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Crossover phenomena in the critical behavior for

long-range models with power-law couplings

By

Akira SAKAI∗

Abstract

This is a short review of the two papers [9, 10] on the x-space asymptotics of the critical

two-point function Gpc(x) for the long-range models of self-avoiding walk, percolation and the

Ising model on Zd, defined by the translation-invariant power-law step-distribution/coupling

D(x) ∝ |x|−d−α for some α > 0. Let S1(x) be the random-walk Green function generated by

D. We have shown that

• S1(x) changes its asymptotic behavior from Newton (α > 2) to Riesz (α < 2), with log

correction at α = 2;

• Gpc(x) ∼ A
pc
S1(x) as |x| → ∞ in dimensions higher than (or equal to, if α = 2) the

upper critical dimension dc (with sufficiently large spread-out parameter L). The model-

dependent A and dc exhibit crossover at α = 2.

The keys to the proof are (i) detailed analysis on the underlying random walk to derive sharp

asymptotics of S1, (ii) bounds on convolutions of power functions (with log corrections, if α = 2)

to optimally control the lace-expansion coefficients π(n)
p , and (iii) probabilistic interpretation

(valid only when α ≤ 2) of the convolution of D and a function Πp of the alternating series∑∞
n=0(−1)nπ(n)

p . We outline the proof, emphasizing the above key elements for percolation in

particular.

§ 1. Introduction and the main results

Since the dawn of research on phase transitions and critical behavior, it has been

standard to investigate short-range models, among which the nearest-neighbor model

on Zd is the most popular. Thanks to intensive studies for more than half a century,
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nearest-neighbor bond percolation is now known to exhibit a phase transition for all

d ≥ 2 and mean-field behavior (i.e., the critical two-point function Gpc(x) decays as

|x|2−ηshort−d with the mean-field value ηshort = 0) for all d ≥ 11 [11, 12]. Believing

in universality, we expect the mean-field behavior for all dimensions above the upper-

critical dimension dshort = 6 for short-range percolation [15].

Recently, long-range random walk and statistical-mechanical models defined by the

power-law step-distribution/coupling D(x) ∝ |x|−d−α, α > 0, have regained popularity,

due to unconventional macroscopic behavior [4,6–10,18,19]. Among those references, an

infrared bound and mean-field behavior are proven for long-range oriented percolation

(OP for short) on Zd>dc×Z+ [6,7] and for long-range models of percolation, self-avoiding

walk (SAW for short) and the Ising model on Zd>dc [18], where

dc = (α ∧ 2)×

2 [OP, SAW & Ising],

3 [percolation].
(1.1)

Also, an asymptotic expression of the gyration radius for long-range models of SAW

and OP for d > dc are proven in [8]. In physics, Brezin, Parisi and Ricci-Tersenghi

[4] conjectured that Gpc(x) would decay as |x|α∧(2−ηshort)−d if α ̸= 2 − ηshort, and as

|x|α−d/ log |x| if α = 2− ηshort. We have shown in [9,10] that the conjectured behavior

holds true for d > dshort (= dc with α =∞), because ηshort = 0, with sufficiently large

spread-out parameter L [13, 14, 23]. In fact, the obtained results are much stronger, as

summarized as follows.

Theorem 1.1 (Proposition 2.1 of [9] and Theorem 1.3 of [10]). Let α > 0, L ≥
1 and D(x) ≍ 1

Ld (
|x|
L ∨ 1)−d−α, i.e.,

∃c > 0, ∀x ∈ Zd, ∀L ∈ [1,∞) : c ≤ D(x)
1
Ld (

|x|
L ∨ 1)−d−α

≤ 1

c
.(1.2)

Let

γα =
Γ(d−α∧2

2 )

2α∧2πd/2Γ(α∧2
2 )

, vα =


lim

|k|→0

1− D̂(k)

|k|α∧2
[α ̸= 2],

lim
|k|→0

1− D̂(k)

|k|2 log(1/|k|)
[α = 2],

(1.3)

where D̂(k) =
∑

x∈Zd eik·xD(x). Then, for all d > α ∧ 2, the random-walk Green

function S1(x) generated by the step distribution D exhibits the following asymptotic

behavior: there is an ϵ > 0 such that, as |x| → ∞,

S1(x) =
γα/vα
|x|d−α∧2

×


(
1 +

O(Lϵ)

|x|ϵ

)
[α ̸= 2],

1

log |x|

(
1 +

O(1)

(log |x|)ϵ

)
[α = 2],

(1.4)
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where the O(1) term is independent of L.

