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Abbreviations  1 

AGP Antimicrobial growth promoter 

AMR Antimicrobial resistance 

BES Brazilian extended-spectrum β-lactamase 

CLSI Clinical and laboratory standards institute 

CSF Cerebrospinal fluid 

CTX-M Cefotaximase-Munich 

ESBL Extended-spectrum β-lactamase 

GDP Gross domestic product 

HGT Horizontal gene transfer 

IS Insertion sequence 

LB Luria broth  

MDR Multidrug resistance 

MIC Minimum inhibitory concentration 

MLF Ministry of livestock and fisheries  

MLST Multilocus sequence typing  

OD Optical density 

OXA Oxacillinase  

PMQR Plasmid-mediated quinolone resistance 

PCR Polymerase chain reaction  

PER Pseudomonas extended resistance 

PPV Positive predictive value 

QRDR Quinolone resistance determining region  

SHV Sulphydryl variable  

TEM Temoneira  

TU Translocatable unit 

UTH The university teaching hospital  

VEB Vietnam extended-spectrum β-lactamase 

WGS Whole-genome sequencing  

ZNPHI The Zambia national public health institute 
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Unit measure abbreviations  4 

% percent 

g gram 

kb kilobase 

ml milliliter  

ng nanogram 

µg microgram 

µl microliter  

 5 
  6 
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Notes 7 

The contents of Chapter I have been published in BMC Antimicrobial Resistance and 8 

Infection Control. 9 

 10 

Shawa M, Furuta Y, Mulenga G, Mubanga M, Mulenga E, Zorigt T, Kaile C, Simbotwe M, 11 

Paudel A, Hang'ombe B, Higashi H. (2021). Novel chromosomal insertions of ISEcp1-12 

blaCTX-M-15 and diverse antimicrobial resistance genes in Zambian clinical isolates of 13 

Enterobacter cloacae and Escherichia coli. Antimicrobial Resistance and Infection Control. 14 

10(1):79. 15 

 16 

The contents of Chapter II are under review in FEMS Microbiology Letters. 17 

 18 

Shawa M, Furuta Y, Paudel A, Kabunda O, Mulenga E, Mubanga M, Kamboyi H, Zorigt T, 19 

Chambaro H, Simbotwe M, Hang’ombe B, Higashi H. Clonal relationship between 20 

multidrug-resistant Escherichia coli ST69 from poultry and humans in Lusaka, 21 

Zambia. FEMS Microbiology Letters. (Under review). 22 

 23 
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Preface 25 

Antimicrobials have significantly improved the treatment of many life-threatening 26 

bacterial diseases, leading to increased life expectancy [1]. However, as Fleming warned in 27 

1945 [2], misuse and overuse of antimicrobials have accelerated the emergence and evolution 28 

of antimicrobial resistance (AMR). The clinical, social, and economic impacts of AMR are 29 

profound and enormously worrisome. Over 2.8 million AMR-related cases are reported every 30 

year in the United States alone, with over 35,000 resulting in mortality [3]. The year-on-year 31 

rise in AMR incidence is attributable to modern anthropogenic elements linked to social, 32 

cultural, economic, and political factors. For instance, inaccurate or delayed diagnosis 33 

resulting from limited laboratory capacity may compel clinicians to make treatment decisions 34 

on a presumptive basis [4], leading to antibiotic overuse and AMR surge. Also, behavioral 35 

factors such as self-medication, entwined with a lack of political will to regulate access to 36 

antibiotics, have worsened the AMR burden [5]. Additionally, the growing demand for 37 

animal-source food due to the steady expansion of the world population promotes 38 

antimicrobial usage in livestock feed [6], further exacerbating the problem.  39 

While AMR has a broad scope encompassing several pathogens, multidrug-resistant 40 

(MDR) Gram-negative bacteria are most dreaded because of their health impacts in 41 

developed and developing countries. Most MDR Enterobacteriaceae produce hydrolytic 42 

enzymes called extended-spectrum β-lactamases (ESBLs) that degrade β-lactam antibiotics to 43 

render them ineffective. Worldwide, over 1.5 billion people are colonized with ESBL-44 

producing strains [7], making ESBL-mediated AMR a critical threat to human health. Despite 45 

the many ESBL classes described, the CTX-M-type ESBLs dominate, with reports 46 

documented on every populated continent [8, 9]. The CTX-M-type enzymes are encoded by 47 

blaCTX-M genes, which usually exist on plasmids with other AMR genes, thus explaining the 48 

associated MDR. While controversial, it is believed that most MDR plasmids are costly for 49 

the bacterial hosts and tend to be lost in the absence of antibiotic selection [10], making the 50 

basis for advocating for antimicrobial stewardship. However, chromosomal blaCTX-M genes 51 

have also been reported [11, 12], though their association with MDR is still poorly studied. 52 

Strains carrying blaCTX-M genes are usually found in clinical samples, but non-human 53 

sources like food animals have also been identified as reservoirs [13]. Generally, poultry is 54 

considered an important hazard for blaCTX-M genes [14], causing zoonotic transmission via 55 

the food chain or direct contact. Although research on CTX-M-type ESBLs from the human-56 

animal interface has advanced in Western countries, such studies are relatively rare in sub-57 
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Saharan Africa. Nevertheless, a few integrated studies in Africa have compared human 58 

strains to those obtained from poultry [4], despite the One Health concept being relatively 59 

new on the continent. In Zambia, a few PCR-based studies have independently characterized 60 

CTX-M-producing strains from humans [15, 16] and poultry [17]. However, there is no 61 

information linking the transmission of blaCTX-M-carrying strains across these ecological 62 

niches in Zambia. Given the potential of chickens to transmit blaCTX-M-harboring MDR 63 

isolates, it is crucial to evaluate the molecular relatedness of blaCTX-M-carrying strains from 64 

humans and poultry in Zambia.  65 

Chapter I describes the prevalence and diversity of blaCTX-M genes and blaCTX-M-66 

carrying chromosomal insertions among clinical strains in three Enterobacteriaceae species. 67 

The strains were resistant to multiple antibiotics of clinical importance, and the MDR 68 

insertions seemed to have been mobilized by the insertion sequence ISEcp1. To verify the 69 

epidemiological linkage between poultry and humans in Lusaka, Zambia, Chapter II provides 70 

evidence suggesting the clonal transmission of MDR Escherichia coli between the two 71 

niches. 72 

  73 
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CHAPTER I: 74 

Novel chromosomal insertions of ISEcp1-blaCTX-M-15 and diverse 75 

antimicrobial resistance genes in Zambian clinical isolates of Enterobacter 76 

cloacae and Escherichia coli  77 

Summary  78 

Forty-six cefotaxime-resistant Enterobacteriaceae isolates from Zambian hospital 79 

patients were sequenced on MiSeq and MinION platforms and reconstructed to nearly 80 

complete genomes. Phylogenetic analysis and hierarchical clustering suggested the clonal 81 

spread of the strains among patients. In silico genotyping detected four alleles of the blaCTX-M 82 

gene and 54 other antimicrobial resistance (AMR) genes across 45/46 (97.8%) isolates. The 83 

blaCTX-M gene existed on plasmids in 38/45 (84.4%) strains and on chromosomes in the 84 

remaining 7/45 (15.6%). In one Enterobacter cloacae and three Escherichia coli strains, the 85 

blaCTX-M-15 gene was found on large (> 10 kb) chromosomal insertions bordered by the 86 

ISEcp1 insertion sequence at one end. The nucleotide sequences of these insertions 87 

resembled previously reported plasmids and harbored multiple AMR genes that correlated 88 

with the observed phenotypic AMR profiles. These results revealed the coexistence of 89 

