next-generation matrix. Upper and 

lower 95% credible intervals obtained from the MCMC samples are shown in parentheses. 
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*Three time periods were (1) the early invasion period (before 26 March 2020 for Tokyo and 

before 18 March 2020 for Osaka), (2) the period after an alert was declared by the prefectural 

governor of each region (26 March–7 April 2020 for Tokyo and 19 March–7 April 2020 for 

Osaka) and (3) the period after the governmental declaration of a state of emergency (8 April–25 

May 2020 for Tokyo and 8 April–21 May 2020 for Osaka).  
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Figure 4. Estimated and projected trajectories of COVID-19 cases by date of infection and 

symptom onset including cases with unknown illness onset dates in Tokyo and Osaka, 

Japan. 

(A) (C) Estimated and projected numbers of COVID-19 cases by date of infection in Tokyo and 

Osaka, using all back-projected cases (yellow bars). The temporal trend in the number of new 

infections by 31 May 2020 was estimated using exponential curves with three different growth 

rates (black) and was then projected according to four scenarios (colors). The lines denote 

medians, and shaded areas represent 95% credible intervals (CrI). Red dotted lines denote the 

dates when we assumed the trend changed (26 March, 8 April, and 25 May 2020 for Tokyo; 20 

March, 8 April, and 21 May 2020 for Osaka) (B) (D) Observed, estimated, and projected 

numbers of COVID-19 cases by date of illness onset in Tokyo and Osaka. Yellow bars show the 

observed number of cases by the date of illness onset used for the projection, and red bars show 
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the observed number of cases in the post-projection period (25 May–30 July 2020 for Tokyo; 21 

May–30 July 2020 for Osaka). A small inconsistency was observed at the connecting part 

between the two time series because the post-prediction data lacked dates of illness onset, which 

were thus all reconstructed by the back-projection method from dates of laboratory confirmation. 

The estimated (black) and projected (colors) numbers of cases and their 95% CrI are shown as 

lines and shaded areas, respectively.  
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Figure 5 shows the projected number of new infections and cases obtained from the dataset 

excluding cases with unknown illness onset. The estimated reproduction numbers in Scenarios 2, 

3, and 4 in Tokyo were 1.58 (95% CrI: 1.54–1.62), 1.27 (95% CrI: 1.24–1.30) and 0.96 (95% 

CrI: 0.93–0.98), respectively, whereas those in Osaka were estimated as 1.45 (95% CrI: 1.38–

1.50), 1.16 (95% CrI: 1.11–1.21) and 0.88 (95% CrI: 0.84–0.91), respectively. 

Throughout the sensitivity analyses, only the scenario with a 50% decrease in high-risk 

transmission was able to keep the reproduction number below one (Table S1). Our conclusions 

did not change significantly even with the relative size of the high-risk subgroup (q) set to a 

smaller value of 0.001 (as opposed to 0.01 in the main analysis). All entries related to the high-

risk transmission rates (kLH and kHH) showed very similar values. Although the values of kHL and 

kLL changed slightly, the effects on the results were minor (Table S2). In addition, the sensitivity 

was evaluated by varying the overdispersion parameter (k) in the range of 0.05–0.2, taking into 

account the uncertainty of this parameter (Gilbert et al., 2020). Decreasing k values (i.e., high 

dispersion in the offspring distribution) were associated with larger estimated entries for high-

risk transmission rates (kLH and kHH), which could indicate that reducing high-risk transmission is 

particularly important in diminishing transmission when the number of secondary transmissions 

varies widely between individuals (Tables S3 and S4). 
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Figure 5. Estimated and projected trajectories of COVID-19 cases by date of infection and 

symptom onset, excluding cases with unknown illness onset in Tokyo and Osaka, Japan. 

(A) (C) Estimated and projected numbers of COVID-19 cases by date of infection without back-

projected cases in Tokyo and Osaka. The temporal trend in the number of new infections by 31 

May 2020 was estimated using exponential curves with three different growth rates (black) and 

was then projected according to four scenarios (colors). The lines denote medians, and shaded 

areas represent 95% credible intervals (CrI). Red dotted lines denote the dates when we assumed 

the trend changed (26 March, 8 April, and 25 May 2020 for Tokyo; 20 March, 8 April, and 21 

May 2020 for Osaka). (B) (D) Observed, estimated, and projected numbers of COVID-19 cases 

by date of illness onset in Tokyo and Osaka. The bars show the observed number of cases by 

illness onset. The estimated (black) and projected (colors) numbers of cases and their 95% CrI 

are shown as lines and shaded areas, respectively.  
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Discussion 

In the present study, we quantified the next-generation matrices classifying the population into 

low- and high-risk transmission settings, and projected the future trend of SARS-CoV-2 

infections in Tokyo and Osaka after lifting the first state of emergency on 26 May 2020. Among 

four scenarios with different levels of reduction in high-risk transmission, only the one with a 

50% reduction (Scenario 4) was able to achieve containment of the epidemic (𝑅4< 1), whereas 

other scenarios with smaller reductions resulted in a resurgence. In Tokyo, under the ‘back to 

normal’ scenario (Scenario 1), the projected number of daily new cases in early July 2020, 

including all back-projected cases, was already as large as the peak (209 cases) observed on 3 

April 2020. The number of new cases is likewise projected to increase under the 10%- and 30%-

reduction scenarios, given that the reproduction number in each scenario is above one. The 

estimated reproduction number in Osaka was also above one in each scenario except Scenario 4, 

with a 50% decrease in high-risk transmission.  

The projected number of COVID-19 cases under the ‘back to normal’ scenario was in line with 

the overall trend of observed case counts in Tokyo. After the nationwide interventions under the 

state of emergency were lifted on 25 May 2020 without any intervention in high-risk settings, 

several nightspots-related clusters (mainly in host and hostess clubs) aided in the resurge of 

COVID-19 incidence in Tokyo, which was likely to have resulted in a similar growth as Scenario 

1. Furthermore, as nightspots-related clusters tend to pose special difficulties to the contact 

tracing in practice, those clusters have triggered additional local-level transmissions in Tokyo 

(e.g., transmissions in households and workplaces). From around the middle of July, the 

observed growth of cases slowed down compared to the projection, which might correspond with 

the Tokyo governor’s request for the residents to avoid high-risk settings and implementation of 

intensive PCR testing targeted for individuals in nightspots in early July (Shinjyuku City, 2021; 

Subcommittee on Novel Coronavirus Disease Control, 2020; Tokyo Metropolitan Government, 

2020c, 2020b). On the other hand, the observed post-projection incidence was higher than any of 

the projected scenarios in Osaka. The effective reproduction number estimated from the 

observed case counts was around the value of two from mid-June to mid-July 2020 in Osaka 

(Subcommittee on Novel Coronavirus Disease Control, 2021), which was higher than our 

assumed reproduction number R1 = 1.6 (the value we estimated from the initial growth). One 
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possible explanation for such discrepancy could be a behavior change. Since there were multiple 

reports of large-size clusters in Osaka (e.g., four live-house-related clusters) in March, the risk 

awareness of Osaka residents may have already been elevated in Period 1, resulting in their 

contact behavior and transmission risk being higher in the post-emergency period (National 

Institute of Infectious Diseases, 2020). 

Our main finding suggests that a decrease of more than 50% in the high-risk transmission is 

necessary to reduce the reproduction number of COVID-19 below unity. This can be 

theoretically supported by the concept of type-reproduction number, T (Heesterbeek and Roberts, 

2007), and the value of 50% is indeed consistent with 1 − 1/T for the high-risk group, which 

would be slightly more challenging than 1 − 1/R1 = 1 − 1/1.7 = 41.2%. Although defining the 

precise range of high-risk settings can be challenged in practice, these results imply that before 

the population-level immunity is established, full-reopening of society may lead to the second 

wave of COVID-19, and essential groups of hosts should thus be targeted for control to sustain 

low levels of transmission. A temporary resurgence may be observed even with the 50% of 

reduction in high-risk transmission because of the stochasticity of transmission dynamics. 

Nevertheless, the exit strategy from restrictive guidelines should aim for the reproduction 

number of COVID-19 below one because it would ensure the eventual extinction or at least 

continued suppression of the disease (Jacquez and O’Neill, 1991).  

