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Abstract 
【Background】 

Mathematical models of infectious diseases are systems that can be used to mathematically 

represent and analyze the dynamics of infectious diseases in a population. In this study, the 

stability of the abovementioned models is analyzed and their validity quantitatively confirmed. It 

is discovered that mathematical models of infectious diseases are essential in infectious disease 

epidemiology. When constructing and analyzing mathematical models for individual infectious 

diseases, transmission characteristics must be clarified by considering factors such as the 

biological nature of the disease, clinical perspectives, human behavior, and individual 

heterogeneity. Developing the models from scratch for a wide range of infectious diseases will 

delay their implementation and result in their inability to model the spread of infection. 

Therefore, it is crucial to establish methodologies for each infectious disease using similar 

elements, and then adapt them promptly when an epidemic occurs. When using a mathematical 

model for viral infections, a model that considers factors such as drug treatment, diagnosis, 

surveillance, transmission route, and vaccine must be considered to estimate the number of 

potentially infected people as well as risks. In this study, two viral infections (cytomegalovirus 

and yellow fever) with different characteristics are formulated and their epidemic dynamics and 

risks quantitatively evaluated. 

 

【Methods】 

Chapter 1 (Cytomegalovirus):  

Seroepidemiological datasets (i.e., the prevalence of anti- cytomegalovirus (CMV) IgG 

antibodies) for pregnant women obtained from five cord blood banks in Sapporo, Tokyo, 

Osaka/Kyoto, Okayama, and Fukuoka from 1996 to 2009 were used to quantify the time-

dependent transmission dynamics of CMV infection in Japan. By employing a mathematical 

model and using the maternal age distribution of childbirths from the Vital Statistics of Japan, we 

computed seroprevalence among pregnant Japanese women as a function of time. 

 

Chapter 2 (Yellow fever): 

To estimate the risk of yellow fever among travelers, we analyzed both confirmed cases in Brazil 

and imported cases reported abroad (Chile, Argentina, the Netherlands, Switzerland, France, the 
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United Kingdom, Romania, and Germany) from May 2017 to May 2018. A statistical model was 

employed to capture the risk of importing yellow fever by returning international travelers from 

Brazil. We estimated the relative risk of importation among travelers by the extent of wealth 

measured based on the gross domestic product (GDP) per capita and the relative risk obtained by 

the random assignment of travelers’ destinations within Brazil based on the relative population 

size. 

 

【Results】  

Chapter 1 (Cytomegalovirus)  

Based on a total of 22,100 samples, 16,191 were identified as positive, with the sample 

proportion estimated to be 73.3% (95% CI: 72.7, 73.8). By linearly regressing the sample 

proportion by year, it was discovered that the seropositive fraction decreased by 0.7% annually 

(p < 0.001). From 1980–2009, the median age of infection increased from 10.0 to 19.7 years old.  

However, the force of infection, i.e., the rate at which susceptible individuals are infected, 

decreased from 0.04 to 0.03 (/year) over the period from 1996 to 2009. Whereas the total number 

of births in Japan declined steadily, the estimated number of live births at risk of CMV infection 

increased over time. Comparing the time-dependent patterns of the estimated force of infection 

against the different geographic locations of cord blood banks in Japan, whereas a time-

dependent decline was evident in Hokkaido and Fukuoka, the rate of decrease in the force of 

infection was lower in Tokyo. 

 

Chapter 2 (Yellow fever)  

Travelers from the wealthier fraction of countries were a = 2.3 (95% confidence interval, CI: 0.7, 

8.6) times more likely to be infected with yellow fever than those from countries below the 

median GDP per capita. The upper-half of wealthier countries indicated 2.1–3.4 times greater 

risk of importation than the remainder. Among countries in the lower half of the GDP per capita, 

the risk of importation was 2.5–2.8 times greater as compared with the risk of travelers’ infection 

within Brazil determined based on the regional population size. 

 

【Discussion】 

Chapter 1 (Cytomegalovirus)  
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We show that the force of infection for CMV in Japan declined over time using blood samples 

from pregnant women only. Our data revealed that in 2009, at least 0.3 million women in Japan 

may have been at risk of contracting a CMV infection during the perinatal period. Moreover, 

approximately 2,726 congenital CMV infections were expected to have occurred in 2009. The 

average age at infection has already reached the childbearing age. It is noteworthy that the age at 

infection can increase to approximately 30 years, which is the ongoing mean age at child 

delivery. Furthermore, if vaccination can be implemented for controlling CMV in the future, then 

the age at infection may be further increased, which may coincide with the further elevation of 

age at delivery in Japan. 

 

Chapter 2 (Yellow fever)  

In this study, we show that countries with a higher GDP per capita are infected the most 

frequently, which indicates that travelers’ local destination and behavior are likely to be key 

determinants of the heterogeneous risk of importing cases.  In addition, we discovered that non-

wealthy countries indicated 2.5–2.8 times greater risk of importing yellow fever cases compared 

with the typical modeling assumption that the destination-specific risk of infection is 

proportional to the population size of the destination relative to the entire country. This study 

exhibited four limitations: First, the notification of yellow fever cases was biased by the extent of 

the ascertainment. Second, the spatial risk of infection could not be considered on a finer scale. 

Third, vaccination coverage among travelers from countries without routine yellow fever 

immunization was assumed to be proportional to the GDP per capita. Fourth, the lower 

confidence bound of our relative risk estimates was less than one, and the sample size was not 

substantial. The abovementioned limitations must be addressed in future studies to achieve a 

finer estimation of the infection risk among travelers. However, in our current study, we 

successfully quantified the relative risk of infection by GDP per capita and then compared it with 

the risk based on population-size-specific assumptions of travelers’ destinations. 

 

【Conclusion】  

Chapter 1 (Cytomegalovirus)  

Data from the seroprevalence survey among pregnant women were analyzed as a function of 

time, and the seropositivity among pregnant women was calculated based on year. By fitting the 
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computed probability to the observed seropositive data, we show that the observed decline in the 

proportion of CMV-positive pregnant women mirrored the steadily declining force of infection 

over time. Owing to the elevated age at infection, pregnant women are exposed to a high risk of 

congenital CMV infections in Japan. 