ISEcp1-blaCTX-M-15 with multidrug resistance (MDR) determinants on the chromosomes of E. 90 

cloacae and E. coli, signifying that ISEcp1-mediated transposition may be essential for the 91 

mobilization of various AMR genes from plasmids to chromosomes. Retaining such 92 

insertions in the chromosome may enhance the persistence and dissemination of MDR 93 

clones, regardless of selection pressure.  94 

 95 

  96 
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Introduction  97 

The growing use of antimicrobials in humans, animals, and agriculture has culminated 98 

in selecting drug-resistant microorganisms. Despite significant strides in developing novel 99 

antimicrobials, many human infectious diseases are increasingly difficult to treat, making 100 

antimicrobial resistance (AMR) a central issue in public health. Some experts regard AMR as 101 

the next great catastrophe for humanity as they project it to kill 10 million people every year 102 

by 2050 [18]. In Gram-negative bacteria, most AMR cases are related to the production of 103 

extended-spectrum β-lactamases (ESBLs). The emergence of ESBL-mediated resistance 104 

globally affects every populated continent and represents a significant form of resistance in 105 

communities [19, 20] and hospital settings [21].  106 

ESBLs are bacterial enzymes capable of hydrolyzing penicillins, first, second, and 107 

third-generation cephalosporins, and aztreonam (but not cephamycins or carbapenems) and 108 

therefore conferring resistance to these antibiotics [22]. Thus, ESBL-producers pause serious 109 

therapeutic challenges to clinicians during patient management. The ESBL burden is 110 

significantly higher among inpatients than those not hospitalized [23] due to the heavy use of 111 

antibiotics in hospitals [24]. Escalated hospital ESBL levels have been reported in 112 

industrialized countries such as France and China, at 17.7% [25] and 68.2% [26], 113 

respectively. Similarly, ESBL is a significant problem among hospitals in developing 114 

countries, as evidenced by studies in Mali [27], Burkina Faso [28], and Cote d'Ivoire [29], 115 

showing prevalence figures of 62.3%, 70 %, and 86%, respectively. In Zambia, a few PCR-116 

based studies have attributed the observed AMR to ESBLs [15, 16]. However, detailed 117 

molecular information characterizing ESBL-producing strains is still lacking.  118 

Although ESBLs only emerged in 1985 [30], there were over 150 documented ESBL 119 

variants by the beginning of the 21st century [31], most of which were derivatives of 120 

Temoneira types 1 and 2 (TEM-1 and TEM-2), and Sulphydryl variable type 1 (SHV-1) [32, 121 

33]. In addition, non-TEM and non-SHV ESBLs have also emerged, including Cefotaximase-122 

Munich (CTX-M-type), Oxacillinases (OXA-type), Vietnam ESBLs (VEB-type), Brazilian 123 

ESBLs (BES-type), and Pseudomonas Extended Resistance (PER-type) b-lactamases. 124 

Notably, the frequency of CTX-M-type ESBLs has increased in contemporary times, with 125 

over 170 variants [34], making them the most abundant type worldwide [7]. The observed 126 

predominance of CTX-M-type ESBLs has been attributed to the success of the Escherichia 127 

coli O25b:H4-ST131 pandemic clone, which usually carries the plasmid-borne blaCTX-M-15 128 

gene [35]. Furthermore, the dissemination of blaCTX-M genes is also propelled by horizontal 129 
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gene transfer (HGT) via mobile genetic elements such as insertion sequences (IS) (e.g., 130 

ISEcp1, IS1, IS5, and IS26) [36]. In most studies, the ISEcp1 insertion sequence has been 131 

detected upstream of blaCTX-M genes [37-39], highlighting its role in mobilizing the blaCTX-M 132 

genes. As transposons require two inverted repeats (IR) for recognition by the transposase, it 133 

is thought that the ISEcp1 transposase can use one IR and another sequence related to the 134 

other IR to effect the transposition of large genetic elements [40]. Moreover, the ISEcp1 has 135 

also been shown to be a strong promoter for expressing the blaCTX-M genes [41].  136 

blaCTX-M genes are generally encoded on large plasmids, which usually carry other 137 

AMR genes, leading to multidrug resistance (MDR). While plasmids may confer an ability to 138 

withstand antimicrobials, they are perceived to be costly in antibiotic-free environments [42], 139 

making antimicrobial stewardship a viable approach to combatting blaCTX-M-associated MDR. 140 

However, chromosomal blaCTX-M genes are increasingly reported among various 141 

Enterobacteriaceae [43-48], though their coexistence with other AMR genes is poorly 142 

studied. With more reports of the chromosomally located blaCTX-M, exploring possible links 143 

between chromosomal blaCTX-M and MDR is paramount. This study intended to provide a 144 

benchmark for the comparative molecular epidemiology of chromosomal blaCTX-M-associated 145 

MDR in Zambia and beyond.  146 

By analyzing the genomes and AMR profiles of Enterobacteriaceae isolates from 147 

Zambian hospital patients, clonal expansion was identified as the primary mode of blaCTX-M 148 

spread. Additionally, the nearly complete genome sequences allowed identifying 149 

chromosomal insertions of plasmid origin harboring ISEcp1-blaCTX-M-15 and various AMR 150 

genes among Enterobacter cloacae and E. coli. Furthermore, the strains carrying these 151 

insertions displayed MDR phenotypes consistent with the AMR genes in the insertions. 152 

These findings suggest that ISEcp1-mediated transposition facilitates the spread of MDR 153 

determinants among Enterobacteriaceae. Furthermore, the stable maintenance of these 154 

chromosomal insertions may enhance the persistence of MDR Enterobacteriaceae species. 155 

  156 

  157 
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Materials and methods 158 

Strain selection 159 

From June to October 2018, 46 non-repeated cefotaxime resistant Enterobacteriaceae 160 

strains were isolated from various clinical sources among patients admitted to the University 161 

Teaching Hospital (UTH), Zambia. The strains were isolated from samples collected by 162 

hospital clinicians during routine patient care investigations as follows: blood (1), 163 

cerebrospinal fluid (CSF) (2), high vaginal swab (1), pus (4), sputum (4), stool (30), and 164 

urine (5). To confirm cefotaxime resistance, each strain was plated on LB agar containing 1 165 

µg/ml cefotaxime (Sigma-Aldrich, USA). 166 

 167 

Determination of minimum inhibitory concentration (MIC) 168 

MICs of nine antimicrobials were determined by subjecting the strains to broth 169 

microdilution using breakpoints specified in Table 1. To this end, the strains were cultured 170 

overnight in cefotaxime (1 µg/ml) supplemented LB. The cultures were diluted 104-fold, 171 

added in triplicate to different antibiotic concentrations in a 96-well plate, and incubated 172 

aerobically at 37°C for 18 hours while shaking at 1,600 rpm. Bacterial growth was 173 

determined by measuring optical densities at 595 nm (OD595) using the Multiskan FC 174 

Microplate Photometer (Thermo Scientific, USA). Positive bacterial growth was considered 175 

when the OD595 value was at least 0.1, while MIC was defined as the least antibiotic 176 

concentration for which the OD595 value was less than 0.1. Quality control was performed 177 

using the two reference strains, E. coli MG1655 and E. coli 10-β (NEB, USA). 178 

  179 
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Table 1. Antimicrobials used in this study 180 

Antimicrobial Class Solvent  S I R 

Ampicillin sodium  b-lactam DW ≤ 8 16 ≥ 32 

Cefotaxime sodium b-lactam DW ≤ 1 2 ≥ 4 

Chloramphenicol Amphenicol 100% ethanol ≤ 8 16 ≥ 32 

Ciprofloxacin Quinolone 0.1 M NaOH ≤ 0.25 0.5 ≥ 1 

Colistin sulfate Polymyxin DW ≤ 2 - ≥ 4 

Doxycycline hyclate Tetracycline DW ≤ 4 8 ≥ 16 

Gentamicin sulfate salt Aminoglycoside DW ≤ 4 8 ≥ 16 

Imipenem monohydrate Carbapenem 1 M MOPS  ≤ 1 2 ≥ 4 

Nalidixic acid free acid Quinolone 0.1 M NaOH ≤ 16 - ≥ 32 

Nitrofurantoin Nitrofuran DMF ≤ 32 64 ≥ 128 

 181 

NB; All antimicrobials were purchased from Sigma-Aldrichâ. LB broth (Difcoä) was used. 182 

S; susceptible. I; intermediate. R; resistant.  183 

DW; distilled water. DMF; dimethyl formamide. MOPS; 3-(N-morpholino)propanesulfonic 184 

acid, pH 6.8. 185 

Breakpoints are expressed in µg/ml. 186 

 187 
  188 
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Growth rate determination 189 

Growth monitoring was performed by preparing bacterial cultures in antibiotic-free 190 