Theorem 1.2 (Theorem 1.2 of [9] and Theorem 1.6 of [10]). Let D be the same

as in Theorem 1.1 and recall the definition (1.1) of dc. Suppose d > dc for α ̸= 2 or

that d ≥ dc for α = 2. For α > 2, we also assume a bound on the “derivative” of D (see

the last part of Section 3). Then, there is an L0(d) < ∞ such that, for any L ≥ L0,

there are A = 1 +O(L−2)1{α>2} and ϵ > 0 such that, as |x| → ∞,

Gpc
(x) =

A

pc

γα/vα
|x|d−α∧2

×


(
1 +

O(Lϵ)

|x|ϵ

)
[α ̸= 2],

1

log |x|

(
1 +

O(1)

(log |x|)ϵ

)
[α = 2],

(1.5)

where the O(1) term is independent of L.

In short, the critical two-point function Gpc(x) exhibits the same asymptotic be-

havior as S1(x), modulo multiplication of the model-dependent constant A/pc, for all

d > dc (with large spread-out parameter L) and, most interestingly, for d = dc when

α = 2. For d ∈ (dc, dshort), which is not empty for α < 2 and in which ηshort is believed

to be nonzero, Theorem 1.2 claims that Gpc
(x) decays as |x|α−d, not as |x|2−ηshort−d.

This power-law behavior has been extended even below dc by Lohmann, Slade and

Wallace [19] using a rigorous version of the ε-expansion.

§ 2. Key ideas for the proof of Theorem 1.1

Let D∗n be the n-fold convolution of D (i.e., the n-step distribution) and denote

by Sq the random-walk Green function generated by D with survival rate q ∈ [0, 1]:

D∗n(x) = (D∗(n−1) ∗D)(x) ≡
∑
y

D∗(n−1)(y)D(x− y),(2.1)

Sq(x) =
∞∑

n=0

qnD∗n(x).(2.2)

Let

|||x|||r =
π

2
(|x| ∨ r) [x ∈ Rd, 1 ≤ r <∞],(2.3)

where | · | is the Euclidean norm. Suppose that, as explained in (1.2), D(x) decays as

D(x) ≍ L−d||| xL |||
−d−α
1 ≡ Lα|||x|||−d−α

L .(2.4)
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An example of D is the following compound zeta distribution [9]:

D(x) =
∑
t∈N

U∗t
L (x)

t−1−α/2

ζ(1 + α/2)
[x ∈ Zd],(2.5)

where UL is the uniform distribution over the d-dimensional box of side-length 2L.

The step distribution D in (2.4) satisfies the following properties (D1)–(D3) that

are essential to the proof of (1.4).

(D1) k-space bounds [6, Proposition 1.1] (and [10, Assumption 1.1]): ∃∆ = ∆(L) ∈ (0, 1)

such that

1− D̂(k)

< 2−∆ [∀k ∈ [−π, π]d],
> ∆ [|k| > 1/L],

(2.6)

and for |k| ≤ 1/L,

1− D̂(k) ≍ (L|k|)α∧2 ×

1 [α ̸= 2],

log π
2L|k| [α = 2].

(2.7)

(D2) k-space asymptotics [8, Lemma A.1] (and [10, Assumption 1.1]): ∃ϵ > 0 such that,

as |k| → 0,

1− D̂(k) = vα|k|α∧2 ×


(
1 +O(Lϵ|k|ϵ)

)
[α ̸= 2],(

log 1
L|k| +O(1)

)
[α = 2],

(2.8)

where the constant in the O(1) term is independent of L.