In addition, the number of cases under the 30%- reduction scenario (Scenario 3) would be much 

lower than the ‘back to normal’ scenario (Scenario 1), and it might be viewed as a possible exit 

strategy in terms of minimizing the economic loss. However, it should be noted that not only the 

absolute number of COVID-19 cases, but also its ensuing burdens on healthcare settings (e.g., 

contact tracing, molecular testing, and nosocomial isolation) should all be taken into account 

when determining the exit strategy. Furthermore, even after the disease burden may be 

substantially reduced once effective antiviral treatments are developed, minimizing the disease 

incidence should continue to be prioritized, considering the “long COVID” syndrome (i.e., long-

lasting COVID-19 symptoms after the recovery from infection). For more precise evaluation, a 

future study should assess the cost-effectiveness of possible exit strategies, considering both the 

economic loss associated with the social distancing in high-risk settings and the overall disease 

burden. 
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We approximated the overall offspring distribution, characterized as a negative binomial 

distribution, using a mixture of two geometric distributions with mean values of 0.08 and 7 for 

Period 1. The next-generation matrix reconstructed from these mean values was interpretable 

(i.e., positive values for all entries) only when the proportion at high risk (q) was very small (q < 

0.015). This may indicate that the high-risk subgroup, generating seven secondary cases on 

average, would have to be disproportionately small in the population to be consistent with the 

observed reproduction number of 1.5. However, the proportion made up by the high-risk 

subgroup is larger in the infected population because of this population’s relatively high risk of 

infection. In the approximated mixture offspring distribution, the high-risk subgroup accounted 

for 20% (according to the estimated value of a) of infectors and was responsible for 96% of the 

overall secondary transmissions. Although these are merely interpretations of the results of our 

mixture approximation and are not directly based on empirical data, our results suggest that a 

very small fraction of high-risk transmission could lead to a growing epidemic, as we observed 

in our projections. Thus, focusing on suppressing transmission in high-risk settings might have a 

greater impact than expected.  

There are three more limitations to our study that should be discussed. First, all analyses relied 

on empirical case data, which might be subject to the underascertainment bias. To minimize its 

impact on the estimated reproduction numbers, the reporting rate was assumed to be consistent 

throughout time, however, it may not hold for the entire course of the current epidemic. 

Asymptomatic instances were also reported through the contact tracing; however, these cases 

were excluded from the analysis because of the uncertainty regarding the detection rate. Second, 

regardless of the reproduction number, we set a constant value for the overdispersion parameter 

(k = 0.1) because this assumption ensures that the coefficient of variation of the negative 

binomial distribution is conserved; however, we have scarce data on how the variation in the 

offspring distribution of COVID-19 might change for different reproduction numbers. Third, we 

assumed that a mixture of two geometric distributions might adequately resemble the negative 

binomial distribution. The geometric distribution was chosen because it can effectively represent 

the long tail of the negative binomial distribution, and the calculated KL divergence of < 0.01 

suggests that our approximation was plausible. 
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In conclusion, we quantitatively demonstrated that a decrease of more than 50% in high-risk 

transmission could maintain the reproduction number of COVID-19 of less than one, allowing 

the epidemic to be kept under control for a prolonged length of time. Socioeconomic activities 

should be carefully resumed while adequate precautionary measures are put in high-risk 

transmission settings to suppress sustained transmissions. Compared to stringent 

countermeasures like lockdowns, our proposed exit strategy from restrictive guidelines, with the 

classification of high- and low-risk settings, allows socioeconomic activities to be resumed while 

minimizing the risk of a resurgence of the disease.  
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Chapter 2: Supplementary materials 

Condition that the next generation matrix is positive-definite  

The next-generation matrix K derived by Equation (19) has to be a positive-definite matrix to be 

interpreted as reflecting the real-world transmission dynamics. This condition is equivalent to: 

0 < 𝑘𝐿𝐻 = 𝑎𝑏(𝑅𝐻 − 𝑅𝐿) < 𝑅𝐻, 

0 < 𝑘𝐻𝐿 =
𝑞

1 −  𝑞
𝑘𝐿𝐻 < 𝑅𝐿 . 

(S1) 

Given 0 < a < 1, 0 < q < 1 and q ≠ 1 − a, Equation (22) ensures b < 0 or 1 < b. Therefore, kLH and 

kLH are both positive if and only if b > 1, which is equivalent to q < 1 − a. Under the condition q 

< 1 − a, kLH < RH and kHL < RL are equivalent to 

𝑞 <
(1 −  𝑎)𝑅

𝑎𝑅𝐻 + (1 −  𝑎)𝑅
, 

𝑞 <
(1 −  𝑎)𝑅𝐿

(1 −  𝑎)𝑅𝐿 +  𝑎𝑅
, 

(S2) 

both of which are smaller than 1 – a, and thus the smaller of the two will be the upper bound of 

q. Their order of magnitude is identical to that between 
𝜇

𝜆
 and (

𝑎

1 − 𝑎
)
2

. Ultimately, we get 

sup(𝑞) =

{
 
 

 
 (1 −  𝑎)𝑅

𝑎𝑅𝐻 + (1 − 𝑎)𝑅
       (

𝜇

𝜆
< (

𝑎

1 −  𝑎
)
2

) ,

(1 −  𝑎)𝑅𝐿
(1 −  𝑎)𝑅𝐿 +  𝑎𝑅

       (
𝜇

𝜆
> (

𝑎

1 −  𝑎
)
2

) .

 (S3) 

In the present study, the estimated reproduction number for Period 1 (R1) and the corresponding 

parameter values suggested 
𝜇

𝜆
> (

𝑎

1 − 𝑎
)
2

 and that sup(q) < 0.015. Therefore, we selected q = 0.01 

for the baseline analysis. 
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Sensitivity analyses varying the overdispersion parameter and the relative size of the high-risk 

subgroup 

Table S1 shows the estimated reproduction number under each scenario with varying values for 

the overdispersion parameter (k) of the negative binomial distribution and the high-risk 

proportion q. The upper and lower bounds of the CrI of k (i.e., 0.05 and 0.2) (Gilbert et al., 2020) 

and a smaller value of q of 0.001 were used for the sensitivity analysis. For k = 0.05, the baseline 

value q = 0.01 was not applicable because it did not yield a positive-definite next-generation 

matrix, therefore q = 0.001 was used instead. 
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Table S1. Estimated reproduction numbers of COVID-19 by scenario in Tokyo Metropolis 

and Osaka Prefecture by varying values of the overdispersion parameter (k) and the 

relative size of the high-risk subgroup (q) 

Region Scenario 

k = 0.1 

q = 0.01 

(Baseline) 

k = 0.1 

q = 0.001 

k = 0.05 

q = 0.001 

k = 0.2 

q = 0.01 

Including back-projected cases 

Tokyo 

Metropolis 

‘Back to normal’ 1.78 (1.73–1.82)  1.78 (1.73–1.82) 1.78 (1.73–1.82) 1.78 (1.73–1.82) 

10% decrease 1.62 (1.58–1.66) 1.60 (1.56–1.64) 1.61 (1.57–1.64) 1.60 (1.56–1.64) 

30% decrease 1.30(1.27–1.33) 1.25 (1.22–1.28) 1.26 (1.23–1.29) 1.26 (1.23–1.29) 

50% decrease 0.98 (0.95–1.00) 0.90 (0.88–0.92) 0.93 (0.90–0.94) 0.92 (0.90–0.94) 

Osaka 

Prefecture 

‘Back to normal’ 1.58 (1.51–1.67) 1.58 (1.51–1.67) 1.58 (1.51–1.67) 1.58 (1.51–1.67) 

10% decrease 1.44 (1.38–1.49) 1.42 (1.36–1.48) 1.42 (1.37–1.48) 1.43 (1.37–1.48) 

30% decrease 1.16 (1.11–1.20) 1.11 (1.06–1.15) 1.12 (1.08–1.17) 1.12 (1.08–1.17) 

50% decrease 0.87 (0.84–0.90) 0.80 (0.77–0.83) 0.82 (0.78–0.85) 0.82 (0.79–0.85) 

Including back-projected cases 

Tokyo 

Metropolis 

‘Back to normal’ 1.74 (1.69–1.78) 1.74 (1.69–1.78) 1.74 (1.69–1.78) 1.74 (1.69–1.78) 

10% decrease 1.58 (1.54–1.62) 1.57 (1.53–1.60) 1.57 (1.53–1.61) 1.57 (1.53–1.61) 

30% decrease 1.27 (1.24–1.30) 1.22 (1.19–1.25) 1.23 (1.20–1.27) 1.23 (1.20–1.26) 

50% decrease 0.96 (0.93–0.98) 0.88 (0.86–0.90) 0.90 (0.88–0.92) 0.90 (0.88–0.92) 