 

Chapter 2 (Yellow fever)  

Travelers from wealthier countries are at an elevated risk of yellow fever, thereby allowing us to 

speculate that travelers’ local destination and behavior are likely to be key determinants of the 

heterogeneous risk of importation. Travelers must be informed of the ongoing geographic foci of 

transmission. If visits to tourist destinations with a history of imported cases are inevitable, then 

travelers are urged to receive vaccination in advance. 
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Introduction 

Mathematical models of infectious diseases are systems that can be used to mathematically 

represent and analyze the dynamics of infectious diseases in a population. The mathematical 

model of infectious diseases originated from smallpox research in the 18th century, and the basic 

reproduction number (R0), which is the basic indicator in infectious disease epidemiology, 

emerged in the latter half of the 19th century. In the 20th century, the discovery of the 

transmission threshold of the malaria epidemic and the development of differential equation 

models provided a foundation for establishing a mathematical model of infectious diseases. 

Subsequently, stability analysis was performed, quantitative validity was gradually assured, and 

mathematical models of infectious diseases became essential in infectious disease epidemiology 

(Dietz 1988; Dietz and Heesterbeek 2002; Kermack and McKendrick 1927; Anderson and May 

1991). Currently, mathematical modeling of infectious diseases has progressed significantly 

owing to innovations in statistical estimation (e.g., Markov chain Monte Carlo methods), 

increased computational power of computers, and electronic and online management of clinical, 

epidemiological, genetic, and other biological information. Mathematical models of infectious 

diseases have been applied to the objective analysis and prediction of the prevalence of specific 

infectious diseases; additionally, they have become an essential method in health and medical 

policy-making, such as vaccination strategies (Glasser 2004). 

 

Mathematical models of infectious diseases integrate mathematical models with statistical 

methods for parameter estimation and hypothesis testing by fitting actual data to the constructed 

models. When constructing and analyzing mathematical models for individual infectious 

diseases, transmission characteristics must be clarified by considering factors such as the 

biological nature of the disease, clinical perspectives, human behavior, and individual 

heterogeneity. Because available data are often insufficient, a mathematical hypothesis and a 

strategy must be developed for future data acquisition. However, the model implementation will 

be delayed, which will result in the inability to model the spread of infection if the models are 

developed from scratch for a wide range of infectious diseases. Therefore, it is crucial to 

establish methodologies for each infectious disease with similar elements, and then adapt them 

promptly when an epidemic occurs. 
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Many viral infections, such as the human immunodeficiency virus disease (HIV)/acquired 

immunodeficiency syndrome), severe acute respiratory syndrome (SARS), highly pathogenic 

avian influenza H5N1, influenza H1N1-2009, Zika fever, Ebola hemorrhagic fever, and 

coronavirus disease 2019 (COVID-19) have become public health problems in recent years. In 

public health, several problems exist in controlling viral infections. Whereas most bacterial 

infections can be treated using antimicrobial agents, viral infections can only be treated using 

antiviral agents for selected viruses, such as hepatitis B, HIV, and influenza. In addition, except 

for diseases for which antigen and antibody tests have been established, polymerase chain 

reaction and viral culture are often required for a definitive diagnosis, which are difficult to 

perform in clinical settings owing to economic and personnel reasons. For the same reason, 

adequate surveillance is often not performed. When using a mathematical model for viral 

infections, a model that considers factors such as drug treatment, diagnosis, surveillance, 

transmission route, and vaccine must be considered to estimate the number of potentially 

infected people and risks. 

 

In this study, two viral infections with different characteristics were formulated and their 

epidemic dynamics and risks quantitatively evaluated. Chapter 1 provides an assessment of the 

risk of cytomegalovirus (CMV), which can cause congenital diseases when transmitted from a 

mother to a child. Chapter 2 presents an evaluation of the risk of yellow fever as a vaccine-

preventable travel infectious disease.   



13 

 

Chapter 1  Time-dependent risk of cytomegalovirus infection in Japan 
 

Introduction 

Cytomegalovirus (CMV) is a double-stranded DNA virus belonging to Betaherpesvirinae. CMV 

infections occur primarily during infancy or adolescence, and a substantial fraction of these 

infections are asymptomatic. As observed in infections involving other herpesviruses, latent 

infection can continue over a person’s lifetime. Infections can cause infectious mononucleosis 

and hepatitis, including among immunocompetent individuals (Kenneson and Cannon, 2007). 

Premature babies and patients with primary immunodeficiency disease who have undergone 

transplantation or have acquired immunodeficiency syndrome are particularly susceptible to viral 

reactivation, which can trigger opportunistic infections, such as retinitis, pneumonia, hepatitis, 

and myocarditis (Kenneson and Cannon, 2007).  

 

Once CMV infection or reactivation occurs in a pregnant woman, the virus is transferred from 

the mother to the fetus through the placenta with high probability, thereby resulting in congenital 

CMV infection. It has been estimated that 1%–4% of antibody-negative pregnant women 

experience their first CMV infection during pregnancy, and that 33%–40% of infections in these 

seronegative women involve their fetus (Stagno and Whitley, 1985). Some of these fetal 

infections (10%–15%) are clinically relevant, as revealed by low birth weight, premature birth, 

jaundice, purple skin splotches and/or rash, hepatosplenomegaly, and thrombocytopenia (Stagno 

and Whitley, 1985). Moreover, 90% of clinically relevant congenital CMV infections and 10%–

15% of asymptomatic congenital infections involve sequelae (after effects), including 

neurological abnormalities such as hearing loss, mental retardation, and visual disability (Stagno 

and Whitley, 1985; Ogawa et al, 2007). Hearing loss is characteristic of CMV infections, and it 

constitutes 15% of all cases of severe hearing loss at the minimum (Ogawa et al, 2007).  

 

The frequency of post-infection disability attributable to congenital CMV infection is estimated 

to be 10 among 10,000 live births in Japan (Azuma et al, 2010; Taniguchi et al, 2014; Hirota, 

1992), a rate comparable to the frequency of trisomy 21 (i.e., Down syndrome), which is 

estimated to be 9.6 per 10,000 births. Nevertheless, the infection is primarily asymptomatic; this 

implies that its timely laboratory testing is difficult, and few methods exist that can confirm the 

causality of any apparent disability originating from CMV infection. Hence, a substantial number 
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of CMV-associated disabilities have been overlooked. Considering that the transmission of CMV 

is potentially associated with socioeconomic status (Dowd et al, 2009), epidemiological 

monitoring of the frequency of infection and its variations as a function of time due to time-

varying economy is critical.  