LB and measuring the OD600 continuously for 16 hours. Briefly, OD monitoring was 191 

performed on duplicates of 103-fold-diluted overnight cultures in a 96-well plate at 37°C 192 

using the Varioskan LUX Multimode Microplate Reader (Thermo Scientific, USA) while 193 

shaking at 600 rpm. The obtained data were used to fit parametric models using the R 194 

package grofit version 1.1.1 [49], and the gradients of the fitted lines represented growth 195 

rates.  196 

 197 

Whole-genome sequencing 198 

The strains were cultured overnight in LB containing 1 µg/ml cefotaxime, and 199 

genomic DNA was extracted using the QIAamp PowerFecal DNA Kit (Qiagen, Hilden, 200 

Germany). Libraries were prepared using NexteraXT (Illumina, USA) and subjected to 201 

sequencing using MiSeq (Illumina), resulting in paired-end reads (2 x 300 bp). Poor-quality 202 

reads and adapter sequences were trimmed using Trim Galore version 0.4.2 with options of "-203 

-paired --nextera" (https://github.com/FelixKrueger/TrimGalore). The aforesaid genomic 204 

DNA was also sequenced with MinION (Oxford Nanopore Technologies, United Kingdom) 205 

using Rapid Barcoding Kit (SQK-RBK004) and flowcell R9.5 (FLO-MIN107) to obtain long 206 

reads. The long reads were basecalled using Guppy Basecalling Software version 3.4.5 and 207 

then assembled using Canu version 1.8 [50], specifying "corOutCoverage = 1000 208 

genomeSize = 6m". Gepard version 1.40 [51] was then used to identify and trim redundant 209 

repeats at terminal ends of contigs, followed by base-error correction with trimmed Illumina 210 

reads using Pilon version 1.23 [52]. Chromosomal sequences were defined as contigs longer 211 

than 2 Mb, while plasmids were identified by the presence of plasmid replicons on contigs 212 

smaller than 500 kb. The rest of the sequences were screened for redundancy through 213 

BLASTn searches against a local database created for each strain using known chromosomal 214 

and plasmid contigs. Query sequences matching the database with ≥ 70% identity were 215 

defined as redundant and eliminated from the data pool. Nonredundant query sequences were 216 

screened further using NCBI BLASTn searches against the nt database. A contig was 217 

considered chromosomal if ≥ 7 of the top 10 hits were chromosomes and plasmid-based if ≥ 218 

7 of the top 10 were plasmids.  219 

 220 
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Phylogenetic analysis 221 

To elucidate the genetic similarity among strains, whole genome-based phylogenetic 222 

analysis was conducted using Parsnp version 1.2 [53] and the generated trees were visualized 223 

and edited in TreeGraph 2 [54]. In addition, species and sequence type (ST) identification 224 

were performed in silico by uploading raw Illumina reads to a public multilocus sequence 225 

typing (MLST) platform [55]. 226 

 227 

Detection of plasmid replicons, strain serotypes, and AMR genes 228 

Plasmid replicons and O:H serotypes were determined by interrogating contigs with 229 

PlasmidFinder [56] and EcOH [57] databases, respectively, using ABRicate software version 230 

0.8.10 (https://github.com/tseemann/abricate) with options "--mincov 90" and "--minid 90" 231 

specified. AMR genes were identified using the AMRFinderPlus tool [58] with the "-i 0.7" 232 

option engaged.  233 

 234 

Determination of clustering patterns among strains 235 

To identify the mechanisms propelling the dissemination of blaCTX-M at the UTH, 236 

strains were compared based on AMR phenotype, AMR genes, and plasmid replicons using 237 

the ComplexHeatmap package [59]. 238 

 239 

Sequence alignment and identification of chromosomal insertions of blaCTX-M 240 

Strains harboring the blaCTX-M gene in the chromosome were annotated using DFAST 241 

version 1.2.4 [60] and compared to reference sequences using Mauve [61]. In three E. coli 242 

strains (i.e., Zam_UTH_18, Zam_UTH_26, and Zam_UTH_41), chromosomal insertions 243 

were identified by comparison to the reference strain E. coli MG1655 (GenBank accession 244 

no. NC_000913.2). For Zam_UTH_44, an E. cloacae strain, the alignment was done against 245 

E. cloacae ATCC 13047 (GenBank accession no. NC_014121.1). Comparison analyses for 246 

the two E. coli strains, Zam_UTH_42 and Zam_UTH_47, were performed using E. coli 247 

ST648 (GenBank accession no. CP008697.1) as a reference. Finally, Zam_UTH_43, an E. 248 

coli strain, was aligned to another E. coli strain (Zam_UTH_08) in the data from this study. 249 

The comparisons were visualized and further explored using the R package genoPlotR [62]. 250 

 251 
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PCR and Sanger sequencing 252 

To confirm chromosomal insertions and rule out erroneous assembly, junctions 253 

between chromosomes and plasmids were subjected to PCR amplification using primers 254 

shown in Table 2. When an appropriate control strain was available, primers were designed 255 

to amplify the entire insertion, and the product size was compared to what was obtained in 256 

the control strain. Furthermore, when the blaCTX-M gene had a poor Illumina read coverage, 257 

the exact blaCTX-M allele was determined by PCR and Sanger sequencing using primers 258 

shown in Table 3. Briefly, PCR was carried out using KOD One Master Mix (TOYOBO, 259 

Japan), and purification of amplification products was achieved using a MinElute PCR 260 

Purification Kit (Qiagen). The purified PCR amplicons were subjected to sequencing PCR 261 

using a BigDye Terminator v3.1 Cycle Sequencing Kit (Applied Biosystems, USA) and 262 

subsequently sequenced using a 3130 Genetic Analyzer (Applied Biosystems, USA). The 263 

sequences were processed and assembled using SnapGene software (Insightful Science, 264 

available at snapgene.com), and the obtained contigs were subjected to the AMRFinderPlus 265 

tool [58] with the option "-i 0.7".  266 

 267 

Ethics approval and consent to participate 268 

The study received ethical approval from the Excellence in Research Ethics and 269 

Science Converge with reference number 2015-Feb-018, while the National Health Research 270 

Ethics Board approved the Biological Transfer permit. All isolates were collected at the UTH 271 

during routine clinical investigations and selected based on resistance to cefotaxime. Patient 272 

personal data were anonymized and unlinked to patient identifiers. 273 

 274 

 275 

  276 
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Table 2. Primers used for the amplification of chromosome-plasmid junctions 277 

Name Abbreviation Sequence 

Zam_UTH_41_jnc_1_inner_For F1 GGCAGCCAATGAATCCGC 

Zam_UTH_41_jnc_2_inner_Rev R1 CGCAACAGGTCTTCTATCGACG 

Zam_UTH_43_jnc_1_For F2 CCAGGGATTTTCTACGGCAGG 

Zam_UTH_43_jnc_1_Rev R2 CGGACTCATTCCTCTCAGGATC 

Zam_UTH_43_jnc_2_For F3 GCTGCTGTGCAAAAAACAAGAC 

Zam_UTH_43_jnc_2_Rev R3 CGATGCTAAGCCATTTGCCTG 

Str_18_jnc1_innermost_For F4 CTGCCAGTCCCAGCACTTTG 

Str_18_jnc1_inner_Rev R4 GGCCTCAACACGAATGTCAT 

Str_18_jnc2_inner_For F5 TGCATTCTCAAGGAGCAGAA 

Str_18_jnc2_innermost_Rev_1 R5 GTTCGTCAGGCTTTTTCTGGTG 

Zam_UTH_42_jnc_1_For F6 GCAAGAGGATAAACCGTCGGG 

Zam_UTH_42_jnc_1_outer_Rev R6 CCACACCCAGTCTGCCTCC 

Zam_UTH_42_jnc_2_For F7 GCACAACATGGGGGATCATG 

Zam_UTH_42_jnc_2_Rev R7 GGCATATTGCTTTGTGGTGGTG 

Zam_UTH_44_jnc_1_For F8 GTTACCCCGGCGTAGAGG 

Zam_UTH_44_jnc_1_Rev R8 GACCTGGACGTTGTGCTGAAG 

Zam_UTH_44_jnc_2_For F9 GGGCACTATTCATGCGTCAG 

Zam_UTH_44_jnc_2_Rev R9 GACGTTGTGCGCCAGTTC 

 278 

  279 
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Table 3. Primers used for the verification of the blaCTX-M allele in seven strains 280 

Strain Primer Sequence Size (bp) 