Osaka 

Prefecture 

‘Back to normal’ 1.59 (1.52–1.65) 1.59 (1.52–1.65) 1.59 (1.52–1.65) 1.59 (1.52–1.65) 

10% decrease 1.45 (1.38–1.50) 1.43 (1.37–1.49) 1.43 (1.37–1.49) 1.43 (1.37–1.49) 

30% decrease 1.16 (1.11–1.21) 1.12 (1.07–1.16) 1.13 (1.08–1.17) 1.13 (1.08–1.17) 

50% decrease 0.88 (0.84–0.91) 0.80 (0.77–0.84) 0.82 (0.79–0.86) 0.82 (0.79–0.86) 

Upper and lower 95% credible intervals obtained from the MCMC samples are shown in 

parentheses. 
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Sensitivity analysis varying the relative size of the high-risk subgroup 

Table S2. Estimated next-generation matrices of COVID-19 in Tokyo Metropolis and 

Osaka Prefecture assuming the relative size of the high-risk subgroup (q) is 0.001 

Region Period 1* Period 2  Period 3  

Including back-projected cases 

Tokyo 

Metropolis 

kLL = 0.08 

(0.07–0.08) 

kLH = 5.90 

(5.78–6.01) 

kLL = 0.05 

(0.05–0.06) 

kLH = 2.96 

(2.86–3.07) 

kLL = 0.05 

(0.05–0.05) 

kLH = 2.59 

(2.52–2.66) 

kHL = 0.01 

(0.01–0.01) 

kHH = 1.76 

(1.71–1.80) 

kHL = 0.00 

(0.00–0.00) 

kHH = 0.73 

(0.70–0.76) 

kHL = 0.00 

(0.00–0.00) 

kHH = 0.62 

(0.60–0.64) 

𝑅1 = 1.78 (1.73–1.82) 𝑅2 = 0.74 (0.71–0.78) 𝑅3 = 0.63 (0.61–0.65) 

Osaka 

Prefecture 

kLL = 0.07 

(0.07–0.07) 

kLH = 5.37 

(5.19–5.54) 

kLL = 0.07 

(0.06–0.07) 

kLH = 4.33 

(4.19–4.47) 

kLL = 0.05 

(0.04–0.05) 

kLH = 2.08 

(1.95–2.20) 

kHL = 0.01 

(0.01–0.01) 

kHH = 1.56 

(1.49–1.62) 

kHL = 0.00 

(0.00–0.00) 

kHH = 1.18 

(1.14–1.23) 

kHL = 0.00 

(0.00–0.00) 

kHH = 0.47 

(0.43–0.50) 

𝑅1 = 1.58 (1.51–1.64) 𝑅2 = 1.20 (1.15–1.25) 𝑅3 = 0.48 (0.44–0.51) 

Excluding cases with an unknown illness onset date 

Tokyo 

Metropolis 

kLL = 0.08 

(0.07–0.08) 

kLH = 5.80 

(5.68–5.90) 

kLL = 0.05 

(0.05–0.05) 

kLH = 2.82 

(2.71–2.93) 

kLL = 0.05 

(0.05–0.05) 

kLH = 2.74 

(2.66–2.81) 

kHL = 0.01 

(0.01–0.01) 

kHH = 1.72 

(1.67–1.76) 

kHL = 0.00 

(0.00–0.00) 

kHH = 0.69 

(0.65–0.72) 

kHL = 0.00 

(0.00–0.00) 

kHH = 0.66 

(0.64–0.68) 

𝑅1 = 1.74 (1.69–1.78) 𝑅2 = 0.70 (0.67–0.73) 𝑅3 = 0.67 (0.65–0.70) 

Osaka 

Prefecture 

kLL = 0.07 

(0.07–0.07) 

kLH = 5.40 

(5.21–5.57) 

kLL = 0.06 

(0.06–0.06) 

kLH = 4.06 

(3.92–4.20) 

kLL = 0.05 

(0.05–0.05) 

kLH = 2.25 

(2.12–2.37) 

kHL = 0.01 

(0.01–0.01) 

kHH = 1.57 

(1.50–1.63) 

kHL = 0.00 

(0.00–0.00) 

kHH = 1.09 

(1.04–1.14) 

kHL = 0.00 

(0.00–0.00) 

kHH = 0.52 

(0.48–0.55) 

𝑅1 = 1.59 (1.52–1.65) 𝑅2 = 1.10 (1.06–1.15) 𝑅3 = 0.53 (0.49–0.56) 
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The values of kij describe the transmission rates from group j to group i, and 𝑅𝑛 is the 

reproduction number in Period n derived from the estimated next-generation matrix. Upper and 

lower 95% credible intervals obtained from the MCMC samples are shown in parentheses. 

*Three time periods were (1) the early invasion period (before 26 March 2020 for Tokyo and 

before 18 March 2020 for Osaka), (2) the period after an alert was declared by the prefectural 

governor of each region (26 March–7 April 2020 for Tokyo and 19 March–7 April 2020 for 

Osaka) and (3) the period after the governmental declaration of a state of emergency (8 April–25 

May 2020 for Tokyo and 8 April–21 May 2020 for Osaka). 
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Sensitivity analysis varying the overdispersion parameter in the negative binomial distribution 

Table S3. Estimated next-generation matrices of COVID-19 in Tokyo Metropolis and 

Osaka Prefecture assuming the overdispersion parameter (k) is 0.05 and the relative size of 

the high-risk subgroup (q) is 0.001 

Region Period 1 * Period 2  Period 3  

Including back-projected cases 

Tokyo 

Metropolis 

kLL = 0.03 

(0.03–0.03) 

kLH = 10.67 

(10.46–10.87) 

kLL = 0.03 

(0.03–0.03) 

kLH = 5.40 

(5.22–5.59) 

kLL = 0.03 

(0.03–0.03) 

kLH = 4.74 

(4.61–4.86) 

kHL = 0.01 

(0.01–0.01) 

kHH = 1.71 

(1.67–1.75) 

kHL = 0.01 

(0.01–0.01) 

kHH = 0.70 

(0.67–0.74) 

kHL = 0.00 

(0.00–0.00) 

kHH = 0.60 

(0.57–0.61) 

𝑅1 = 1.78 (1.73–1.82) 𝑅2 = 0.74 (0.71–0.78) 𝑅3 = 0.63 (0.61–0.65) 

Osaka 

Prefecture 

kLL = 0.03 

(0.03–0.03) 

kLH = 9.72 

(9.40–10.02) 

kLL = 0.03 

(0.03–0.03) 

kLH = 7.85 

(7.60–8.09) 

kLL = 0.03 

(0.02–0.03) 

kLH = 3.83 

(3.59–4.04) 

kHL = 0.01 

(0.01–0.01) 

kHH = 1.51 

(1.45–1.58) 

kHL = 0.01 

(0.01–0.01) 

kHH = 1.15 

(1.10–1.19) 

kHL = 0.00 

(0.00–0.00) 

kHH = 0.45 

(0.41–0.48) 

𝑅1 = 1.58 (1.51–1.64) 𝑅2 = 1.20 (1.15–1.25) 𝑅3 = 0.48 (0.44–0.51) 

Excluding cases with an unknown illness onset date 

Tokyo 

Metropolis 

kLL = 0.03 

(0.03–0.03) 

kLH = 10.48 

(10.28–10.69) 

kLL = 0.03 

(0.03–0.03) 

kLH = 5.15 

(4.95–5.34) 

kLL = 0.03 

(0.03–0.03) 

kLH = 5.00 

(4.86–5.12) 

kHL = 0.01 

(0.01–0.01) 

kHH = 1.67 

(1.63–1.71) 

kHL = 0.01 

(0.01–0.01) 

kHH = 0.66 

(0.63–0.69) 

kHL = 0.01 

(0.00–0.01) 

kHH = 0.64 

(0.61–0.66) 

𝑅1 = 1.74 (1.69–1.78) 𝑅2 = 0.70 (0.67–0.73) 𝑅3 = 0.67 (0.65–0.70) 

Osaka 

Prefecture 

kLL = 0.03 

(0.03–0.03) 

kLH = 9.76 

(9.44–10.08) 

kLL = 0.03 

(0.03–0.03) 

kLH = 7.36 

(7.12–7.62) 

kLL = 0.03 

(0.02–0.03) 

kLH = 4.13 

(3.90–4.35) 

kHL = 0.01 

(0.01–0.01) 

kHH = 1.52 

(1.46–1.59) 

kHL = 0.01 

(0.01–0.01) 

kHH = 1.05 

(1.01–1.10) 

kHL = 0.00 

(0.00–0.00) 

kHH = 0.50 

(0.46–0.53) 

𝑅1 = 1.59 (1.52–1.65) 𝑅2 = 1.10 (1.06–1.15) 𝑅3 = 0.53 (0.49–0.56) 
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The values of kij describe the transmission rates from group j to group i, and 𝑅𝑛 is the 

reproduction number in Period n derived from the estimated next-generation matrix. Upper and 

lower 95% credible intervals obtained from the MCMC samples are shown in parentheses. 