 

Recently, a decline in the proportion of people who are CMV antibody-positive has been 

observed in several countries, including Japan (Azuma et al, 2010, Taniguchi et al, 2014; 

Almeida et al, 2001; Colugnati et al, 2007; Fang et al, 2009; Griffiths et al, 2001). This decline 

implies that the risk of congenital infection may have increased among women of childbearing 

age. Paradoxically, the decline in the force of infection may render pregnant women, who are 

supposed to be immune to CMV, susceptible to primary infection during pregnancy owing to the 

reduced frequency of infection during childhood. To obtain more information regarding this 

phenomenon, the time-dependent transmission dynamics of CMV infection in Japan was 

quantified in this study by analyzing seroepidemiological datasets for pregnant women. 

 

Materials and Methods 

Epidemiological data 

Published seroepidemiological data obtained from 1996 to 2009 in Japan were used in the 

present study (Azuma et al, 2010). The prevalence of anti-CMV IgG antibodies was assayed 

using serum samples from five cord-blood banks in Sapporo, Tokyo, Osaka/Kyoto, Okayama, 

and Fukuoka. Maternal serum samples were obtained from pregnant women who agreed to store 

their cord blood prior to delivery or operation, and maternal serum samples were examined for 

antibody prevalence. From 1996 to 2007, the particle agglutination method was employed to 

measure anti-CMV IgG antibodies, except in Kyoto and Sapporo, where the enzyme 

immunoassay (EIA) method was employed until 2002, after which it was replaced by 

microparticle EIA from 2003 to 2007. In 2008 and 2009, all sites were analyzed using 

chemiluminescence EIA. A total of 22,100 serum samples were examined (Azuma et al, 2010). 

The ages of the sampled mothers were not available. However, the mothers’ age at delivery can 

be obtained from the annual census of Japan. Hence, in addition to the seroprevalence data, we 

extracted the maternal age distribution for childbirth from 1996 to 2009 from the Vital Statistics 

of Japan (Ministry of Health, Labour and Welfare, Japan (MHLW), 1980-2009). 
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Mathematical model 

The observed seropositive fraction represents the maternal antibody data as a function of time. In 

this study, we employed a mathematical model to capture the time-dependent transmission 

dynamics of CMV from seroprevalence data. Let S(a, t) be the fraction of susceptible individuals 

at age a and year t. Assuming that every individual is susceptible to CMV and by disregarding 

maternal antibodies, we have the boundary condition S(0,t) = 1 for any t. Using the force of 

infection λ(a, t), i.e., the rate at which susceptible individuals experience infection, which 

depends on age a and year t, the susceptible individuals are reduced, as follows: 

(
𝜕

𝜕𝑎
+

𝜕

𝜕𝑡
) 𝑆(𝑎, 𝑡) = −𝜆(𝑎, 𝑡)𝑆(𝑎, 𝑡) (1)  

The force of infection is typically modeled as a function of the prevalence of infection in the 

population. We do not decompose the force of infection but assume that the force of infection 

can vary with time and age. Namely, we assume that the force of infection is separable into age 

and time components and that the force of infection is age independent, as is assumed in the 

tuberculosis model (Rieder, 2005), i.e.,  

𝜆(𝑎, 𝑡) = 𝑓(𝑎)𝜆(𝑡) (2)  

Moreover, 

𝜆(0, 𝑡 − 𝑎) = 𝜆(𝑎, 𝑡 − 𝑎) = 𝜆(𝑡 − 𝑎) (3)  

Namely, λ(a,t) = λ(t). Integrating both sides of Eq. (1), we obtain 

𝑆(𝑎, 𝑡) = 𝑆(0, 𝑡 − 𝑎) exp (− ∫ 𝜆(𝑠) 𝑑𝑠
𝑡

𝑡−𝑎

) = exp (− ∫ 𝜆(𝑠) 𝑑𝑠
𝑡

𝑡−𝑎

) (4)  

Parametrically modelling λ(t) as an exponentially decreasing function with year t, i.e., 𝜆(𝑡) =

𝜆0𝑒𝑥𝑝(−𝛽𝑡), we have 

𝑆(𝑎, 𝑡) = exp (− ∫ 𝜆0exp(−𝛽𝑠) 𝑑𝑠
𝑡

𝑡−𝑎

), (5)  

where λ0 and β are parameters to be estimated. Let b(a,t) be the relative frequency of live births 

as a function of age a in year t. The expected probability of seropositivity is modeled as 
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𝑝(𝑡) = ∫ 𝑏(𝑎, 𝑡){1 − 𝑆(𝑎, 𝑡)} 𝑑𝑎
∞

0

 (6)  

in year t.  

 

To quantify the force of infection, a likelihood-based approach is employed. For mt positive 

women among the total serum samples obtained from nt women in year t, the likelihood function 

for estimating parameter θ is modeled as 

𝐿(𝜃: 𝒏, 𝒎) = ∏ (
𝑛𝑡

𝑚𝑡
)

2009

𝑡=1996

𝑝(𝑡 − 𝑡0)𝑚𝑡(1 − 𝑝(𝑡 − 𝑡0))
𝑛𝑡−𝑚𝑡

 (7)  

The t0 is set to 1950 as the starting point for calendar time. The 95% confidence intervals (CIs) 

are computed using the full likelihood. In the sensitivity analysis, not only the entire Japan 

estimate but also the force of infection is estimated based on the geographic location of the cord 

blood bank. 

 

Once the unknown parameters are estimated, the mothers at risk of infection in year t is 

calculated as follows: 

𝐵(𝑡) ∫ 𝑏(𝑎, 𝑡)𝑆(𝑎, 𝑡) 𝑑𝑎
∞

0
, (8)  

where B(t) represents the total number of live births in year t. Similarly, the expected number of 

live births with CMV infection, q(t), is calculated as follows: 

𝑞(𝑡) = 𝐵(𝑡) ∫ 𝑏(𝑎, 𝑡)𝑆(𝑎, 𝑡) {1 − exp (− ∫ 𝜆0exp(−𝛽𝑠) 𝑑𝑠
𝑡

𝑡−𝜃
)} 𝑑𝑎

∞

0
, (9)  

where θ is the gestational week in a year at risk of congenital CMV infection, which was 

assumed to be 16/52 in this study.  