(D3) x-space bounds [9, (1.19)–(1.21)] (and [10, Assumption 1.2]): ∀n ∈ N and ∀x ∈ Zd,

∥D∗n∥∞ ≤ O(L−d)×

n−d/(α∧2) [α ̸= 2],

(n log πn
2 )−d/2 [α = 2],

(2.9)

D∗n(x) ≤ n
O(Lα∧2)

|||x|||d+α∧2
L

×

1 [α ̸= 2],

log ||| xL |||1 [α = 2].
(2.10)

For example, to show (2.7) for |k| ≤ 1/L, we first split the sum as

1− D̂(k) ≍ Lα
∑
x

|||x|||−d−α
L (1− cos k · x)

(
1{|x|<L} + 1{L≤|x|≤ π

2|k|} + 1{|x|> π
2|k|}

)
.

(2.11)
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It is easy to see that the contributions from the first and third indicators are O(L2|k|2)
and O(Lα|k|α), respectively. The contribution from the second indicator is the main

term since

Lα
∑

L≤|x|≤ π
2|k|

|||x|||−d−α
L (1− cos k · x) ≍ Lα|k|2

∑
L≤|x|≤ π

2|k|

|x|−d−α+2

≍

(L|k|)α∧2 [α ̸= 2],

(L|k|)2 log π
2L|k| [α = 2].

(2.12)

To prove (1.4), we first rewrite S1(x) for the transient case d > α ∧ 2 as

S1(x) =

∫
[−π,π]d

ddk

(2π)d
e−ik·x

1− D̂(k)
=

∫ ∞

0

dt

∫
[−π,π]d

ddk

(2π)d
e−ik·x−t(1−D̂(k))

=

∫ ∞

0

dt

∫
|k|≤R

ddk

(2π)d
e−ik·x−t(1−D̂(k)) + E1,(2.13)

where R is arbitrary for the moment. Then, by replacing 1− D̂(k) by its limit (2.8), we

can further rewrite S1(x) for α ̸= 2 as

S1(x) =

∫ ∞

0

dt

∫
Rd

ddk

(2π)d
e−ik·x−vαt|k|α∧2

+ E1 + E2,(2.14)

and for α = 2 as

S1(x) =

∫ ∞

0

dt

∫
Rd

ddk

(2π)d
e−ik·x−v2t|k|2 log 1

L|k| + E1 + E2.(2.15)

Since ∫ ∞

0

dt e−vαt|k|α∧2

=
1

vα|k|α∧2
=

1

vαΓ(
α∧2
2 )

∫ ∞

0

dt

t
t(α∧2)/2e−t|k|2 ,(2.16)

we readily obtain for α ̸= 2 that

S1(x)− E1 − E2 =
1

vαΓ(
α∧2
2 )

∫ ∞

0

dt

t
t(α∧2)/2

∫
Rd

ddk

(2π)d
e−ik·x−t|k|2︸ ︷︷ ︸

=(4πt)−d/2 exp(−|x|2/(4t))

=
γα/vα
|x|d−α∧2

.

(2.17)

Using the k-space and x-space bounds (D1) and (D3) and choosing R accordingly (as

in [9, (2.20)]), we can show that E1 +E2 is the error term in (1.4). See [9, Section 2.1]

for more details.
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For α = 2, we change variables as ξ = x/|x|, κ = |x|k and τ = v2t
|x|2 log

|x|
L to obtain

S1(x)− E1 − E2 = |x|−d

∫ ∞

0

dt

∫
Rd

ddκ

(2π)d
exp

(
− iκ · ξ − v2t|κ|2

|x|2
log
|x|
L|κ|

)

=
|x|2−d

v2 log
|x|
L

∫ ∞

0

dτ

∫
Rd

ddκ

(2π)d
exp

(
− iκ · ξ − τ |κ|2

log |x|
L|κ|

log |x|
L

)

=
|x|2−d

v2 log
|x|
L

∫ ∞

0

dτ

∫
Rd

ddκ

(2π)d
e−iκ·ξ−τ |κ|2︸ ︷︷ ︸

= γ2

+E3.(2.18)

Again, by using the k-space and x-space bounds on D and choosing R accordingly (as

in [10, (2.5)]), we can show that E1 + E2 + E3 is the error term in (1.4). See [10,

Section 2.1] for more details. This completes the sketch proof of Theorem 1.1.