*Three time periods were (1) the early invasion period (before 26 March 2020 for Tokyo and 

before 18 March 2020 for Osaka), (2) the period after an alert was declared by the prefectural 

governor of each region (26 March–7 April 2020 for Tokyo and 19 March–7 April 2020 for 

Osaka) and (3) the period after the governmental declaration of a state of emergency (8 April–25 

May 2020 for Tokyo and 8 April–21 May 2020 for Osaka). 
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Table S4. Estimated next-generation matrices of COVID-19 in Tokyo Metropolis and 

Osaka Prefecture assuming the overdispersion parameter (k) is 0.2 and the relative size of 

the high-risk subgroup (q) is 0.01 

Region Period 1 * Period 2  Period 3  

Including back-projected cases 

Tokyo 

Metropolis 

kLL = 0.11 

(0.11–0.12) 

kLH = 3.14 

(3.08–3.20) 

kLL = 0.08 

(0.07–0.08) 

kLH = 1.55 

(1.50–1.61) 

kLL = 0.07 

(0.07–0.07) 

kLH = 1.35 

(1.31–1.39) 

kHL = 0.03 

(0.03–0.03) 

kHH = 1.72 

(1.67–1.76) 

kHL = 0.02 

(0.02–0.02) 

kHH = 0.71 

(0.67–0.74) 

kHL = 0.01 

(0.01–0.01) 

kHH = 0.60 

(0.58–0.62) 

𝑅1 = 1.78 (1.73–1.82) 𝑅2 = 0.74 (0.71–0.78) 𝑅3 = 0.63 (0.61–0.65) 

Osaka 

Prefecture 

kLL = 0.11 

(0.11–0.11) 

kLH = 2.86 

(2.76–2.95) 

kLL = 0.10 

(0.09–0.10) 

kLH = 2.29 

(2.22–2.37) 

kLL = 0.06 

(0.06–0.06) 

kLH = 1.08 

(1.00–1.14) 

kHL = 0.03 

(0.03–0.03) 

kHH = 1.51 

(1.46–1.58) 

kHL = 0.02 

(0.02–0.02) 

kHH = 1.15 

(1.10–1.20) 

kHL = 0.01 

(0.01–0.01) 

kHH = 0.45 

(0.42–0.49) 

𝑅1 = 1.58 (1.51–1.64) 𝑅2 = 1.20 (1.15–1.25) 𝑅3 = 0.48 (0.44–0.51) 

Excluding cases with an unknown illness onset date 

Tokyo 

Metropolis 

kLL = 0.11 

(0.11–0.12) 

kLH = 3.09 

(3.03–3.15) 

kLL = 0.07 

(0.07–0.08) 

kLH = 1.48 

(1.42–1.53) 

kLL = 0.07 

(0.07–0.07) 

kLH = 1.43 

(1.39–1.47) 

kHL = 0.03 

(0.03–0.03) 

kHH = 1.68 

(1.64–1.72) 

kHL = 0.01 

(0.01–0.02) 

kHH = 0.66 

(0.63–0.70) 

kHL = 0.01 

(0.01–0.01) 

kHH = 0.64 

(0.62–0.66) 

𝑅1 = 1.74 (1.69–1.78) 𝑅2 = 0.70 (0.67–0.73) 𝑅3 = 0.67 (0.65–0.70) 

Osaka 

Prefecture 

kLL = 0.11 

(0.11–0.11) 

kLH = 2.87 

(2.77–2.96) 

kLL = 0.09 

(0.09–0.09) 

kLH = 2.15 

(2.07–2.77) 

kLL = 0.06 

(0.06–0.07) 

kLH = 1.17 

(1.10–1.23) 

kHL = 0.03 

(0.03–0.03) 

kHH = 1.54 

(1.46–1.59) 

kHL = 0.02 

(0.02–0.02) 

kHH = 1.06 

(1.01–1.11) 

kHL = 0.01 

(0.01–0.01) 

kHH = 0.50 

(0.46–0.53) 

𝑅1 = 1.59 (1.52–1.65) 𝑅2 = 1.10 (1.06–1.15) 𝑅3 = 0.53 (0.49–0.56) 

The values of kij describe the transmission rates from group j to group i, and 𝑅𝑛 is the 

reproduction number in Period n derived from the estimated next-generation matrix. Upper and 

lower 95% credible intervals obtained from the MCMC samples are shown in parentheses.  
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*Three time periods were (1) the early invasion period (before 26 March 2020 for Tokyo and 

before 18 March 2020 for Osaka), (2) the period after an alert was declared by the prefectural 

governor of each region (26 March–7 April 2020 for Tokyo and 19 March–7 April 2020 for 

Osaka) and (3) the period after the governmental declaration of a state of emergency (8 April–25 

May 2020 for Tokyo and 8 April–21 May 2020 for Osaka). 

 

Chapter 2 was originally published as:  

Jung S-m, Endo A, Kinoshita R, Nishiura H. Projecting a second wave of COVID-19 in Japan 

with variable interventions in high-risk settings. R. Soc. Open Sci. 2021;8(3),202169. Minor 

formatting modifications and edits have been made for the dissertation.   
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Chapter 3: Predicting the effective reproduction number of COVID-19: inference 

using human mobility, temperature, and risk awareness 

Background 

Since the first confirmed case of SARS-CoV-2 infection was reported in Japan, the COVID-19 

has continuously affected the entire country with the high infection rate of the disease and the 

existence of cases with no or mild symptoms. A surge of cases in early March led the Tokyo 

governor to issue a “stay-at-home” request on March 25, and the national government declared a 

state of emergency on April 16. In both cases, the government requested voluntary limitation of 

non-household contacts, and general public compliance with these interventions helped to 

suppress the surge of cases by June (Jung et al., 2021; Oshitani, 2020). However, after resuming 

socioeconomic activities in late May, the daily number of reported cases resurged exceeding the 

peak of daily reported cases observed during the “first wave” of the COVID-19 epidemic. 

Although a temporary decline in the incidence was observed, the country has experienced the 

third wave from late October. In response, prefectural governments with a large number of cases 

have requested bars and restaurants to curtail their operation hours from late November (e.g., 

asking their business to close by 9 pm) (Ministry of Health Labour and Welfare, 2020d). Despite 

these containment efforts, the spread of disease continued, leading the national government to 

declare the second state of emergency on 7 January 2021, asking citizens to refrain from non-

essential outings (Cabinet Relations Office, 2021). 

As part of an evaluation of countermeasures, the effective reproduction number (𝑅𝑡), defined as 

the expected number of secondary cases arising from a single primary case at calendar time 𝑡, is 

widely used for monitoring the trend in the community-level transmissions (Nishiura et al., 

2009). When the value of 𝑅𝑡 is larger than one, an upward trend in incidence is likely, while the 

value below one suggests the opposite. Public health interventions should therefore aim to bring 

the 𝑅𝑡 below one. Changes in the 𝑅𝑡 should be routinely monitored to optimize the effectiveness 

of control measures (Thompson et al., 2019a). However, timely and accurate estimation of 𝑅𝑡 

using incidence data remains challenging. First, to precisely link the timing of a control measure 

and resulting changes in the transmission trend, it is vital to estimate the 𝑅𝑡 as a function of the 

infection time (Gostic et al., 2020). Infection times are rarely observed in practice (only available 
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when the infector and time of infection are confirmed through the epidemiological investigation), 

thus, they need to be statistically estimated accounting for the empirical delay distributions (e.g., 

by the so-called “back-calculation” method). Moreover, the estimation of 𝑅𝑡 is further 

complicated because of the right truncation with respect to the time interval from the infection to 

reporting. In real-time practice, the number of recent infections is underestimated due to cases 

that are already contracted to disease but not yet reported in the surveillance system. Considering 

the empirically observed time delay of around 9 days from the infection to reporting in Japan, the 

estimated 𝑅𝑡 based on the reported incidence is likely to be biased, at least within 9 days from 

the latest reporting date. 