Results 

Based on 22,100 samples, 16,191 were identified as positive, with the sample proportion 

estimated to be 73.3% (95% CI: 72.7, 73.8). As a function of time, the highest proportion of 

positive cases was estimated to be 82.5% in 1996 and the lowest to be 70.3% in 2004. Figure 1A 

shows the observed sample proportion as a function of time. By linearly regressing the sample 
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proportion by year, the seropositive fraction appeared to have decreased annually by 0.7% (p < 

0.001).  

 

The assumed parametric function for the force of infection, i.e., 𝜆(𝑡) = 𝜆0𝑒𝑥𝑝(−𝛽𝑡), captures 

the approximate observed time trend for the seropositive fraction (Figure 1A). λ0 was estimated 

to be 0.15 (95% CI: 0.10, 0.20), and the exponential decrease rate β was 0.024 (95% CI: 0.017, 

0.030). Figure 1B shows the reconstructed force (hazard) of infection among the susceptible 

individuals by year. A monotonically decreasing trend was observed in the force of infection, 

and a decrease of 0.04 to 0.03 per year from 1996 to 2009 was observed. In a stationary 

population, a decline indicates that the average age at infection is elevated from 1/0.04 = 25.0 

years to 1/0.03 = 33.3 years during the study period. 
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Figure 1. Seroepidemiological trends in anti-cytomegalovirus (CMV) antibodies among 

pregnant women in Japan over time. A. Observed (dot) and estimated (line) proportion of 

pregnant women positive for cytomegalovirus (CMV)-IgG antibodies in Japan. Black dots 

represent observed proportions from 1996 to 2009. Solid line represents estimated proportion from 

1980 to 2009, with upper and lower 95% confidence intervals shown as dashed lines. B. Estimated 

force of infection (FOI) for CMV in Japan. Two dashed lines represent upper and lower 95% 

confidence intervals as computed based on profile likelihood. Annual CMV FOI (vertical axis 

unit) is shown.  



19 

 

Figure 2A shows the age-specific immune fractions for people by year (1980, 1990, 2000, and 

2009). A rightward shift was observed in the age-dependent seroprevalence curve, which 

reflected a time-dependent decline in the force of infection. In the period from 1980 to 2009, the 

median age of infection was elevated from 10.0 to 19.7 years. This delay in infection was 

overlaid with a delay in childbirth age, as shown in Figure 2A. In the period from 1980 to 2009, 

the mode for the maternal age of live births increased from 26 to 29 years. Would this age shift 

prevent an increased risk of CMV infection among pregnant women? The answer is no, as shown 

in Figure 2B. Whereas the total number of births has declined steadily in Japan, the estimated 

number of live births at risk of CMV infection increased over time. In 2009, at least 0.3 million 

women were considered to have been at risk of CMV infection during the perinatal period. In 

1996, the estimated number of pregnant women at risk was 268,000, but the figure increased 

continuously over time. The estimated total number of congenital CMV infection events was 

3,124 in 1996, which decreased to 2,726 in 2009. 
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Figure 2. Estimated populations at risk of CMV infection in Japan. A. Comparison of age-

specific frequency of live births and age-dependent proportion of immune individuals. Using time-

dependent force of infection mathematical modelling described in Methods section, immune 

fraction was computed for years 1980, 1990, 2000, and 2009. B. Comparison of time trends 

between total number of live births (bold line) and number of live births at risk of contracting 

CMV infection. Solid line represents maximum-likelihood estimate, and dashed lines represent 

lower and upper 95% confidence intervals (CIs), as computed using bootstrap method. 
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Figure 3 shows a comparison of the time-dependent patterns of the estimated force of infection 

against the different geographic locations of cord blood banks in Japan. Although a time-

dependent decline was observed in Hokkaido and Fukuoka, the decline rate of the force of 

infection was lower in Tokyo. The estimates varied widely depending on the geographic 

location. The increased range of the force of infection in 2009, as compared with those in earlier 

years, indicates that geographic heterogeneity has likely increased. 
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Figure 3. Force of infection (FOI) comparison for CMV in multiple Japanese cities from 1996 

to 2009. Maximum-likelihood estimates for Hokkaido, Tokyo, Osaka/Kyoto, and Fukuoka are 

compared. Annual CMV FOI (vertical axis unit) is shown.  
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Discussion 

In the present study, the time trend for the force of infection in Japan was examined by analyzing 

the seroprevalence survey data from pregnant women as a function of time. By employing a 

mathematical model and using the maternal age distribution of childbirth from Japanese vital 

statistics, we computed the probability of seropositivity among pregnant women by year. By 

fitting the computed probability to the observed seropositive data, we showed that the observed 

decline in the proportion of CMV-positive pregnant women mirrored the steadily declining force 

of infection over time. 

 

To the best of our knowledge, the present study is the first to demonstrate the decline in the 

prevalence of CMV infection over time in Japan. Notably, the estimate was obtained using data 

from blood samples from pregnant women only. Numerous published epidemiological studies  

indicated that the seroepidemiological characteristics of CMV have changed over time and age 

(e.g., studies in the USA (Colugnati et al, 2007) and China (Fang et al, 2009), and a 

mathematical modeling study that investigated the risk of infection at the population level in 

Brazil (Almeida et al, 2001)). A possible age shift for CMV infection was discussed in some 

modeling studies (Almeida et al, 2001; Fang et al, 2009), including those focusing on future 

vaccination against the disease (Almeida et al, 2001; Hogea et al, 2015; Lanzieri et al, 2014; 

Azevedo and Amaku, 2011). Our study results enrich the literature by demonstrating that the age 

at which CMV infection is acquired increased naturally over time, a trend that we successfully 

reconstructed using serum samples from pregnant women only. The exact reasons for this 

decline remain ambiguous; however, considering that CMV is transmitted through direct contact 

and via the environment, reduced physical contact over time and improved hygienic conditions 

may contribute to the observed phenomena. Although regional variations were reflective of 

sampling errors, the slower infection decline in Tokyo compared with the other three cities is 

consistent with the notion of improved hygiene. Compared with other cities, Tokyo has been 

urbanized for a longer period. 