Zam_UTH_03 Zam_UTH_03_For 

Zam_UTH_03_Rev 
 

CGTATCAGCGCTGCATGC 

CTTTGCAACAGTGCCCCG 
 

1,730 

Zam_UTH_06 Zam_UTH_06_For 

Zam_UTH_06_Rev 
 

GAGTGTTGCTCTGTGGATAAC 

GTCTGCCTCGTGAAGAAGGTG 
 

1,324 

Zam_UTH_22 Zam_UTH_22_For 

Zam_UTH_22_Rev 
 

GGAGCCACGGTTGATGAGG 

GCTCTGTGGATAACTTGCAGAG 
 

1,230 

Zam_UTH_25 Zam_UTH_25_For 

Zam_UTH_25_Rev 
 

CAGCGTAGCGGAACGTTC 

GGATTGACCGTATTGGGAGTTTG 
 

1,248 

Zam_UTH_26 Zam_UTH_26_For 

Zam_UTH_26_Rev 
 

CGGAAAACTATCCGTACAAGGG 

CCGGCGGAAACAATGAGAAAAC 
 

1,456 

Zam_UTH_28 Zam_UTH_28_For 

Zam_UTH_28_Rev 
 

CACCGACATTACACCGGGC 

GCTCTGTGGATAACTTGCAGAG 
 

1,458 

Zam_UTH_34 Zam_UTH_34_For 

Zam_UTH_34_Rev 
 

CGCCTCGCCACACTAATC 

CTGATGTAACACGGATTGACC 
 

1,397 

 281 

  282 
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Results 283 

Genetic diversity among E. coli strains 284 

This study examined 46 cefotaxime-resistant Enterobacteriaceae isolates collected 285 

from diverse clinical sources among inpatients at the UTH, Zambia (Table 4). To characterize 286 

the genetic diversity among these strains, WGS was performed, and nearly complete genome 287 

sequences were reconstructed. The average size of the draft genomes ranged from 4,848,171 288 

to 5,773,466 bp, and mean read depths ranged from 88x to 271x. The number of contigs 289 

varied from 1 to 17, with N50 values ranging from 788,916 to 5,322,171 bp. An MLST 290 

analysis performed in silico identified three Enterobacteriaceae species, namely, E. cloacae 291 

(1/46, 2.2%), K. pneumoniae (9/46, 19.6%), and E. coli (36/46, 78.3%) (Table 4).  292 

Overall, 12 unique E. coli sequence types (STs) were identified, of which one was 293 

novel and subsequently registered as ST11176. Despite this high heterogeneity of E. coli STs, 294 

the majority (25/36 69.4%) of the strains were assigned to four STs (i.e., ST69, ST131, 295 

ST617, and ST405) (Fig 1A), suggesting that spread is driven by the expansion of a few 296 

prominent clones. ST131 disseminates rapidly because of its diverse virulence factors and 297 

AMR mechanisms [63], but its frequency here was lower than expected, at 6/36 (16.7%). The 298 

most predominant ST was ST69, which accounted for 9/36 (25.0%) strains, highlighting that 299 

its circulation in the local hospital significantly contributes to the ESBL burden. The nine K. 300 

pneumoniae isolates in this study were assigned to three distinct STs, dominated by ST307, 301 

representing 6/9 (66.7%) strains (Fig 1B).  302 
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Table 4. Description of 46 strains used in this study 304 

 Patient 

Strain ID Source Species CTX MICa  Growth rate Ageb Gender 

Zam_UTH_01 

Zam_UTH_02 

Zam_UTH_03 

Zam_UTH_04 

Zam_UTH_05 

Zam_UTH_06 

Zam_UTH_07 

Zam_UTH_08 

Zam_UTH_09 

Zam_UTH_10 

Zam_UTH_11 

Zam_UTH_12 

Zam_UTH_13 

Zam_UTH_15 

Zam_UTH_17 

Zam_UTH_18 

Zam_UTH_20 

Zam_UTH_21 

Zam_UTH_22 

Zam_UTH_23 

Zam_UTH_24 

Zam_UTH_25 

Zam_UTH_26 

Zam_UTH_27 

Zam_UTH_28 

Zam_UTH_29 

Zam_UTH_30 

Zam_UTH_31 

Zam_UTH_32 

Zam_UTH_33 

Stool 

Stool 

Urine 

Stool 

Stool 

Urine 

Stool 

Stool 

Stool 

Stool 

Stool 

HVS 

Stool 

Urine 

Stool 

Pus 

Stool 

Stool 

Stool 

Pus 

Stool 

Stool 

Stool 

Stool 

Stool 

Urine 

Stool 

Stool 

Stool 

Stool 

E. coli 

K. pneumoniae 

E. coli 

K. pneumoniae 

K. pneumoniae 

E. coli 

K. pneumoniae 

E. coli 

K. pneumoniae 

K. pneumoniae 

E. coli 

E. coli 

E. coli 

E. coli 

E. coli 

E. coli 

E. coli 

E. coli 

E. coli 

E. coli 

E. coli 

E. coli 

E. coli 

E. coli 

E. coli 

E. coli 

K. pneumoniae 

E. coli 

E. coli 

E. coli 

16 

≥ 512 

≥ 512 

≥ 512 

≥ 512 

≥ 512 

≥ 512 

≥ 512 

128 

≥ 512 

≥ 512 

256 

256 

256 

256 

256 

≥ 512 

256 

256 

≥ 512 

128 

128 

256 

256 

64 

128 

≥ 512 

≥ 512 

128 

≥ 512 

0.126 

0.147 

0.206 

0.071 

0.255 

0.166 

0.101 

0.117 

0.512 

0.231 

0.149 

0.213 

0.140 

0.120 

0.168 

0.225 

0.132 

0.112 

0.195 

0.188 

0.185 

0.167 

0.189 

0.118 

0.226 

0.379 

0.060 

0.237 

0.297 

0.154 

54 

21 

25 

28 

52 

  8 

  1 

46 

36 

65 

54 

23 

43 

40 

  3 

25 

92 

11 

13 

  5 

  8 

73 

  1 

36 

36 

44 

52 

25 

  6 

70 

M 

M 

 F 

M 

M 

M 

 F 

 F 

M 

 F 

M 

 F 

 F 

M 

M 

 F 

 F 

M 

 F 

M 

M 

M 

 F 

M 

M 

 F 

 F 

M 

 F 

M 
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Zam_UTH_34 

Zam_UTH_36 

Zam_UTH_37 

Zam_UTH_38 

Zam_UTH_39 

Zam_UTH_40 

Zam_UTH_41 

Zam_UTH_42 

Zam_UTH_43 

Zam_UTH_44 

Zam_UTH_45 

Zam_UTH_46 

Zam_UTH_47 

Zam_UTH_48 

Zam_UTH_50 

Zam_UTH_51 

Stool 

Stool 

Stool 

Sputum 

Pus 

CSF 

Stool 

Pus 

Urine 

Stool 

Sputum 

Sputum 

Stool 

Sputum 

CSF 

Blood 

E. coli 

E. coli 

K. pneumoniae 

E. coli 

E. coli 

K. pneumoniae 

E. coli 

E. coli 

E. coli 

E. cloacae 

E. coli 

E. coli 

E. coli 

E. coli 

E. coli 

E. coli 

128 

128 

≥ 512 

256 

≥ 512 

≥ 512 

≥ 512 

≥ 512 

256 

128 

256 

128 

≥ 512 

128 

128 

128 

0.220 

0.285 

0.254 

0.223 

0.131 

0.107 

0.136 

0.145 

0.230 

0.163 

0.176 

0.160 

0.172 

0.298 

0.222 

0.221 

11 

73 

  1 

32 

64 

N/A 

N/A 

N/A 

N/A 

  1 

32 

  1 

  1 

27 

  7 

  2 

 F 

M 

M 

M 

 F 

 F 

 F 

M 

 F 

M 

M 

M 

M 

 F 

M 

 F 
 305 
aCTX MIC is expressed in µg/ml 306 
bN/A = not available 307 
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 315 
 316 
 317 
 318 
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 320 
 321 
 322 
 323 
 324 
 325 
 326 
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 329 
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 331 
 332 
 333 
 334 
 335 
 336 
 337 
 338 
 339 
 340 
 341 
 342 
 343 
 344 
 345 
 346 
 347 
 348 
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 350 
 351 
 352 
 353 