Given that human-to-human contact facilitates SARS-CoV-2 transmission, digital proxies of 

human mobility patterns can provide an important avenue to infer the directly unobservable 

transmission patterns as a function of time. Indeed, multiple datasets of mobility patterns have 

widely available during the ongoing COVID-19 pandemic, and such datasets have been utilized 

to monitor the time-dependent patterns of the physical distancing performance (Buckee et al., 

2020; Kishore et al., 2020; Leung et al., 2021; Nouvellet et al., 2021; Xiong et al., 2020). In 

addition, it has been suggested that higher transmissibility of COVID-19 is likely to be seen in 

low-temperature environments. (Li et al., 2020a; Pequeno et al., 2020; Qi et al., 2020; Smith et 

al., 2021; Ujiie et al., 2020; Wang et al., 2021). These data are often more readily accessible than 

case counts (which are typically subject to delays of ~9 days) and thus may enable near real-time 

assessment of interventions if they can be used to predict 𝑅𝑡. Furthermore, quantified degrees of 

risk awareness over COVID-19 can also help to predict 𝑅𝑡 because the public awareness, 

inducing an adherence to personal protective behaviors (e.g., wearing a mask or washing hands 

with soap or sanitizers), may reduce the virus transmissions (West et al., 2020). 

Accumulated evidence suggests that integrating human mobility coupled with temperature and 

risk awareness could well reflect the contact pattern as a function of time. Here, we aim to 

develop a simple statistical framework to predict the proxy of 𝑅𝑡 using timely accessible data of 

these driving factors of SARS-CoV-2 transmissions (i.e., human mobility pattern, temperature, 

and risk awareness), which can provide an opportunity to infer the unobservable transmission 

patterns ahead of the formal empirical estimates subject to delays. 
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Methods 

Epidemiological data 

We retrieved the information of confirmed cases of COVID-19 in six prefectures in Japan: 

Tokyo, Osaka, Aichi, Hokkaido, Fukuoka, and Okinawa, from a publicly available data source, 

from 16 January 2020 through 15 February 2021 (Ministry of Health Labour and Welfare, 

2020b). The data of six prefectures were categorized into two types: “training data” and “test 

data”. The training data was used for the model training and cross-validation, while the test data 

was from regions not included in the training data and was used to evaluate the predictive 

performance of a trained model in different geographical settings. To ensure a sufficient number 

of cases is included in the training data, four prefectures (Tokyo, Osaka, Aichi, and Hokkaido) 

accounting for more than 200 cases before the first state of emergency were selected for the 

training data. The test data comprises two other prefectures (Fukuoka and Okinawa), which are 

geographically apart from those in the training data. According to the history of traveling abroad 

within 7 days prior to the illness onset, all cases were classified either as imported or domestic. A 

total of 217,258 confirmed COVID-19 cases including 166 imported cases were included in the 

study. Within the training data, 32,130 and 150,706 cases were assigned to the period for model 

training (“training period”) and cross-validation (“validation period”), respectively, and 22,379 

cases were included in the test data. 

Reconstruction of COVID-19 incidence by the infection time 

Of the 217,258 total cases, there were 114,277 (53%) confirmed COVID-19 cases with unknown 

illness onset dates. To estimate 𝑅𝑡 as a function of the infection time, the back-projection was 

conducted following two steps. First, the missing illness onset date of those cases was back-

projected from the date of laboratory confirmation with a right-truncated time interval 

distribution from illness onset to laboratory confirmation in each prefecture (Jung et al., 2021). 

Second, we back-projected the infection time among all reported COVID-19 cases from either 

observed or back-projected illness onset date, using the incubation period distribution (Linton et 

al., 2021). The R package “surveillance” (Höhle, 2007) was used for nonparametric back-

projection. 
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Explanatory variable data 

The human mobility pattern and temperature were hypothesized as driving factors for COVID-19 

transmission, and those datasets for the abovementioned time period were collected. Google 

community mobility reports (hereafter Google mobility) were used to capture the human 

mobility patterns (Google, 2021). Google mobility data provides six different categories (i.e., 

“retail and recreation”, “grocery and pharmacy”, “parks”, “transit stations”, “workplaces”, and 

“residential”) of changes in the human mobility, relative to the average of that on the same day 

of the week in the pre-pandemic period (i.e., 3 January–6 February 2020). We used mobility 

patterns related to “retail and recreation” in our analyses based on our domain knowledge that 

this category likely represents the mobility in close-contact settings associated with COVID-19 

transmissions (Cazelles et al., 2021). Daily temperature data were retrieved from Japan 

Meteorological Agency (Japan Meteorological Agency, 2021). Since daily temperature data is 

recorded at over 1,300 weather observatory stations, one representative observatory nearby the 

location of the prefectural government office was selected for each prefecture. In order to extract 

the overall trend of those time series without being influenced by daily noise, both datasets were 

smoothed by taking a 7-day moving average. 

Model and statistical analysis 

A prediction model for 𝑅𝑡, integrating the human mobility, temperature, and risk awareness, was 

designed and evaluated in the following steps. First, three candidate regression models were 

fitted to the reconstructed COVID-19 incidences during the training period via the renewal 

process. We then compared the performance of these candidate models by cross-validation 

against the estimated 𝑅𝑡 from data in the validation period and selected the best model. Lastly, 

the predictive performance of the best-ranked model was evaluated using the separate test data 

by comparing estimated 𝑅𝑡 with the predicted values produced by the trained model to determine 

the applicability of the model to other geographic settings. 

Model for predicting the effective reproduction number 

We propose three simple regression models that incorporate different combinations of 

explanatory factors for COVID-19 transmission: only Google mobility (Model 1), Google 
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mobility and temperature (Model 2), and Google mobility, temperature, and risk awareness over 

COVID-19 (Model 3). In each model, corresponding variables were included in a log-linear 

regression form. The 𝑅𝑡 in the model with all three factors (Model 3) is formulated as follows: 

𝑅𝑡,𝑖 = 𝑅0,𝑖 exp(𝑎𝑚𝑖(𝑡) + 𝑏𝑘𝑖(𝑡) + 𝑐min (𝑤𝑙𝑖𝑚𝑖𝑡,𝑖, 𝑤𝑖(𝑡))), (24) 

where 𝑅0,𝑖  is the baseline effective reproduction number in prefecture 𝑖. We assume that 𝑅0,𝑖  are 

similar between all four prefectures of the training data, and follow the Gamma distribution with 

a mean 𝑅̅ and fixed coefficient of variation (CV) of 0.5 (Park et al., 2020). We fixed the value of 

CV due to a small number of prefectures, but varied CV in the range of 0.25–1 carried similar 

results of our analysis. Covariates 𝑚𝑖(𝑡) and 𝑘𝑖(𝑡) are smoothed values of Google mobility and 

temperature at calendar time 𝑡 and in prefecture 𝑖, respectively. 𝑤𝑖(𝑡) is the degree of risk 

awareness at calendar time 𝑡 and in prefecture 𝑖, which was graded by assuming that it is linearly 

associated with the smoothed number of newly reported COVID-19 cases, following a positive 

association between the confirmed cases and risk perception from the study using a longitudinal 

data in the UK (Schneider et al., 2021). The effect of this variable 𝑤𝑖(𝑡) was capped at a 

predefined upper limit (𝑤𝑙𝑖𝑚𝑖𝑡,𝑖), corresponding to the governmental definition of the “highest 

alert level” incidence in Japan (i.e., 25 confirmed cases per 100,000 population in a week) 

(Cabinet Relations Office, 2020). According to the definition, a daily number of cases giving an 

upper limit for each prefecture 𝑖 (𝑤𝑙𝑖𝑚𝑖𝑡,𝑖) was specified as 497 in Tokyo, 315 in Osaka, 270 in 

Aichi, 188 in Hokkaido, 182 in Fukuoka, and 52 in Okinawa. The 𝑅𝑡 in Models 1 and 2 were 

specified as models whose coefficients for non-included variables in Equation (24) were fixed at 

0. 