 

We focused on the fact that the age at childbirth has increased over time, in addition to a 

monotonic decline in the total number of live births (Vyse et al, 2009). Despite the declining 

birth rate, we demonstrated that the age of CMV infection has increased over time, in addition to 
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the population size of women at risk of CMV infection. In fact, as many as 0.3 million newborn 

in Japan each year will be susceptible to CMV infection during the perinatal period, indicating 

the importance of continuous age of infection monitoring based on the childbearing age of 

women. The average age at infection has reached the childbearing age. It is noteworthy that the 

age at infection can increase further to approximately 30 years, which is the ongoing mean age at 

child delivery. Additionally, vaccination can results in a further increase in the age at infection. 

 

Our study exhibited some limitations. First, we employed an age-independent assumption for the 

force of infection, which was necessary because the empirical data did not provide any 

information regarding the age element. We adjusted the age-dependent frequency of childbirth 

explicitly because, in this context, age was considered an important element for regulating the 

transmission dynamics of CMV (Boven et al, 2017). Continual monitoring of pregnant women 

and stratifying them into multiple age groups would allow for a more accurate estimation in 

future studies. Second, an exponential model was employed to parametrically capture the time 

trend of the force of infection. As shown in Figure 1A, we could not obtain any additional insight 

(e.g., more detailed parametric functions) from the data pertaining to the time-dependent 

element. Hence, observations for a longer period are required. Third, the anti-CMV IgG assay 

results were based on different laboratory testing procedures from 1996 to 2007; however, we 

analyzed the data collectively because we did not identify any considerable differences in the 

observed seroprevalence values arising from the different testing methods. However, in the 

sensitivity analysis, we successfully examined the geographic heterogeneity in the force of 

infection. Fourth, the fixed cut-offs used in serological assays might have resulted in the 

underestimation of seropositive individuals. As indicated previously, although a fixed cut-off can 

ensure a high sensitivity, specificity might be sacrificed (Kafatos et al., 2016). 

 

Considering that the force of infection declined naturally, the effect of introducing mass 

vaccination to children and women for targeted vaccination policies on the outcome of overall 

infections and congenital CMV infections should be investigated based on different settings for 

both CMV (Hogea et al, 2015; Lanzieri et al, 2014; Azevedo and Amaku, 2011) and other 

infectious diseases (Mossong et al, 2004; Mossong et al, 2008; Fernandes et al, 2009; Bollaerts et 
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al, 2017). Reconstructing the time- and age-specific patterns for immune individuals in the 

population would facilitate the design of an object-oriented vaccination program. 
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Chapter 2 Elevated risk modeling of yellow fever among travelers 

visiting Brazil in 2018 
 
Introduction 

Yellow fever virus (Flavivirus) causes yellow fever, which is transmitted human to human via 

the Aedes mosquito species (Monath, 2001). In addition to the human–mosquito–human 

transmission cycle, nonhuman primates can be infected with the virus, and such a transmission 

cycle has been reported to be the cause of continued transmission in Brazil (Dexheimer et al, 

2018; Fernandes et al, 2017; Moreira-Soto et al, 2018). Exposure to this virus primarily results in 

asymptomatic infection; however, some patients develop fever, headache, chills, muscle pain, 

nausea, and vomiting following an incubation period of 3–6 days (Monath, 2001). If 

exacerbated, the case fatality risk (CFR) of a severe clinical disease is 47% (i.e., from 40% to 

80% (Johansson et al, 2014)), and no specific treatment is available. In this regard, immunization 

is the mainstream countermeasure (Wisseman et al, 1962). Residents of high-risk areas and 

travelers visiting those areas are advised to be vaccinated.  

 

The yellow fever epidemic in Brazil from December 2016 to June 2017 involved 777 confirmed 

cases among Brazilian residents, and the CFR was estimated to be 34%, with 261 deaths (Pan 

American Health Organization (PAHO), 2018). Whereas the end of the epidemic was declared in 

September 2017, sporadic cases continued, and a surge of cases began in December 2017 (World 

Health Organization (WHO), 2018). On January 16, 2018, the World Health Organization 

recognized the ongoing epidemic and recommended vaccination among all residents of Rio de 

Janeiro and São Paulo, and a vaccination campaign targeting Bahia, Rio de Janeiro, and São 

Paulo was ordered by the government of Brazil (World Health Organization (WHO), 2018a). As 

of June 8 2018, 1257 confirmed cases and 394 deaths have been reported (Ministerio da Saude, 

Brazil, 2018). 

 

Whereas no imported cases were reported during the epidemic from 2016 to 17, multiple 

importation events were reported during the epidemic from 2017 to 18. As of June 8, 2018, 12 

imported cases have been reported in eight different countries since December 2017 (Ministerio 

da Saude, Brazil, 2018; Gossner et al, 2018). To observe multiple importation events, the 

epidemic in 2017–2018 that involved Rio de Janeiro and São Paulo can be analyzed since it 
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comprised more cases than those in 2016–2017 (Possas et al, 2018). The aim of this study was to 

quantify the risk of infection among travelers visiting Brazil in 2018. 

 

Materials and Methods 

Epidemiological data 

To estimate the risk of yellow fever among travelers, we analyzed both confirmed cases in Brazil 

from 2017 to 2018 (Ministerio da Saude, Brazil, 2018) and imported cases reported abroad. As 

of May 8, 2018, three imported cases were reported from Chile, three from Argentina, and one 

each from the Netherlands, Switzerland, France, the United Kingdom, Romania, and Germany 

respectively(World Health Organization (WHO), 2018b; World Health Organization (WHO), 

2018c; Gossner et al, 2018; Weigand, 2018). The imported cases involved the citizens of the 

reported countries, and they were regarded as imported owing to travel to Brazil. Except for 

cases from the Netherlands and France and one case in Argentina, the imported cases involved a 

history of visits to Ilha Grande, municipality of Angra do Reis, State of Rio de Janeiro, Brazil 

(WHO, 2018b). 