§ 3. Key ideas for the proof of Theorem 1.2

The proof of Theorem 1.2 is based on the lace expansion, which is one of the few

methods to prove mean-field results mathematically rigorously. Since its invention by

Brydges and Spencer for weakly SAW [5], the method has been extended to strictly

SAW [17], oriented/unoriented percolation [15,21], lattice trees and lattice animals [16],

the contact process [22], the Ising and φ4 models [23,24].

The lace expansion yields a formal recursion equation for the two-point function

Gp(x), which is similar to the recursion equation for the random-walk Green function

Sp(x). For (strictly) SAW, Gp(x) is defined as

Gp(x) =
∑

ω:o→x

p|ω|
|ω|∏
j=1

D(ωj − ωj−1)
∏
s<t

(1− δωs,ωt
),(3.1)

where the sum is over the paths ω from o to x. The contribution from the zero-step

walk is regarded as δo,x. The last product over s, t is either 0 or 1 depending on whether

or not ω intersects to itself.

For Bernoulli bond percolation, in which each bond {u, v} is occupied with prob-

ability pD(v − u) independently of the other bonds, the two-point function is defined

as

Gp(x) = Pp(o←→ x),(3.2)

where Pp is the induced law from the above bond-occupation probability (p(1 −D(o))

is the expected number of occupied bonds per vertex), and {o←→ x} is the event that

either x = o or there is a self-avoiding path of occupied bonds from o to x.
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For the Ising model, see, e.g., [10, Section 1.2.4].

Due to monotonicity in p and subadditivity in self-avoiding paths, the critical point

pc is characterized by the divergence of the susceptibility χp for all models, as follows:

χp =
∑
x

Gp(x), pc = sup{p ≥ 0 : χp <∞}.(3.3)

The proof of Theorem 1.2 consists of the following two steps:

Step 1: Prove thatGp(x) is bounded by 2λ|||x|||α∧2−d
L if α ̸= 2 and by 2λ|||x|||2−d

L / log ||| xL |||1
if α = 2, uniformly in x ∈ Zd and p < pc, where

λ =


sup
x̸=o

S1(x)|||x|||d−α∧2
L [α ̸= 2],

sup
x̸=o

S1(x)|||x|||d−2
L log ||| xL |||1 [α = 2],

(3.4)

which is of order L−α∧2, by Theorem 1.1.

Step 2: Use the lace expansion as a recursion equation for Gpc(x) to derive its asymp-

totic expression.

To complete Step 2 is rather straightforward as soon as Step 1 is completed;

see [9, Section 3.3] for α ̸= 2 and [10, Section 3.5] for α = 2. To complete Step 1, it

suffices to show that gp, defined as

gp =


p ∨ sup

x ̸=o

Gp(x)

λ|||x|||α∧2−d
L

[α ̸= 2],

p ∨ sup
x ̸=o

Gp(x)

λ|||x|||2−d
L / log ||| xL |||1

[α = 2],
(3.5)

satisfies the following three properties:

(S1.1) g1 ≤ 1.

(S1.2) gp is continuous (and nondecreasing) in p ∈ [1, pc).

(S1.3) gp ≤ 3 implies gp ≤ 2 for every p ∈ (1, pc), if λ≪ 1.

The third property implies that there is a prohibited region in the p–gp plane. Therefore,

gp is either ≤ 2 or > 3, as long as p ∈ (1, pc). However, due to the continuity (S1.2)

with the initial condition (S1.1), the possibility of gp > 3 is eliminated. This completes

Step 1.

(S1.1)–(S1.2) are not so difficult, due to [10, Propositions 3.1–3.3]. To show (S1.3),

we use the lace expansion, which is formally written as

Gp(x) = Πp(x) + (Πp ∗ pD ∗Gp)(x),(3.6)
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where (cf., [10, Section 3.1])

Πp(x) =


δo,x +

∞∑
n=1

(
− pD(o)δ + πp

)∗n
(x) [SAW],

πp(x) +

∞∑
n=1

(
− pD(o)

)n
π∗(n+1)
p (x) [Ising & percolation].