We constructed a likelihood function for the proposed regression models of 𝑅𝑡 (Model 1–3), 

based on the renewal process and estimated the corresponding parameters of each regression 

model by fitting it to the COVID-19 incidence during the training period. The expected number 

of daily reported domestic cases 𝑐𝑑𝑜𝑚𝑒𝑠𝑡𝑖𝑐,𝑖(𝑡) at calendar time 𝑡 in a given prefecture 𝑖 was 

calculated using the equation: 

E (𝑐𝑑𝑜𝑚𝑒𝑠𝑡𝑖𝑐,𝑖(𝑡)) = 𝑅𝑡,𝑖∑𝑐𝑡𝑜𝑡𝑎𝑙,𝑖(𝑡 − 𝜏)𝑔(𝜏)
𝐹𝑖(𝑇 − 𝑡)

𝐹𝑖(𝑇 − 𝑡 + 𝜏)

𝑡−1

𝜏=1

, (25) 
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where 𝑐𝑡𝑜𝑡𝑎𝑙,𝑖(𝑡) denotes the daily number of COVID-19 cases at time 𝑡 reported in prefecture 𝑖 

(including both imported and domestic cases). 𝑔(∙) is the probability mass function of generation 

time (Nishiura et al., 2020d). To account for the right truncation, the cumulative mass function, 

𝐹𝑖(∙), for the time delay from infection to report was calculated by convoluting the probability 

mass function of the incubation period and of the time interval from illness onset to reporting in 

prefecture 𝑖. The used training period covered the first pandemic wave in Japan (15 March–1 

May 2020) and a part of the second wave (15 July–31 August 2020). The intra-wave period from 

1 May to 15 July 2020 was excluded because of low count numbers observed during that period. 

For parameter estimation, Poisson likelihood was used: 

L (𝜃; 𝑐𝑑𝑜𝑚𝑒𝑠𝑡𝑖𝑐,𝑖(𝑡)) =  ∏
exp(−𝐸(𝑐𝑑𝑜𝑚𝑒𝑠𝑡𝑖𝑐,𝑖(𝑡))) (𝐸(𝑐𝑑𝑜𝑚𝑒𝑠𝑡𝑖𝑐,𝑖(𝑡)))

𝑐𝑑𝑜𝑚𝑒𝑠𝑡𝑖𝑐,𝑖(𝑡)

𝑐𝑑𝑜𝑚𝑒𝑠𝑡𝑖𝑐,𝑖(𝑡)!
 

𝑇

𝑡=1

, (26) 

where the set 𝜃 includes all or a part of the parameters (i.e., 𝑅0,𝑖 , 𝑅̅, 𝑎, 𝑏, and 𝑐) specific for each 

of the three proposed models. The maximum likelihood method was employed, 95% confidence 

intervals (CIs) of each parameter were derived from 10,000 samples from a Laplace-approximate 

normal distribution. 

Model selection through cross-validation 

To select the best model among proposed models, cross-validation was conducted by comparing 

the predicted and estimated “ground-truth” 𝑅𝑡 during the validation period (from 1 September 

2020 to 31 January 2021) in the four prefectures. Each regression model produced predictive 𝑅𝑡 

values for the validation period using the explanatory variables based on the estimated 

parameters. We used the 𝑅𝑡 values estimated from incidence data via the renewal process 

(Equation 25) as the ground-truth. 𝑅𝑡 was estimated as a free time-dependent parameter from the 

COVID-19 incidences during the validation period by the following likelihood function: 

L (𝑅𝑡,𝑖; 𝑐𝑑𝑜𝑚𝑒𝑠𝑡𝑖𝑐,𝑖(𝑡)) =  ∏
exp(−𝐸(𝑐𝑑𝑜𝑚𝑒𝑠𝑡𝑖𝑐,𝑖(𝑡))) (𝐸(𝑐𝑑𝑜𝑚𝑒𝑠𝑡𝑖𝑐,𝑖(𝑡)))

𝑐𝑑𝑜𝑚𝑒𝑠𝑡𝑖𝑐,𝑖(𝑡)

𝑐𝑑𝑜𝑚𝑒𝑠𝑡𝑖𝑐,𝑖(𝑡)!
.

𝑇

𝑡=1

 (27) 

The 95% CIs were derived using the profile likelihood method. Considering the right-truncation 

in the recently reported incidences, the estimated 𝑅𝑡 for the latest 15 days (1–15 February 2020) 

were excluded from the cross-validation. Furthermore, to smooth out abrupt fluctuations (e.g., 
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superspreading events) in the estimated 𝑅𝑡 values, a 7-day moving average was taken. Then, the 

predictive performance of each model (i.e., comparison between the predicted and estimated 𝑅𝑡 

during the validation period) was quantitatively assessed using four different measurements: 

bias, root-mean-square error (RMSE), ranked probability score, and Dawid-Sebastiani score 

(Funk et al., 2019), and the best model was selected. In addition, the number of predicted 

infections using the conditional forecasting method (i.e., forecasting a future incidence based on 

the predicted 𝑅𝑡 and empirically reported incidences in the past) was also compared against the 

back-projected incidence by infection dates. 

Evaluation of the predictive performance using the test data 

Lastly, the predictive performance of the finally selected model was evaluated using the test data, 

indicating the potential applicability of the proposed model to other geographical settings. 

Accordingly, the 𝑅𝑡 values in two prefectures of test data (Fukuoka and Okinawa) were 

predicted from 15 July 2020 through 31 January 2021, relying only on the trained model, and 

were compared against the estimated 𝑅𝑡 from the renewal process. In addition, the predicted 

number of infections using the conditional forecasting method was also compared with the 

empirical data in each of the two prefectures. 

Results 

Figure 6 shows the epidemic curve of COVID-19 by reporting date in four selected prefectures 

in the training data, along with the time trend of Google mobility and temperature. Following a 

substantial reduction in Google mobility across all regions, the number of reported COVID-19 

cases also decreased. On consecutive national holidays, human mobility patterns tended to show 

abrupt increases, and the number of reported cases increased slightly after roughly 9 days, 

consistent with the empirical time delay from infection to reporting in Japan. 

Table 3 shows the estimated parameters from the data in the training period and summarizes the 

predictive performance of proposed models during the validation period. Based on the Dawid-

Sebastiani score, the model that incorporated Google mobility, temperature, and risk awareness 

(Model 3) was selected as the best model, while the model that only accounted for Google 

mobility (Model 1) showed the best performance in RMSE, bias, and ranked probability score. 
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However, when compared to Model 3, the predicted time trend of 𝑅𝑡 using Model 1 (almost 

linear trend near the value of one; Figure S1) was less informative, indicating that Model 1 could 

be not suitable for the time trend analysis. As a result, Model 3 was chosen as the best model. 

Using Model 3, the estimated baseline value 𝑅0,𝑖 was estimated at 4.40 (95% CI: 4.07–4.73) for 

Tokyo, 2.85 (95% CI: 2.62–3.07) for Osaka, 2.20 (95% CI: 2.02–2.38) for Aichi, and 1.99 (95% 

CI: 1.84–2.15) for Hokkaido. The regression coefficient accounting for Google mobility was 

estimated to be 0.03 per percent point (95% CI: 0.03–0.03), while temperature and risk 

awareness were negatively associated with estimated coefficients of -0.02 per Celsius degree 

(95% CI: -0.02–-0.01) and -0.12 per 100 reported cases (95% CI: -0.15–-0.10), respectively. All 

coefficients were statistically significant.  
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Figure 6. Epidemiological curves of COVID-19 by date of report, along with the trend of 

Google mobility and temperature in Tokyo, Osaka, Aichi, and Hokkaido, Japan.  

The number of COVID-19 cases by date of report (yellow bars) from 15 Mar 2020–12 Jan 2021 

in four prefectures of Japan in the training data: (A) Tokyo, (B) Osaka, (C) Aichi, and (D) 

Hokkaido. Red lines indicate trends of changes in human mobility patterns (i.e., “retail and 

recreation” category in Google community mobility reports) compared with that in the pre-

pandemic period (i.e., 3 January–6 February 2020). Blue lines show trends of the daily 

temperature in each region and both mobility and temperature were smoothed using a 7-day 

moving average. In each figure, two red shaded areas indicate time periods for the nation-wide 

first and second state of emergency, respectively, while purple shaded areas show the time period 

when stringent restrictions on bars and restaurants were implemented by each prefectural 

government right before the second state of emergency.  
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Table 3. Summary of the estimated parameters and predictive performance of the proposed models 

Model Parameter Value Bias RMSE 

Ranked 

probability 

score 

Dawid-

Sebastiani 

score 

Model 1 

𝑅0 (Tokyo) 1.74 (1.66–1.82) 

0.28 1.65 168.94 479,953 

𝑅0 (Osaka) 1.37 (1.32–1.41) 

𝑅0 (Aichi) 1.15 (1.11–1.19) 

𝑅0 (Hokkaido) 1.33 (1.25–1.41) 

Google mobility 0.02 (0.01–0.02) 

Model 2 

𝑅0 (Tokyo) 4.39 (4.05–4.72) 

-1.06 2.29 264.41 328,849 

𝑅0 (Osaka) 3.23 (3.02–3.44) 

𝑅0 (Aichi) 2.59 (2.43–2.75) 

𝑅0 (Hokkaido) 2.09 (1.95–2.23) 

Google mobility 0.03 (0.03–0.03) 

Temperature -0.03 (-0.03–-0.03) 

Model 3 

𝑅0 (Tokyo) 4.40 (4.07–4.73) 

0.55 1.77 171.60 147,027 

𝑅0 (Osaka) 2.85 (2.62–3.08) 

𝑅0 (Aichi) 2.20 (2.02–2.38) 

𝑅0 (Hokkaido) 1.99 (1.84–2.15) 

Google mobility 0.03 (0.03–0.03) 

Temperature -0.02 (-0.02–-0.01) 

Risk awareness -0.12 (-0.15–-0.10) 

Model 1: Google mobility; Model 2: Google mobility and temperature; Model 3: Google 

mobility, temperature, and risk awareness; RMSE: root-mean-square-error. 