 

Mathematical model 

To calculate the expected risk of importation, the inbound travel volume ci from each country i to 

Brazil was retrieved from the World Tourism Organization (UNWTO, 2017). In addition, we 

used the relative value of the gross domestic product (GDP) per capita, gi, of country i, which 

was normalized by the maximum GDP in 2016 for imputation of vaccination coverage (see 

below) (Central Intelligence Agency, 2017). This imputation was validated partially via a 

statistical analysis of the association between GDP per capita and importation risk by country. 

After confirming that the variance between the two groups was not significantly different via the 

F-test, we employed the Student’s t-test to compare the GDP per capita between countries with 

and without imported cases. Moreover, the vaccination coverage vi of country i in 2015 was 

retrieved partially from a published study (Shearer et al, 2017).  

 

Following Dorigatti et al. (Dorigatti et al, 2017), we modeled the expected number E(ci) of 

imported yellow fever cases ci in country i as follows: 
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𝐸(𝑐𝑖)  = 𝑛𝑖(1 − 𝑣𝑖)𝑞𝑖

𝑝𝑜𝑝𝑠

𝑝𝑜𝑝𝑏

𝑐𝑠

𝑝𝑜𝑝𝑠

𝜇𝐸 + 𝜇𝐼

𝑤
∑ 𝑓𝑠𝑝𝑠,

12

𝑠=1

 (10)  

 

where ni is the yearly inbound number of travelers visiting Brazil from country i; vi is the 

vaccination coverage; qi represents the relative risk of infection among travelers from country i, 

which we would like to estimate; pops and popb represent the population sizes of the three major 

states of the 2017–2018 epidemic (Minas Gerais, Rio de Janeiro, and São Paulo) and the entire 

Brazilian population, respectively (pops = 81,230,574 and popb = 202,768,562). The number of 

confirmed yellow fever cases in the affected states is denoted as cs. We did not use the 

undiagnosed factor of 10, which was adopted elsewhere (Johansson et al, 2014; Dorigatti et al, 

2017), because we estimated the expected number of confirmed imported cases abroad. w is the 

mean length of stay in Brazil (w = 17 days); fs and Ps are the normalized monthly frequency of 

cases and volume of travelers in month s, respectively (fs from December 2017 to March 2018 

accounted for 98.4%, and Ps during the same period was 47.6% of the total). Although not 

specified in Eq. (10), month s was integrated from December 2017 to March 16, 2018, and 

censoring in March was incorporated by accounting for the number of days (16/31). μE and μI 

represent the mean latent and infectious periods, respectively, assumed as 4.6 be 4.5 days, 

respectively. It is noteworthy that Eqs. (10) is intact, including when the 

unascertained/asymptomatic fraction of cases is considered. Assuming that the confirmation 

probability among all infected individuals is α, both sides of Eq. (10) are divided by α to express 

all terms as the total number of infected individuals, and the constant 1/α is cancelled out from 

both sides.  

 

Unlike some previous calculations (Dorigatti et al, 2017; Tsuzuki et al, 2017), we disregarded 

the stochasticity of the lengths of latent and infectious periods for simplicity. We define 

𝑚𝑖(𝑞𝑖) ∶=
𝐸(𝑐𝑖; 𝑞𝑖)

1 − 𝑣𝑖
 (11)  

Subsequently, we employ the zero-inflated Poisson distribution to describe the observed 

frequency of imported cases in country i, as follows: 
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ℎ(𝑋 = 𝑗; 𝑞𝑖) = {

𝑣𝑖 + (1 − 𝑣𝑖)𝑒𝑥𝑝(−𝑚𝑖(𝑞𝑖)), 𝑖𝑓 𝑗 = 0

(1 − 𝑣𝑖)
𝑒𝑥𝑝(−𝑚𝑖(𝑞𝑖))𝑚𝑖(𝑞𝑖)

𝑗

𝑗!
, 𝑖𝑓 𝑗 > 0

  (12)  

 

The mean number of imported cases based on Eqs. (12) is expressed as E(ci) = (1 − vi) mi (qi). 

With respect to vaccination coverage vi among travelers from country i, we model it as 

𝑣𝑖 = {

𝑢𝑖 , if vaccination coverage available

𝑘

1 + 𝑒𝑥𝑝(−𝑔𝑖)
, if vaccination coverage is unavailable

  (13)  

 

We adopted the logit transformation because it does not require additional parameters. The 

estimated vaccine coverage in some routinely immunized countries is available in a published 

study (Shearer et al, 2017). Countries with known vaccination coverage include Trinidad and 

Tobago, Panama, Argentina, Colombia, Suriname, Peru, Venezuela, Ecuador, Paraguay, Guyana, 

Bolivia, Angola, Nigeria, Ghana, and Kenya. When information regarding vaccination coverage 

was unavailable, we extrapolated the vaccination coverage in country i. Considering that only a 

small fraction of travelers are vaccinated in those countries, k was assumed to be 0.10, which is 

the carrying capacity of the logistic distribution and is practically interpreted as the theoretical 

maximum of the vaccination coverage. gi is the relative GDP per capita of country i compared 

with the country with the highest GDP per capita, as stated above. For the second case in Eq. 

(13), i.e., when vaccination coverage is unavailable, we imposed the assumption that, if no 

routine immunization is implemented, then a maximum of 10% of travelers visiting Brazil will 

have received vaccination, and that the coverage reflects a logit transformation of the relative 

GDP per capita. As the ceiling of coverage k is an influential parameter, we varied it from 0.01 

(1%) to 0.90 (90%) in the sensitivity analysis. 

 

We estimated qi by the list of countries, i.e., by the first- and second-half of GDP per capita, 

because the propensity to visit high-risk areas of infection, which coincided with a resort area in 

the ongoing epidemic (Gossner et al., 2018; World Health Organization [WHO], 2018b), might 

vary with the extent of wealth of that particular country. qi is modeled as 
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𝑞𝑖 = {
𝑎𝑞, if GDP 𝑝𝑒𝑟 𝑐𝑎𝑝𝑖𝑡𝑎 of country 𝑖 is higher than median

𝑞, if GDP 𝑝𝑒𝑟 𝑐𝑎𝑝𝑖𝑡𝑎 of country 𝑖 is lower  than median
,  (14)  

where q is the relative risk of infection among travelers visiting from countries with the second-

half of the GDP per capita, as compared with that from the assumption that the travelers’ 

destination is randomly determined based on the regional population size of Brazil. Meanwhile, a 

is the relative risk of importing yellow fever among wealthier countries compared with the 

remainder with risk q. 