 354 

Figure 1. Phylogenetic analysis. Whole genome-based phylogenetic trees for 36 E. coli 
and 9 K. pneumoniae strains from Zambia. 
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A. E. coli: Twelve STs were identified, including a novel type (marked with *). Four STs 355 

formed 25/36 (69.4%) of E. coli strains, dominated by ST69 (n = 9) and ST131 (n = 6). 356 

The genome of E. fergusonii (GenBank accession number NZ_CP057659.1) was 357 

included as an outgroup. In addition, E. coli strain CFSAN061770 (GenBank accession 358 

number NZ_CP023142.1), belonging to ST69 and isolated from raw milk cheese in Egypt 359 

(here abbreviated as EGY), and E. coli strain 3347558 (ST69) (GenBank accession 360 

number CP071073.1) isolated from a patient in Switzerland (here abbreviated as SWI) 361 

were also included in the analysis.  362 

 363 

B. K. pneumoniae: Of the three STs identified, ST307 alone represented 6/9 (66.7%) strains. 364 

The genome of K. oxytoca (GenBank accession number NZ_CP027426.1) was included 365 

as an outgroup. 366 
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 368 
Location of blaCTX-M genes  369 

To characterize the genotypic AMR patterns of the strains, in silico prediction was 370 

performed on the assembled genomes. Fifty-eight AMR genes were detected across a total of 371 

12 AMR classes (Table 5). The blaCTX-M family, observed in 45/46 (97.8%) strains, was the 372 

most abundant β-lactamase gene class. Thirty-eight out of 45 (38/45, 84.4%) strains carried 373 

this gene family exclusively on plasmids, but seven isolates (7/45, 15.6%; one E. cloacae and 374 

six E. coli) harbored chromosomally-located blaCTX-M. As previously reported [64], blaCTX-M-375 

15 was the most prevalent (28/45, 62.2%) among the four alleles of the blaCTX-M gene (i.e., 376 

blaCTX-M-14, blaCTX-M-15, blaCTX-M-27, and blaCTX-M-55) identified (Fig 2). Although the blaCTX-M-377 

15 gene has often been associated with E. coli ST131 [65], only one E. coli ST131 (1/6, 378 

16.7%) carried this gene (Fig 2), while the other five E. coli ST131 strains contained 379 

plasmid-borne blaCTX-M-27. In silico prediction of O:H serotypes revealed that none of the six 380 

E. coli ST131 strains belonged to the pandemic clone O25b:H4-ST131, but the five blaCTX-M-381 

27-harboring strains belonged to Onovel31:H4 while the blaCTX-M-15-possessing strain 382 

belonged to O107:H5. 383 

To determine the phenotypic AMR profiles, MICs for nine antimicrobial agents were 384 

determined against each strain. Of the 46 strains tested, 45 (45/46, 97.8%) exhibited MDR 385 

patterns, described as resistance to one or more antimicrobial agents from at least three 386 

antimicrobial drug classes [66]. Resistance was highest to ampicillin (46/46, 100%) and 387 

gentamicin (43/46, 93.5%), followed by ciprofloxacin (41/46, 89.1%) and nalidixic acid 388 

(41/46, 89.1%). Although there was no carbapenem resistance detected, one K. pneumoniae 389 

strain (1/46, 2.2%) exhibited borderline resistance (MIC = 4 µg/ml) to a crucial last-resort 390 

drug, colistin (Fig 2). WGS-based prediction of AMR genes was highly concordant with 391 

phenotypic resistance, with positive predictive values greater than 80% in most cases (Table 392 

6). While earlier reports have shown that a high resistance range could result in a fitness cost 393 

[67], the number of AMR genes in these strains did not correlate with fitness (expressed as 394 

bacterial growth rate) (Fig 3). 395 
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Table 5. AMR genes detected 397 

Target drug class AMR genes detected 

b-lactam 

 

 

blaTEM-1, blaTEM-84, blaSHV-11, blaSHV-121, blaSHV-28, 

blaOXA-1, blaCTX-M-14, blaCTX-M-15, blaCTX-M-27, 

blaCTX-M-55, blaACT, blaCMY-2 

Aminoglycoside 

 

 

aph(3')-Ia, aph(3')-IIa, aph(3'')-Ib, aph(6)-Id, aac(3)-

IIa, aac(3)-IId, aac(6')-Ib4, aac(6')-Ib-cr5b, aadA1, 

aadA2, aadA5,  

Streptothricin  sat2 

Trimethoprim  dfrA1, dfrA5, dfrA12, dfrA14, dfrA17 

Tetracycline tet(A), tet(B), tet(C), tet(D), tet(M) 

Chloramphenicol cmlA1, catA1, catA2, catB3, floR 

Sulfonamide  sul1, sul2, sul3 

Fosfomycin  fosA, fosA3 

Macrolide  erm(B), mph(A) 

Quinolone oqxA, oqxB, oqxB19, qnrB1, qnrB19, qnrS1, qnrS13,  

Disinfectant qacE, qacL, qacEdelta1 

Bleomycin  bleO, ble 

 398 

 399 
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 401 

 402 

 403 

All but one strain displayed resistance to at least three antimicrobial classes. None of the 404 

isolates was resistant to imipenem, but one strain (Zam_UTH_40) was phenotypically 405 

resistant to colistin. Overall, 12 AMR gene classes were detected. The blaCTX-M family, 406 

dominated by the blaCTX-M-15 variant, was the most diverse b-lactamase gene. Most blaCTX-M 407 

genes were identified on plasmids; however, these genes were chromosomal in 7/45 (15.6%) 408 

strains. A total of 24 plasmid replicons were detected, the commonest being the 409 

IncFIB(AP001918)_1 replicon with a prevalence of 30/46 (65.2%). Hierarchical clustering 410 

showed aggregation of strains with the same ST. Since cefotaxime (CTX) resistance was the 411 

selection criterion, CTX was not included in this analysis.  412 
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Figure 2. AMR phenotypes, AMR genes and plasmid replicons. 
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AMP; ampicillin. CHL; chloramphenicol. CIP; ciprofloxacin. CST; colistin. DOX; 413 

doxycycline. GEN; gentamicin. IPM; imipenem. NAL; nalidixic acid. NIT; nitrofurantoin. 414 

 415 
  416 
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Table 6. Prediction of phenotype from AMR genes 417 

GEN  aph(3)-Ia aph(3)-IIa aph(3'')-Ib aph(6)-Id aac(3)-IIa aac(3)-IId 
R 10 1 

0 
1 

100 

28 
3 

31 
90.3 

28 14 13 
S 0 3 0 0 
Total 10 31 14 13 
PPV (%) 100 90.3 100 100 
 418 
 419 
GEN  aac(6')-Ib4 aac(6')-Ib-cr5 aadA1 aadA2 aadA5 
R 1 16 12 10 19 
S 0 2 0 0 1 
Total 1 18 12 10 20 
PPV (%) 100 88.9 100 100 95 
 420 
 421 
CIP oqxA oqxB oqxB19 qnrB1 qnrB19 qnrS1 qnrS13 
R 11 5 5 7 2 9 2 
S 0 0 0 0 0 1 0 
Total 11 5 5 7 2 10 2 
PPV (%) 100 100 100 100 100 90 100 
 422 
 423 
NAL oqxA oqxB oqxB19 qnrB1 qnrB19 qnrS1 qnrS13 
R 11 5 5 7 2 9 2 
S 0 0 0 0 0 1 0 
Total 11 5 5 7 2 10 2 
PPV (%) 100 100 100 100 100 90 100 
 424 
 425 
DOX tet(A) tet(B) tet(C) tet(D) tet(M) 
R 24 9 1 3 9 
S 0 0 0 0 0 
Total 24 9 1 3 9 
PPV (%) 100 100 100 100 100 
 426 
 427 
CHL cmlA1 catA1 catA2 catB3 
R 8 3 2 6 
S 2 0 0 9 
Total 10 3 2 15 
PPV (%) 80 100 100 42.9 
 428 
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 433 