Each value describes the estimated parameters of three different models and 95% confidence 

intervals derived by maximum likelihood estimation and Laplace-approximate normal 

distribution. Predictive performances of each model were compared using three measures (i.e., 

root-mean-square error, ranked probability score, and Dawid-Sebastiani score) and summing 

estimates of four regions of the training data.  
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Figure 7 shows the comparison of the estimated and predicted 𝑅𝑡 for four prefectures of the 

training data using the best-ranked Model 3. Despite that the model was fitted to cases over a 

relatively short period of time, the predicted values and 95% CIs overall well captured the 

temporal patterns of the estimated 𝑅𝑡 in all the prefectures, showing clear signs of 𝑅𝑡 rising 

above 1 at the beginning of the second and third waves of the epidemic. However, with the 

implementation of stringent countermeasures (e.g., curtailing opening hours of night-life spots) 

from November 2020, the predicted 𝑅𝑡 showed larger deviations from the estimated values, 

implying a deterioration in predictive performance. The predicted 𝑅𝑡 using Model 1 (Figure S1) 

and Model 2 (Figure S2) were less consistent with the estimated 𝑅𝑡.  

Figure 8 shows the test performance of the best model (Model 3), by comparing the estimated 

and predicted 𝑅𝑡 in Fukuoka and Okinawa (test data). With the default value of 𝑅0,𝑖 offset to 

2.50, the inferred 𝑅𝑡 were consistent with the overall trend of the ground-truth 𝑅𝑡 values, 

indicating the applicability of the proposed model to other geographical and climatological 

settings. 
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Figure 7. Comparison of the estimated and predicted effective reproduction number of 

COVID-19 using the model accounting for Google mobility, temperature, and risk 

awareness.  

Comparison between the estimated and predicted effective reproduction number (𝑅𝑡) of COVID-

19. The model (considering Google mobility, temperature, and risk awareness on COVID-19; 

Model 3) was applied to four prefectures of Japan in the training data: (A) Tokyo, (B) Osaka, (C) 

Aichi, and (D) Hokkaido. Yellow bars represent reconstructed numbers of COVID-19 cases by 

infection time and grey bars show the number of predicted incidences using the conditional 

forecasting method. Blue lines and shaded areas indicate the estimated 𝑅𝑡 and its 95% 

confidence intervals using the renewal process and profile likelihood, while purple lines and 

shaded areas are the predicted 𝑅𝑡 and its 95% confidence interval derived from the Laplace-

approximate normal distribution. Red shaded areas indicate the training period (i.e., 15 March–1 

May 2020 and 15 July–31 August 2020) used for estimating parameters of the model.  
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Figure 8. Comparison of the estimated and predicted effective reproduction number of 

COVID-19 using the best model and two other geographic settings (test data) in Japan. 

(A–B) The number of COVID-19 cases by date of report (yellow bars) from 15 March 2020–12 

January 2021 in two prefectures of the test data: (A) Fukuoka and (B) Okinawa. Red lines 

indicate trends of changes in human mobility patterns (i.e., the “retail and recreation” category in 

Google community mobility reports), and green lines show trends of the daily temperature in 

each region. Both mobility and temperature were smoothed using a 7-day moving average. (C–

D) Comparison between the estimated and predicted effective reproduction number (𝑅𝑡) of 

COVID-19 using the best model (considering Google mobility, temperature, and risk awareness; 

Model 3) and the test data: (C) Fukuoka and (D) Okinawa. Yellow bars represent reconstructed 

numbers of COVID-19 cases by infection time and grey bars show the number of predicted 

incidences using the conditional forecasting method. Blue lines and shaded areas indicate the 

estimated 𝑅𝑡 and its 95% confidence intervals using the renewal process and profile likelihood, 

while purple lines and shaded areas are the predicted 𝑅𝑡 and its 95% confidence interval from the 

best model and its estimated parameters. 
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Discussion 

The present study has quantitatively shown that our proposed simple regression model can 

predict the 𝑅𝑡 of COVID-19 in a real-time manner, accounting for human mobility, temperature, 

and risk awareness. In addition, our analysis suggested that the human mobility pattern was 

positively associated with COVID-19 transmissions, while the temperature and risk awareness 

were negatively associated.  

The inverse association between the temperature and SARS-CoV-2 transmissions is consistent 

with other published papers (Li et al., 2020a; Ma et al., 2021; Smith et al., 2021). This finding 

could be explained by two possible mechanisms. First, cold temperature induces behavioral 

changes and increases indoor contact (i.e., close physical contact in poorly ventilated spaces), all 

of which are linked to elevation in the SARS-CoV-2 transmission risk (McClymont and Hu, 

2021). Second, the virus enjoys greater survivability in cold environments (Riddell et al., 2020), 

as was the case for other human coronaviruses (Chan et al., 2011; van Doremalen et al., 2013). 

The number of reported cases during the summer season was higher than that of the winter 

season in 2020 (Figure 1), however, it should be approached with caution due to the mixture of 

multiple factors. As the initial population-wide restrictions were lifted at the start of the 2020 

summer (i.e., 25 May 2020), the resumption of socioeconomic activities could result in a 

substantial increase in physical contact. In fact, the majority of SARS-CoV-2 infections reported 

in the early summer of 2020 were linked to nightspot-related clusters, which was thought to be 

the trigger of the following upsurge of incidence (Ministry of Health Labour and Welfare, 

2020e).  

Our findings also indicate that the reduction in socioeconomic activities and the level of risk 

awareness may be linked to the reduction in transmission, highlighting the potential of social 

distancing interventions and risk communication for controlling the COVID-19 epidemic 

(Anderson et al., 2020; Heydari et al., 2021). However, unlike our assumption that risk 

awareness is linearly related to the number of newly reported cases, the association between the 

number of COVID-19 cases and the degree of risk awareness may change over time in the long 

run. Despite that a positive correlation between the number of reported COVID-19 cases and 

people’s risk awareness has been reported, risk awareness can be also influenced by 
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psychological factors, not only objective factors like case counts (Schneider et al., 2021). For 

instance, in spite of the continuously increasing number of reported COVID-19 cases, adherence 

to personal protective behaviors among residents might be reduced if they believe in such 

behaviors are not being able to make a significant difference in preventing the virus from 

spreading. Nevertheless, we believe that the model with risk awareness (Model 3) performs well 

enough in terms of the prediction of 𝑅𝑡 to achieve the primary goal of the study, and it 

outperforms all other models (Model 1 & 2). 

It is remarkable that the predicted 𝑅𝑡 by a simple linear regression model fitted to the very 

limited data points well aligned with the estimates empirically obtained from the time series of 

COVID-19 incidence, showing a clear emerging signal (𝑅𝑡>1) of the second and third waves in 

Japan. Such performance of the proposed model suggests that our framework can provide a 

plausible proxy of the latest 𝑅𝑡 of COVID-19 using the readily accessible data, which 

conventional methods relying on the reported incidence are not able to provide in a timely 

manner due to the inherent delays. Timely assessment of 𝑅𝑡 is essential to inform public health 

policy. Especially, it allows us to suppress the number of severe cases before the intensive care 

unit occupancy reaches full capacity, which is critical to secure the resilience of the healthcare 

system during the ongoing COVID-19 pandemic. The proposed model could not fully capture 

abrupt changes of 𝑅𝑡 values, which were presumably caused by temporary local surges of cases 

(e.g., clusters in hospitals and nursing homes). However, it was still able to provide a timely 

signal of changes in 𝑅𝑡 before the estimates from the conventional method (obtained from the 

case counts) become available. 