 

For the observed counts of imported cases, c, written as a vector representing the input from all 

countries at risk of infection, the maximum likelihood estimates of a and q were obtained by 

minimizing the negative logarithm of the following likelihood: 

𝐿(𝑎, 𝑞; 𝐜) = ∏ ℎ(𝑐𝑖)

𝑖

  (15)  

 

The 95% confidence intervals (CIs) were computed using the profile likelihood. 

 

Results 

Figure 4 shows the curve of the 2017–2018 epidemic in Brazil as a function of the report week  

(Ministerio da Saude, Brazil, 2018). The highest incidence was reported in Week 3 of 2018, 

followed by a monotonic decline in incidence. Subsequently, the incidence declined significantly 

by Week 17, 2018. Figure 5 shows a comparison of GDP per capita by country with and without 

imported cases. The GDP per capita of countries with imported cases (n = 8) was 40,213 US 

dollars (95% CI: 25,614, 54,811), whereas that of countries without imported cases and with 

direct flight links from Brazil (n = 78) was 26,368 US dollars (95% CI: 21,593, 31,043). It was 

observed that the GDP per capita of countries with imported cases was significantly greater than 

those without (t = 2.34, p = 0.04, Student’s t-test).  
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Figure 4. Weekly incidence of yellow fever cases in Brazil from 2017 to 2018. Weekly count 

of confirmed cases displayed as a function of report week (Ministerio da Saude, Brazil, 2018). 

Highest incidence was reported on Week 3 of 2018. 
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Figure 5. Comparison of gross domestic product (GDP) per capita by importation of yellow 

fever during 2017–2018 epidemic (n = 86). 

GDP per capita is compared between countries with and without imported cases (n = 8 and 78, 

respectively) in our analysis. Bold mid-line in hinges represents median value. Lower and upper 

hinges correspond to first and third quartiles, respectively. Upper whisker extends from hinge to 

highest value that does not exceed 1.5 times the interquartile range; lower whisker extends from 

hinge to smallest value that does not exceed 1.5 times the interquartile range.  
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A total of 12 imported cases were reported in 8 different countries (Fig. 6a). The remaining 78 

countries with inbound data for Brazil were included in the analysis. The known vaccinated 

fractions were as follows: Trinidad and Tobago (0.96), Panama (0.73), Argentina (0.94), 

Colombia (0.91), Suriname (0.89), Peru (0.90), Venezuela (0.87), Ecuador (0.78), Paraguay 

(0.80), Guyana (0.95), Bolivia (0.89), Angola (0.80), Nigeria (0.74), Ghana (0.89), and Kenya 

(0.78). Assuming k = 0.10, travelers from the wealthier fraction of countries were a = 2.3 (95% 

CI: 0.7, 8.6) times more likely to be infected with yellow fever compared with those from 

countries whose GDP per capita was below the median. Compared with the assumption that the 

risk of infection was governed by the population size of the epidemic location (i.e., three states 

with a substantial number of cases) relative to the entire Brazilian population ((i.e., Eq. (10) with 

q = 1.0) (Central Intelligence Agency, 2017), countries whose GDP per capita was below the 

median indicated q = 2.5 (95% CI: 0.8, 5.9) times greater risk of yellow fever.  

 

Figure 6b shows the results of the sensitivity analysis. Varying an uncertain parameter k, i.e., the 

possible maximum value of the vaccination coverage among travelers from countries without 

routine immunization against yellow fever, did not significantly affect the estimated qi. The 

relative risk of yellow fever among wealthier countries compared with countries with the second-

half of GDP per capita ranged from 2.1 (with k = 0.01) to 3.4 (with k = 0.90). In addition, 

compared with the random assignment of travelers’ destination based on the relative population 

size of states, countries whose GDP per capita was below the median indicated q = 2.5 (k = 0.01) 

to 2.8 (k = 0.90) times greater risk of yellow fever. 

 

  



34 

 

 

 

Figure 6. Risk of yellow fever among travelers visiting Brazil. a Observed distribution of 

number of imported cases of yellow fever from Brazil. As of May 8, 2018, 12 cases were 

diagnosed in 8 countries. Four or more imported cases were not reported in any country. b 

Sensitivity of relative risk of yellow fever among travelers to assumed maximum vaccination 

coverage (horizontal axis). Vertical axis represents relative risk of importation among countries 

whose GDP per capita was above the median compared with that of remaining countries. Filled 

circles represent maximum likelihood estimates, and whiskers extend to upper and lower 95% 

confidence intervals as computed from profile likelihood. Horizontal gray line indicates value of 

1.0. 
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Discussion 

Unlike the 2016–2017 epidemic in Brazil, which occurred primarily in the states of Minas Gerais 

and Espirito Santo, the 2017–2018 epidemic involved primarily São Paulo and Rio de Janeiro, 

which resulted in multiple international disseminations of imported cases. To identify the factors 

that contributed to this phenomenon and develop possible countermeasures, the distribution of 

imported cases from Brazil was investigated in the present study. Using a statistical model, we 

identified the risk of imported cases, jointly estimated the relative risk of travelers based on the 

extent of wealth (or GDP per capita), and compared the relative difference with the random 

assignment of travelers’ destinations within Brazil. The results show that wealthier travelers 

were indicated 2.1–3.4 times greater risk of infection compared with the others. Moreover, 

among countries with the lower half of the GDP per capita, the risk was 2.5–2.8 times greater 

than that based on the assumption that the relative risk within Brazil is determined by the 

regional population size.  

 

The two main contributions of this study are as follows: First, we showed that countries with a 

wealthier GDP per capita had a higher rate of infection. This finding is consistent with the fact 

that imported cases originated from a vacation locale in Ilha Grande, municipality of Angra do 

Reis, State of Rio de Janeiro (Ministerio da Saude, Brazil, 2018; Gossner et al, 2018). 