(3.7)

Here, πp is the alternating series of the nonnegative lace-expansion coefficients {π(n)
p }∞n=0

(π(0)
p ≡ 0 for SAW):

πp(x) =
n∑

n=0

(−1)nπ(n)

p (x).(3.8)

The proof of Item (S1.3) goes as follows.

(i) Bound π(n)
p in terms of Gp by using correlation inequalities, such as the BK in-

equality for percolation [3].

(ii) Derive an optimal x-space bound on Πp in (3.7) by applying the hypothesis gp ≤ 3

to the bounds on π(n)
p obtained in (i) and using convolution bounds (see below) on

power functions, with log corrections for α = 2.

(iii) Prove the improved bound gp ≤ 2 by applying the bound on Πp obtained in (ii)

to (3.6).

From now on, we restrict our attention to percolation. By the BK inequality, the

first few terms are bounded as

π(0)

p (x) ≤ Gp(x)
2, π(1)

p (x) ≤ o x, π(2)

p (x) ≤ o x + · · · ,

(3.9)

where each line segment represents Gp, small filled rectangles are pD and unlabeled

vertices are summed over Zd. For more explanation on those diagrammatic expressions,

we refer to the original paper [15]. Then, we use gp ≤ 3 and the following convolution

bounds:

Lemma 3.1 (Lemma 3.5 of [10]). For a1 ≥ b1 > 0 with a1 + b1 ≥ d, and

for a2, b2 ≥ 0 with a2 ≥ b2 when a1 = b1, there is an L-independent constant C =
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C(d, a1, a2, b1, b2) <∞ such that

∑
y∈Zd

|||x− y|||−a1

L

(log |||x−y
L |||1)a2

|||y|||−b1
L

(log ||| yL |||1)b2

(3.10)

≤
C |||x|||−b1

L

(log ||| xL |||1)b2
×



Ld−a1 [a1 > d],

log log ||| xL |||1 [a1 = d, a2 = 1],

(log ||| xL |||1)
0∨(1−a2) [a1 = d, a2 ̸= 1],

|||x|||d−a1

L [a1 < d, a1 + b1 > d],

|||x|||b1L (log ||| xL |||1)
0∨(1−a2) [a1 < d, a1 + b1 = d, a2 + b2 > 1].

Take π(1)
p (x) for α = 2, for example. By repeated applications of the above convo-

lution bounds, we can reduce the number of vertices (and line segments) one by one, as

depicted as follows:

o x

gp≤3
d≥4

≲ o x + o x

gp≤3
d≥6

≲ o x.(3.11)

Explanation of the above inequality. Let v be the unlabeled top-right vertex in

the leftmost figure at which three line segments (each in red, blue and black) meet, and

let y, z be the other end vertices of the horizontal (in red) and vertical (in black) line

segments, respectively. In the first inequality, we use (3.10) between the vertical line

segment and one of the other two line segments, depending on whether |x− v| ≥ |y− v|
or |x− v| ≤ |y − v|. If |x− v| ≤ |y − v|, then |x− y| ≤ |x− v|+ |y − v| ≤ 2|y − v| and
therefore∑

v:|x−v|≤|y−v|

|||x− v|||2−d
L

log |||x−v
L |||1

|||y − v|||2−d
L

log |||y−v
L |||1

|||z − v|||2−d
L

log ||| z−v
L |||1

≤
|||x−y

2 |||
2−d
L

log |||x−y
2L |||1

∑
v

|||x− v|||2−d
L

log |||x−v
L |||1

|||z − v|||2−d
L

log ||| z−v
L |||1

d≥4

≤ ∃C ′ |||x− y|||2−d
L

log |||x−y
L |||1

|||x− z|||4−d
L

log |||x−z
L |||1︸ ︷︷ ︸

blue-dotted

,(3.12)