Despite the overall good performance of the proposed model, our framework over- or 

underestimated the 𝑅𝑡 when stringent interventions (i.e., reducing opening hours for restaurants 

and bars from November 2020 and implementation of the second state of emergency from 7 

January 2021) were in place. Although our domain knowledge leads us to believe that the 

mobility patterns associated with retail and recreation can represent the physical mixing in high-

risk settings, such mobility data with limited temporal and spatial resolution may not fully reflect 

the detailed social contact patterns. The transmission of COVID-19 is well known to involve 

substantial individual variations, as evidenced by an empirically observed highly dispersed 

offspring distribution (Endo et al., 2020; Nishiura et al., 2020c) and thus stringent control 
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measures were imposed primarily on settings regarded as high-risk (e.g., nightclubs, bars, and 

restaurants). The resulting changes in detailed contact patterns in those places may not have been 

fully reflected on the simple summary data of human mobility. Moreover, the digital proxies for 

human mobility patterns were suggested to be not very informative regarding changes in the 

density of individuals within high-risk places, although this metric may play a crucial role in the 

SARS-CoV-2 (Chang et al., 2021). These limitations of the mobility data may account for the 

temporary deviations in the prediction. The spatially and socially more precise analysis could be 

conducted in the future, once more detailed information on the physical mixing patterns (e.g., 

exact location within the building and density of visits) is available. 

There are some additional limitations to be mentioned. First, the upper limit for the effect of risk 

awareness was rather arbitrary chosen and not necessarily theoretically justified. We assumed 

that risk awareness can reduce the transmission risk through personal behavioral changes that are 

not reflected in the changes in mobility (e.g., wearing a mask or avoiding crowded places during 

outside visits). However, there is likely to be a certain limit to the risk reduction achieved by 

such personal behavioral changes, thus, we have incorporated it in our model as a prespecified 

cap. Second, with the nationwide COVID-19 vaccine roll-out, the proposed model might become 

insufficient to predict the 𝑅𝑡 due to the decrease in the proportion of susceptible in the population 

conferred by vaccination. Third, the emergence of new SARS-CoV-2 variants was not taken into 

account in our model. When a highly transmissible variant outcompetes the existing variants, the 

baseline effective reproduction number (𝑅0 in Equation (24)) should be adjusted according to the 

relative transmissibility of the corresponding variant. Lastly, additional heterogeneities (e.g., 

age-specific infectiousness and susceptibility) are not fully considered. An extended model that 

accounts for age-stratified transmission dynamics, as well as age-specific mobility patterns, may 

be required to conduct more accurate predictions. 

In conclusion, the present study demonstrates that human mobility, temperature, and risk 

awareness can be integrated into the renewal process to timely predict the effective reproduction 

number, ahead of the formal empirical estimates subject to delays. The proposed model provides 

essential information for timely planning and assessment of control measures during the ongoing 

COVID-19 transmission. 
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Supplementary materials 

 

Figure S1. Comparison of estimated and predicted effective reproduction number of 

COVID-19 using the model incorporated with only Google mobility. 

Comparison between the estimated and predicted effective reproduction number (𝑅𝑡) of COVID-

19 using the model (considering only Google mobility; Model 1) in four prefectures of Japan in 

the training data: (A) Tokyo, (B) Osaka, (C) Aichi, and (D) Hokkaido. Yellow bars represent 

reconstructed numbers of COVID-19 cases by infection time and grey bars show the number of 

predicted incidences using the conditional forecasting method. Blue lines and shaded areas 

indicate the estimated 𝑅𝑡 and its 95% confidence intervals using the renewal process and profile 

likelihood, while purple lines and shaded areas are the predicted 𝑅𝑡 and its 95% confidence 

interval derived from the Laplace-approximate normal distribution. Red shaded areas indicate the 

training period (i.e., 15 March–1 May 2020 and 15 July–31 August 2020) used for estimating 

parameters of the model. 
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Figure S2. Comparison of estimated and predicted effective reproduction number of 

COVID-19 using the model incorporated with Google mobility and temperature. 

Comparison between the estimated and predicted effective reproduction number (𝑅𝑡) of COVID-

19 using the model (considering Google mobility and temperature; Model 2) in four prefectures 

of Japan in the training data: (A) Tokyo, (B) Osaka, (C) Aichi, and (D) Hokkaido. Yellow bars 

represent reconstructed numbers of COVID-19 cases by infection time and grey bars show the 

number of predicted incidences using the conditional forecasting method. Blue lines and shaded 

areas indicate the estimated 𝑅𝑡 and its 95% confidence intervals using the renewal process and 

profile likelihood, while purple lines and shaded areas are the predicted 𝑅𝑡 and its 95% 

confidence interval derived from the Laplace-approximate normal distribution. Red shaded areas 

indicate the training period (i.e., 15 March–1 May 2020 and 15 July–31 August 2020) used for 

estimating parameters of the model. 
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Chapter 3 was originally published as:  

Jung S-m, Endo A, Akhmetzhanov AR, Nishiura H. Predicting the effective reproduction 

number of COVID-19: inference using human mobility, temperature, and risk awareness. Int J 

Infect Dis. 2021;113:47-54. Minor formatting modifications and edits have been made for the 

dissertation.   
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Conclusion 

With more than 5 million COVID-19 deaths (Johns Hopkins University, 2021), the COVID-19 

pandemic has had considerable impacts on healthcare systems all around the world. In response, 

a variety of non-pharmaceutical interventions, which are seen as important tools in tackling the 

growing COVID-19 incidence, has been implemented in many of the most affected areas (Perra, 

2021). However, such broad restrictions had also resulted in profound impacts on individuals and 

society (Bavel et al., 2020). Therefore, in order to develop a well-tailored response strategy to 

the COVID-19 pandemic, an in-depth understanding of its infection dynamics is necessary, and 

it should be guided by quantitative assessment based on the reconstructed infection dynamics.  

Chapter 1 statistically estimated the severity and transmissibility of COVID-19 in the early stage 

of the pandemic using the exported cases data. Then, Chapter 2 quantified the next-generation 

matrix accounting for the high- and low-risk transmissions settings and explored sustainable exit 

strategies by projecting a second wave of the COVID-19 epidemic in Japan with different levels 

of restriction. Lastly, Chapter 3 suggested a statistical framework for providing the effective 

reproduction number of COVID-19 in a real-time manner, by integrating human mobility with 

temperature and risk awareness. Using a mathematical modelling approach and publicly 

available data, these three chapters of the dissertation provide the following insights into the 

infection dynamics of COVID-19. 

• Chapter 1:  Given the estimated confirmed case fatality risk and basic reproduction 

number of COVID-19, the substantial potential for causing a pandemic was identified in 

the very early stage of the pandemic, when only 20 exported cases were confirmed 

outside China. The proposed approach can help direct risk assessment in other settings 

with the use of the publicly available dataset. In addition, the estimated growth rate of the 

incidence in China was used for precise estimation of other epidemiological parameters 

(e.g., distribution of incubation period and time delay from onset to hospitalization) to 

take account for right-censored cases during the early stage of the pandemic (Linton et 

al., 2020). 
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• Chapter 2:  The projected wave of COVID-19 in Japan suggested that implementing 

sufficient precautionary measures to suppress transmissions in high-risk settings could 

keep the epidemic under control while resuming socioeconomic activities. It implies that 

understanding the infection dynamics of COVID-19 with the classification of high- and 

low-risk transmission settings is essential in developing a more efficient and sustainable 

exit strategy. Indeed, such finding has been practically utilized in public health decision-

making in Japan as a motive of “quasi-state of emergency” (i.e., imposing stringent 

interventions only in specific settings with a high-risk transmission). 

 

• Chapter 3:  The proposed framework integrated with human mobility, temperature, and 

risk awareness can provide a timely prediction of the effective reproduction number of 

COVID-19, which are not able to be provided by the conventional method relying on 

reported incidence due to the inherent delays. This framework can shed light on inferring 

directly unobserved transmission patterns as a function of time, and it has been used to 

inform public health policies for planning timely epidemic control measures in practice 

(Ministry of Health Labour and Welfare, 2021a). 

Given the rapid spread of new SARS-CoV-2 variants with higher transmissibility (Ministry of 

Health Labour and Welfare, 2021b) and nationwide vaccine roll-out (Ministry of Health Labour 

and Welfare, 2021c), consideration of these impacts on the infection dynamics of COVID-19 

should be done as a future study. Despite the remained tasks, the present dissertation with three 

chapters has provided a better knowledge of COVID-19 infection dynamics and shown practical 

applications to developing an evidence-based response strategy for minimizing the burden of the 

ongoing COVID-19 pandemic. 
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