 434 

 435 

 436 

 437 

 438 

 439 

 440 

 441 

 442 

 443 

 444 

 445 

 446 

 447 

 448 

A. There was no significant association between growth rate and the number of AMR genes. 449 

Left; E. coli. Right; K. pneumoniae. Red lines represent the linear regression models with 450 

growth rate as the outcome variable and the number of AMR genes as the predictor. At 451 

the same time, r represents Pearson’s correlation coefficient. 452 

Figure 3. Assessment of growth rate among strains. 
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B. Zam_UTH_18 did not possess any plasmid and had a growth rate above the 75th 453 

percentile for E. coli strains. Zam_UTH_26 grew at a rate above the median growth rate 454 

for E. coli; however, a closely related strain, Zam_UTH_41, harbored an additional 455 

blaCTX-M-15-carrying plasmid and had a growth rate lower than the 25th percentile. 456 
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Plasmid composition among E. coli ST69 strains 458 

To describe the plasmid composition of the strains, contigs were screened for plasmid 459 

replicons using the PlasmidFinder database [56]. A total of 24 replicon types were identified, 460 

the most frequent being IncFIB(AP001918)_1 (30/46, 65.2%), followed by IncFIA_1 (27/46, 461 

58.7%), and Col(MG828)_1 (16/46, 34.8%) (Fig 2). Previous studies have reported the 462 

dominance of IncF plasmids encoding trimethoprim-sulfamethoxazole (SXT) resistance 463 

among E. coli ST69 strains [68]. In concordance with these reports, the E. coli ST69 strains 464 

analyzed here harbored an IncF (particularly IncFI) plasmid carrying dfrA12 and sul2 genes, 465 

associated with trimethoprim and sulfamethoxazole resistance, respectively. In contrast to 466 

past reports, the E. coli ST69 strains studied here also had two additional MDR plasmids, 467 

including a large IncHI plasmid, uncommon in this ST [68, 69]. This 225 kb IncHI plasmid 468 

possessed the blaCTX-M-14 gene and shared over 80% nucleotide sequence identity with an 469 

IncHI plasmid from a K. pneumoniae ST37 isolate (Zam_UTH_04) (Fig 4A), suggesting that 470 

these plasmids could have arisen from a common ancestor. Furthermore, the two plasmids 471 

displayed similar genetic architectures around the blaCTX-M-14 gene, although both possessed 472 

distinct large insertions harboring several AMR genes and other elements associated with 473 

survival (Fig 4B). For example, the mucAB operon identified on the IncHI plasmid from E. 474 

coli ST69 offers resistance against genotoxic agents such as ultraviolet light [70]. Also, the 475 

mer operon on this plasmid can confer resistance to organomercury compounds [71]. 476 

In line with previous reports [72], the other three primary E. coli STs (i.e., ST131, 477 

ST617, and ST405) harbored blaCTX-M genes on IncFI plasmids. However, the IncFI plasmids 478 

in strains of different STs had unrelated plasmid backbones (Fig 4C), suggesting that HGT 479 

was unlikely to be the mode of blaCTX-M gene propagation.  480 
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 482 

 483 

A. IncHI plasmid in E. coli ST69 shared over 80% nucleotide sequence homology with 484 

IncHI plasmid in K. pneumoniae ST37. 485 

B. IncHI plasmid from E. coli ST69 and K. pneumoniae ST37 carried the fosA/IS5/blaCTX-M-486 

14/IS6 unit. In addition, the IncHI plasmid from E. coli ST69 also contained the mucAB 487 

and mer operons. 488 
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Figure 4. Comparison of plasmid sequences among strains. 
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C. There was low nucleotide sequence similarity between IncFI plasmids from E. coli strains 489 

belonging to different STs. In addition, strains belonging to E. coli ST405 carried two 490 

IncF plasmids, namely IncFI and IncFII. 491 

Red; β-lactam resistance. Green; aminoglycoside and/or quinolone resistance. Brown; 492 

chloramphenicol resistance. Purple; mercury resistance. Turquoise; fosfomycin resistance. 493 

Orange; sulfonamide resistance. Yellow; mobile genetic elements. 494 

  495 

A 

B 



 32 

Spread of blaCTX-M genes by clonal expansion of specific lineages 496 

To determine the mechanism of blaCTX-M spread among hospital patients, hierarchical 497 

clustering was performed using phenotypic and genotypic AMR profiles, as well as plasmid 498 

replicons. The results showed that strains could be clustered into four distinct clades (here 499 

referred to as Clade 1, Clade 2, Clade 3, and Clade 4) (Fig 2). The largest clade, Clade 1, was 500 

mainly composed of E. coli ST69 and defined by IncHI replicon and blaCTX-M-14 gene. 501 

Furthermore, this clade also contained one K. pneumoniae ST307 and one E. coli ST156, 502 

which carried the IncHI replicon and shared several AMR genes with E. coli ST69. Notably, 503 

the number of AMR genes in Clade 1 was more than what was noted in Clade 2, Clade 3, and 504 

Clade 4 (P < 0.01) (Fig 5). Clade 3 showed a close relationship to Clade 4, with both clades 505 

having qacEdelta1, mph(A), and aad5 genes that were lacking in Clade 1 and Clade 2. Clade 506 

3 was dominated by E. coli ST131, along with two E. coli ST648, one E. coli ST44, and one 507 

E. coli ST617. Meanwhile, Clade 3 was represented by three E. coli STs, namely ST405, 508 

ST617, and ST11176. Finally, the main subclade of Clade 2 was composed of K. pneumoniae 509 

and E. cloacae and contained four plasmid-mediated quinolone resistance (PMQR) genes, 510 

namely oqxA, oqxB, oqxB19, and qnrB1. In addition, a minor subclade of Clade 2 comprised 511 

E. coli STs such as ST8767, ST540, ST3580, and ST4674. Altogether, the analysis revealed 512 

that phylogenetically related lineages aggregated together. Consistent with the MLST 513 

analysis, these findings suggest that clonal dissemination of specific lineages was responsible 514 

for the spread of blaCTX-M instead of a plasmid-driven transmission. 515 
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 517 

 518 

 519 

 520 

There were significantly more AMR genes in Clade 1 compared to other clades. The analysis 521 

was performed by One-way ANOVA with Tukey’s HSD comparison of means. 522 

**P ≤ 0.01, ***P ≤ 0.001. 523 

  524 

Figure 5. Comparison of number of AMR genes among clades. 
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Co-occurrence of blaCTX-M-15 and other AMR genes on large chromosomal insertions 525 

To describe the chromosomal locations of blaCTX-M in seven strains (one E. cloacae 526 

and six E. coli), contigs were aligned against reference strains using Mauve [61]. In all seven 527 

strains, the chromosomal insertions were bordered by ISEcp1 at one end, highlighting the 528 

possible involvement of this element in the mobilization of the insertions. Nonetheless, some 529 

insertions also included several other IS elements (e.g., IS1, IS6) and transposons, indicating 530 

that other complex mechanisms may be involved. The chromosomal insertions, verified by 531 

PCR (Fig 6), were unique for distinct clones and ranged in size from ~ 3 kb to ~ 41 kb (Fig 7-532 

9). These inserted segments resembled plasmid sequences retrieved from the NCBI GenBank, 533 

suggesting the transposon-mediated transfer from plasmids to chromosomes. Interestingly, 534 

four strains (one E. cloacae and three E. coli) carried blaCTX-M-harboring insertions longer 535 

than 10 kb and contained various AMR genes. Consistent with the AMR genes on the 536 

insertions, these strains displayed resistance to several clinically relevant antibiotics (Fig 8 537 

and 9). 538 

  539 
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 540 

A. Small chromosomal insertions among E. coli strains. Left. PCR performed with the same 541 

primers produced bands of different sizes in Zam_UTH_41 (~ 4 kb) and E. coli MG1655 542 

(~ 1 kb). Right. In Zam_UTH_43, PCR using the primer pairs F2/R2 and F3/R3 produced 543 

amplicons of sizes ~ 7 kb and ~ 3 kb, respectively. However, the primer sets F2/F3, and 544 

R2/R3 yielded products of about 850 bp and 500 bp, respectively, in a control strain 545 

(Zam_UTH_08). 546 

B. Large (> 10 kb) chromosomal insertions among E. coli strains. Left. PCR targeting 547 
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junctions between plasmid and chromosome regions yielded products between 500 bp 548 

and 650 bp in Zam_UTH_18 but using the same primers on the reference strain E. coli 549 