Furthermore, it indicates that travelers’ local destination and behavior are likely to be key 

determinants of the heterogeneous risk of importing cases. Therefore, it is advisable to inform 

travelers of the ongoing geographic foci of transmission. If visits to tourist destinations with a 

history of imported cases are inevitable, then travelers are urged to receive vaccination in 

advance. 

 

Second, we discovered that non-wealthy countries indicated 2.5–2.8 times greater risk of 

importing yellow fever cases compared with the typical modeling assumption (i.e., q = 1.0 in Eq. 

(10)) that the destination-specific risk of infection is proportional to the population size of the 

destination relative to the entire country. In Brazil, the major tourist destinations for international 

travelers are São Paulo and Rio de Janeiro. To precisely estimate the risk of infection among 

travelers, travel patterns in Brazil should be monitored more comprehensively. A significant 

challenge in achieving the precise estimation of risk in the future would be the quantification of 
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such risks on a finer spatial scale using limited mobility information among travelers.  

 

This study exhibited four limitations: First, the notification of yellow fever cases was biased by 

the extent of the ascertainment. Hence, although we discovered that travelers from countries with 

a greater GDP per capita were at a greater risk of yellow fever, this finding only partially 

reflected the better ascertainment of cases in wealthier countries compared with the remaining 

countries. Second, we were unable to account for the spatial risk of infection on a finer scale. As 

of May 8, 2018, transmission has not been established within the city of Rio de Janeiro (Couto-

Lima et al, 2017); hence, such risks must be communicated with greater precision using a risk 

map, as published elsewhere (Shearer et al, 2018; Garske et al, 2014; Hamlet et al, 2018; 

Nishiura et al, 2018). Third, vaccination coverage among travelers from countries without 

routine yellow fever immunization was assumed to be proportional to the GDP per capita. In the 

present study, our estimates were not sensitive to the ceiling of vaccination coverage, k; hence, 

the abovementioned assumption must be validated based on empirical observations in the future. 

Fourth, the lower confidence bound of our relative risk estimates was less than 1 (e.g., with k = 

0.10, the lower 95% CI of a was 0.6), and the sample size was not substantial. This was due to 

the limited number of countries with imported yellow fever cases. Using a larger sample size in 

future follow-up studies would reduce the uncertainties and hence further support our 

conclusions. 

 

The abovementioned future tasks should be considered to achieve a finer estimation of the 

infection risk among travelers. However, in our study, we successfully quantified the relative risk 

of infection based on the GDP per capita as well as compared it with the risk associated with the 

population-size-specific assumptions of travelers’ destinations. Microgeographic information 

regarding imported cases should be effectively disseminated among travelers for communication 

and prevention purposes. 
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Conclusion 

This study has developed mathematical models and risk assessments for two viral infections 

with different characteristics. 

 

Chapter 1 provided an assessment of the risk of CMV among pregnant women in Japan. Data 

from the seroprevalence survey among pregnant women were analyzed as a function of time, 

and seropositivity among pregnant women was calculated by year. By fitting the computed 

probability to the observed seropositive data, we showed that the observed decline in the 

proportion of CMV-positive pregnant women mirrored the steadily declining force of 

infection over time. Owing to the elevated age at infection, pregnant women were exposed to 

a high risk of congenital CMV infections in Japan. Although routine testing for CMV 

infection in pregnant women is not currently recommended in Japan, the risk of infection 

during pregnancy may increase in the future, as shown in this study; hence, a system that can 

establish appropriate surveillance data should be developed. 

 

Chapter 2 presented an evaluation of the risk of yellow fever about the outbreak in Brazil, 

2018.  Travelers from wealthier countries were at an elevated risk of yellow fever, thereby 

allowing us to speculate that travelers’ local destination and behavior are likely to be key 

determinants of the heterogeneous risk of importation. Travelers should be informed of the 

ongoing geographic foci of transmission. If visits to tourist destinations with a history of 

imported cases are inevitable, then travelers are urged to receive vaccination in advance. For 

viral infections such as yellow fever, for which no effective drug treatment is available other 

than vaccines, it is necessary to accurately assess the risk, recommend vaccination, and 

educate people regarding behaviors that will expose them to the risk of infection. 

 

The most common basic mathematical model that captures the epidemic dynamics of 

infectious diseases that are transmitted directly from person to person is called the SIR 

model. It divides the population into three compartments, susceptible, infectious, and 

removed/recovered, according to the stage of infection, and models the temporal changes in 

the state of infection. The SIR model and its analogs are characterized by high robustness and 
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can be easily extended and modified according to various situations and characteristics. The 

model in chapter 1 of this study is based on the SI model, which is an analog of the SIR 

model. These models can be applied not only to pandemic diseases such as SARS, MERS, 

and COVID-19, but also to infections that progress very slowly, such as HIV, and to 

infections that have different transmission routes from other infections, such as sexually 

transmitted diseases and mosquito-borne diseases. It has become common to fit these 

mathematical models to the observed data and estimate the parameters in recent years. By 

fitting these mathematical models to observed data, it has become possible to estimate the 

basic reproduction number (the number of secondary cases which one case would produce in 

a completely susceptible population) and the effective reproduction number (the expected 

number of secondary cases arising from a single primary case at calendar time t) in real-time. 

By estimating them, it has become possible to quantify the prevalence of infectious diseases, 

assess risks, make predictions, and objectively evaluate the effects of interventions. In 

addition, maximum likelihood estimation has been the most common parameter estimation 

method, but with the improvement of computer performance, Bayesian estimation 

represented by Markov Chain Monte Carlo method, and machine learning estimation 

methods are used and are expected to be further developed in the future.  

 

However, sufficient observational and epidemiological data are not always available for all 

infectious diseases from the beginning. COVID-19, a global pandemic since 2020, initially 

lacked adequate observational and epidemiological data, but as a result of repeated 

epidemiological studies, including mathematical models, a reliable model has been 

constructed. When constructing mathematical models in a situation with insufficient data, it 

is essential to ensure their validity from clinical, biological, or social medical perspectives. 

The publication of such models will lead to the construction of appropriate surveillance.  

 

In Japan, sufficient epidemiological data on congenital infections such as CMV and imported 

infections are not yet available, and these infections' prevalence and risk assessment are not 

sufficiently understood. I hope that this study will lead to appropriate surveillance for these 

infections in the future. 
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