which is depicted as the left figure in the middle expression in (3.11). Then, by gathering

all line segments meeting at z (denote the other end vertex of the horizontal line segment

by u) and using (3.10) again, we obtain

∑
z

|||x− z|||(4−d)+(2−d)
L

(log |||x−z
L |||1)2

|||u− z|||2−d
L

log |||u−z
L |||1

d≥6

≤ C
|||x− u|||2−d

L

log |||x−u
L |||1

,(3.13)
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which yields the rightmost figure of (3.11). We should emphasize that the above bound

holds even at dc = 6, because of the log-squared term in the denominator. This is one

of the reasons why the mean-field results1 hold for d ≥ dc (including equality) when

α = 2.

The other case |x − v| ≥ |y − v| can be evaluated similarly, and we refrain from

showing it here.

Applying the same analysis to the other π(n)
p and using (3.7)–(3.8), we can get

(cf., [9, (3.4)] and [10, (3.29)])

|Πp(x)− δo,x| ≤ O(L−d)δo,x +O(λ2)×

|||x|||
(α∧2−d)ℓ
L [α ̸= 2],

(|||x|||2−d
L / log ||| xL |||1)

ℓ [α = 2],
(3.15)

where

ℓ =

2 [percolation],

3 [SAW & Ising].
(3.16)

Notice from (3.15) that, if α < 2 and d > dc or if α = 2 and d ≥ dc, then Πp ∗ D in

(3.6) can be treated, after normalization, as a probability distribution. For α = 2, for

example, there are finite constants c, c′, c′′ such that

(Πp ∗D)(x)
(3.15)

≥ (1− cL−d)D(x)− c′λ2
∑
y

|||y|||ℓ(2−d)
L

(log ||| yL |||1)ℓ
D(x− y)

Lemma 3.1
≥ (1− cL−d − c′′λ3)D(x),(3.17)

which is positive for all x, if λ≪ 1. Therefore,

D(x) = (Πp ∗D)(x)

Π̂p(0)
(3.18)

is a probability distribution that satisfies all the properties in (D1)–(D3), and its Green

function
∑∞

n=0D∗n(x) is bounded by (1+O(λ3))S1(x) for every x (see [10, Section 3.2]

1The bubble condition G∗2
pc
(o) < ∞ for SAW/the Ising model and the triangle condition G∗3

pc
(o) < ∞

for percolation are sufficient conditions for the susceptibility χp and other observables to exhibit
their mean-field behavior. The log correction for α = 2 is the key to extend the mean-field results
down to d = dc since, for example, the tail of the sum in the triangle condition can be estimated,
for any R > 1, as ∑

x:|x|>R

Gpc (x)G
∗2
pc
(x)

d≥4

≲
∫ ∞

R

dr

r

r6−d

(log r)2

d≥6
< ∞.(3.14)
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for more details). By (3.15) and Lemma 3.1, we obtain that, for x ̸= o,

Gp(x) ≤
(
1 +O(λ3)

)
(Πp ∗ S1)(x) ≤

(
1 +O(λ3)

)
S1(x) +O(λ4)

|||x|||2−d
L

log ||| xL |||1
λ≪1
≤ 2λ

|||x|||2−d
L

log ||| xL |||1
,(3.19)

as required. This completes all the steps (i)–(iii) for α ≤ 2.

If α > 2, then we can no longer interpret Πp ∗ D as a probability distribution,

because the second term in (3.17) decays slower thanD; this is why the model-dependent

multiplicative constant A in (1.5) is reduced to 1 only when α ≤ 2. To overcome this

difficulty for α > 2, we assume that the “derivative” of the n-step distribution D∗n

obeys the following bound: for |y| ≤ 1
3 |x|,∣∣∣∣D∗n(x)− D∗n(x+ y) +D∗n(x− y)

2

∣∣∣∣ ≤ n
O(Lα∧2) |||y|||2L
|||x|||d+α∧2+2

L

.(3.20)

We have shown in [9] that the compound zeta distribution (2.5) for α ̸= 2 satisfies the

above assumption. See [9, Appendix] for more details.
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