MG1655 gave no products. Moreover, using primers outside the insertion produced a 550 

band larger than 10 kb in Zam_UTH_18 but the amplicon size in the control strain E. coli 551 

MG1655 was between 500 bp and 650 bp. Right. In Zam_UTH_42, PCR performed with 552 

primers targeting junctions between plasmid and chromosome regions produced bands of 553 

the expected size. However, no control strain was available for comparison. 554 

C. Large (> 10 kb) chromosomal insertion in one E. cloacae strain (Zam_UTH_44). The 555 

insertion was confirmed by PCR targeting junctions between plasmid and chromosome 556 

regions, but no control strain was available for comparison. 557 

 558 
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 561 

 562 

 563 

A. Zam_UTH_41. This E. coli strain, belonging to ST8767, harbored a 3,095 bp 564 

chromosomal insertion with blaCTX-M-14 located 249 bp downstream of ISEcp1. 565 

Zam_UTH_26 also had a similar insertion and genetic architecture.  566 

B. Zam_UTH_43. This E. coli strain, belonging to O107:H5-ST131, harbored a 6,036 bp 567 

chromosomal insertion with blaCTX-M-15 located 255 bp downstream of ISEcp1. In 568 

addition, about 2.5 kb downstream of this insertion, a smaller insertion was identified, 569 

carrying genes targeting aminoglycosides/quinolones (aac(6')-Ib-cr5), β-lactams (blaOXA-570 

1), and chloramphenicol (cat). 571 

F1, F2, F3, R1, R2, R3; primers used to confirm insertions. 572 

 573 

  574 

A 

E. coli MG1655

Zam_UTH_41
IS

Ec
p1

bl
a C
TX
-M
-1
4

F1

R1

F1

R1

EC
ZU
41
_2
66
40

EC
ZU
41
_2
66
70

bl
a C
TX
-M
-1
5

IS
Ec
p1

Tr
an
sp
os
as
e

ca
t

aa
c(
6')
-Ib
-c
r5

bl
a O
XA
-1

IS
6

Zam_UTH_43

Zam_UTH_08

F2

R2

F3

R3

F2

F3 R3

R2

EC
ZU
43
_0
95
10

EC
ZU
43
_0
96
00

EC
ZU
43
_0
96
50

B 

Figure 7. blaCTX-M genes present on short chromosomal insertions in E. coli. 

A.  

B.  



 38 

In all six E. coli strains, chromosomal insertions were flanked by 5-bp direct repeats, 575 

a characteristic feature of ISEcp1-mediated transposition. Nevertheless, two strains 576 

(Zam_UTH_42 and Zam_UTH_47) (Fig 8B) possessed a truncated ISEcp1, indicating that 577 

this interrupted element is unlikely to be functional; thus, the interrupting IS1 and/or 578 

transposase may have mobilized blaCTX-M-15 in these strains. Depending on the allele (i.e., 579 

blaCTX-M-14 or blaCTX-M-15), the blaCTX-M gene existed at a fixed position downstream of 580 

ISEcp1, suggesting common ancestral origins among similar alleles. Specifically, in two E. 581 

coli ST8767 strains (Zam_UTH_26 and Zam_UTH_41), the blaCTX-M-14 gene existed 249 bp 582 

downstream of ISEcp1 on a 3,095 bp segment. Likewise, the blaCTX-M-15 allele was detected 583 

255 bp away from ISEcp1 in the downstream region of five strains with chromosomal 584 

insertions of diverse lengths. More precisely, one E. coli ST131 (Zam_UTH_43) (Fig 7B) 585 

and one E. coli ST3580 (Zam_UTH_18) (Fig 8A) possessed the blaCTX-M-15 allele on 6,036 586 

bp and 11,383 bp segments, respectively, while two E. coli ST648 (Zam_UTH_42 and 587 

Zam_UTH_47) (Fig 8B) harbored a 14,328 bp blaCTX-M-15-containing insertion. Finally, an E. 588 

cloacae ST316 strain (Zam_UTH_44) possessed a large (> 41 kb) blaCTX-M-15-carrying 589 

chromosomal insertion (Fig 9).  590 

Out of seven strains with chromosomally-located blaCTX-M, four of them (i.e., 591 

Zam_UTH_18, Zam_UTH_42, Zam_UTH_44, and Zam_UTH_47) had the gene on large (> 592 

10 kb) insertions that resembled plasmid or chromosome sequences obtained from the NCBI 593 

GenBank (Fig 8 and 9). Particularly, Zam_UTH_18 carried an insertion observed in the 594 

chromosomes of Salmonella enterica (GenBank accession no. CP045038) and two E. coli 595 

ST38 isolates (GenBank accession no. CP010116 and CP018976). Also, the four large 596 

insertions (> 10 kb) possessed other AMR genes in the downstream region of blaCTX-M-15. For 597 

example, the insertion in Zam_UTH_18 carried the qnrS1 gene, which is associated with 598 

reduced quinolone susceptibility. At the same time, Zam_UTH_42 and Zam_UTH_47 had 599 

several genes that encode resistance to aminoglycosides (aac(3)-IIa), 600 

aminoglycosides/quinolones (aac(6’)-Ib-cr5), β-lactams (blaOXA-1, blaTEM-1), and 601 

chloramphenicol (catB3). Likewise, the insertion in Zam_UTH_44 had seven genes 602 

associated with resistance to aminoglycosides (aac(3)-IIa), quinolones (qnrB1), 603 

aminoglycosides/quinolones (aac(6’)-Ib-cr5), β-lactams (blaOXA-1), trimethoprim (dfrA14), 604 

chloramphenicol (catB3), and tetracyclines (tet(A)).  605 

Apart from Zam_UTH_18, which was susceptible to quinolones (ciprofloxacin MIC 606 

= 0.25 µg/ml) despite possessing the qnrS1 gene, the AMR phenotypes of the strains 607 
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possessing chromosomal insertions correlated with the AMR genes on the insertions. 608 

Furthermore, these strains displayed cefotaxime MICs that were several folds higher than the 609 

MIC breakpoint of 2 µg/ml recommended by the Clinical and Laboratory Standards Institute 610 

(CLSI) [73]. Additionally, two closely related strains (Zam_UTH_26 and Zam_UTH_41) 611 

(Fig 1A) exhibited cefotaxime MICs that differed by more than two-fold, probably due to the 612 

extra plasmid-borne blaCTX-M-15 gene in Zam_UTH_41, in addition to chromosomal blaCTX-M-613 

14. This variation was also highlighted by the lower fitness of Zam_UTH_41 (µ = 0.136) 614 

relative to Zam_UTH_26 (µ = 0.189), signifying the costly effect of the additional blaCTX-M-615 

15-carrying plasmid. Equally, the lack of plasmids in Zam_UTH_18 was demonstrated by its 616 

high growth rate, more than the 75th percentile of the rates among E. coli strains (Fig 3B). 617 

  618 
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A. Zam_UTH_18. This E. coli strain, belonging to ST3580, contained an 11,383 bp blaCTX-648 

M-15-carrying chromosomal insertion, which resembled plasmid pF609 (GenBank 649 

accession no.  MK965545.1). The blaCTX-M-15 gene existed 255 bp downstream ISEcp1. 650 
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The qnrS1 gene was located 4639 bp downstream of blaCTX-M-15. Phenotypically, this 651 

strain was resistant to ampicillin but susceptible to quinolones. 652 

B. Zam_UTH_42. This E. coli strain belonging to ST648 harbored a 14,328 bp 653 

chromosomal insertion carrying blaCTX-M-15 resembling plasmid p13ARS_MMH0112-2 654 

(GenBank accession no. LR697123.1). This insertion possessed genes that target 655 

aminoglycosides (aac(3)-IIa), chloramphenicol (catB3), β-lactams (blaOXA-1, blaTEM-1), 656 

and aminoglycosides/quinolones (aac(6’)-Ib-cr5). The blaCTX-M-15 gene was located 255 657 

bp downstream of ISEcp1, which was truncated by IS1 and transposase. The phenotypic 658 

resistance profile of this strain coincided with the AMR genotype of the insertion. The 659 

same genetic context and phenotypic profile were observed in a closely related strain, 660 

Zam_UTH_47. 661 

F4, F5, F6, F7, R4, R5, R6, R7; primers used to confirm the insertions. White; susceptible. 662 

Black; resistance phenotype not explained by AMR genes. Red; β-lactam resistance. Green; 663 

aminoglycoside and/or quinolone resistance. Brown; chloramphenicol resistance. 664 

  665 

B 
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 667 

 668 

 669 

 670 

Zam_UTH_44. This E. cloacae strain, belonging to ST316, possessed the blaCTX-M-15 gene on 671 

a ~ 41 kb chromosomal insertion similar in nucleotide sequence to plasmid pCRENT-193_1 672 

(GenBank accession no. CP024813.1). The blaCTX-M-15 gene was located 255 bp downstream 673 

of ISEcp1. The insertion also harbored various AMR genes targeting aminoglycosides 674 

(aac(3)-IIa), chloramphenicol (catB3), β-lactams (blaOXA-1), aminoglycosides/quinolones 675 

(aac(6’)-Ib-cr5), quinolones (qnrB1), trimethoprim (dfrA14), and tetracyclines (tet(A)). The 676 

phenotypic resistance profile of this strain coincided with the AMR genes on the insertion.  677 

F8, F9, R8, R9; primers used to confirm the insertions. White; susceptible. Black; 678 

resistance phenotype not explained by AMR genes. Red; β-lactam resistance. Green; 679 

aminoglycoside and/or quinolone resistance. Pink; tetracycline resistance. Brown; 680 

chloramphenicol resistance.  681 
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Discussion 684 

This current study focused on the phenotypic and genotypic characterization of 685 

Enterobacteriaceae strains collected from inpatients at the UTH, Zambia. Phylogenetic 686 

analysis (Fig 1) and hierarchical clustering (Fig 2) suggested that the spread of blaCTX-M has 687 

been facilitated primarily by clonal expansion. The blaCTX-M gene was located on plasmids in 688 

most isolates, but seven strains carried this gene on chromosomes. While the ISEcp1-689 

mediated chromosomal location of the blaCTX-M gene is a well-studied phenomenon [43, 44, 690 

46-48], there are no reports of ISEcp1-blaCTX-M with other AMR genes in E. cloacae or E. 691 

coli chromosomes. Despite advances in sequencing methods allowing the characterization of 692 

the regions immediately upstream and downstream of chromosomal blaCTX-M, such 693 

approaches are limited when the chromosomal insertions are large. By reconstructing nearly 694 

complete genomes, the identification of large blaCTX-M-harboring chromosomal insertions was 695 

improved relative to previous analyses. The results showed that one E. cloacae and three E. 696 

coli strains carried large blaCTX-M-15-possessing chromosomal insertions that were very 697 

similar in nucleotide sequence to plasmids in the NCBI GenBank. Furthermore, these 698 

insertions were all bordered by ISEcp1 at one end and contained various other AMR genes. 699 

The AMR phenotypes of the strains correlated with the observed AMR genes on the large 700 

chromosomal insertions. These findings reveal the role of ISEcp1 in propagating blaCTX-M-15-701 

related MDR determinants among E. cloacae and E. coli.  702 

When the strains were analyzed for phylogenetic grouping (Fig 1), the results showed 703 

four predominant E. coli STs (ST69, ST131, ST617, and ST405) and one major K. 704 

pneumoniae ST (ST307). Furthermore, hierarchical clustering based on plasmid replicons 705 

and phenotypic and genotypic AMR (Fig 2) showed strain aggregation according to ST. 706 

While these results suggest clonal transmission of the strains within the hospital, robust geo-707 

temporal clonal spread modeling is required to confirm the hypothesis. However, the lack of 708 

patient information such as contact history and admission dates could not allow such detailed 709 

analysis.  710 

In most studies, E. coli ST131 is dominated by blaCTX-M-15-harboring strains 711 

belonging to the O25b:H4 pandemic clone [63, 74]. However, none of the six E. coli ST131 712 

strains studied here were members of this group, but five belonged to Onovel31:H4, and one 713 

had an O107:H5 serotype. Other serotypes of E. coli ST131 have been sporadically reported 714 

[75], including Onovel31:H4 [76] identified in this study. To the best of the author’s 715 

knowledge, this is the first account of E. coli ST131 belonging to serotype O107:H5.  716 
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The extraintestinal pathogenic E. coli ST69 was overrepresented in this study and 717 

belonged to a clade that contained more AMR genes than other clades (Fig 5). E. coli ST69 718 

strains rarely carry ESBL genes [77], are more common in community-acquired infections 719 

[78], and possess SXT resistance-encoding plasmids of the IncF incompatibility type [68]. 720 

Intriguingly, the ST69 strains studied here possessed the blaCTX-M-14 gene on a plasmid of the 721 

IncHI incompatibility type and dominated the hospital isolates. This unusual occurrence of 722 

IncHI plasmids in E. coli ST69 was also observed in a raw milk cheese isolate from Egypt 723 

[79]. However, there was a difference in the AMR gene composition between the Egyptian 724 

IncHI plasmid (GenBank accession no. CP023143) and the ones in this study.  725 

Previous studies have associated E. coli ST69 with SXT-resistant community-726 

acquired infections [68, 78]. Accordingly, the ST69 clone reported here could have originated 727 

from the community, where SXT is frequently used as a preventive intervention against 728 

Pneumocystis jirovecii pneumonia (PCP). Based on specified laboratory and clinical 729 

parameters, HIV-infected or exposed individuals at risk of succumbing to PCP are 730 

commenced on SXT prophylaxis until they are no longer at risk [80]. While empiric SXT is 731 

clinically beneficial, this practice imposes selection pressure for SXT-resistant species, 732 

including E. coli [81-83]. However, the acquisition of the abovementioned IncHI plasmid 733 

could have changed the ecology and adaptation of the ST69 clone. The resulting MDR 734 

phenotype, coupled with various adaptation and survival mechanisms such as the error-prone 735 

SOS repair encoded by mucAB operon, perhaps made ST69 a successful clone dominating 736 

the hospital.  737 

The high MDR rate observed in this study may be a consequence of antimicrobial 738 

overuse and misuse. In Zambia, policies on antimicrobial use are usually not enforced, and 739 

many clients can access most antibiotics without a prescription [84]. As an additional 740 

challenge, clinicians at the UTH prescribe antibiotics 53.7% of the time [85], which is more 741 

than the 30% threshold set by the World Health Organization [86]. Furthermore, most UTH 742 

inpatients with serious bacterial infections are managed with third-generation cephalosporins 743 

(e.g., cefotaxime) [87], whereas quinolones (e.g., ciprofloxacin) are frequently used in the 744 

outpatients' department [85]. Worryingly, this study showed that about 90% of cefotaxime-745 

resistant strains also exhibited resistance to quinolones. 746 

Meanwhile, the UTH has a strict policy on carbapenem use, with prescriptions 747 

supported by laboratory evidence. Promisingly, no phenotypic or genotypic carbapenem 748 

resistance was detected in this study. While this is encouraging, it is worth noting that 749 

carbapenem resistance has been on the rise globally, including in Africa [88], necessitating 750 
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the re-introduction of colistin as a last-resort drug [89]. Despite many countries’ renewed 751 

interest in colistin, the drug is yet to be made available for clinical use in Zambia. However, 752 

one CSF K. pneumoniae isolate (Zam_UTH_40) already displayed low-level colistin 753 

resistance. While this finding might have significant clinical implications, there is a need for 754 

additional studies to verify this observation.  755 

 756 

Analysis of the diverse genetic environments associated with blaCTX-M in 757 

chromosomes disclosed a relationship with ISEcp1, as reported earlier [90]. Interestingly, 758 

three E. coli and one E. cloacae exhibited co-occurrence of ISEcp1-blaCTX-M-15 and various 759 

AMR genes on chromosomes. The said genes were detected on large insertions similar to 760 

plasmid sequences in a public database. Goswami et al. recently reported a chromosomal 761 

insertion containing the blaCTX-M-15 and four other AMR genes in an E. coli strain; however, 762 

in their study, IS26 was the mobilizing element [68]. In another report from South Korea, 763 

Yoon et al. characterized K. pneumoniae strains with chromosomal insertions harboring the 764 

ISEcp1-blaCTX-M-15 and other AMR genes [91]. However, all the K. pneumoniae strains in the 765 

current study carried plasmid-borne blaCTX-M genes, possibly due to geographic differences 766 

between Zambia and South Korea. This is the first report of chromosomal insertions 767 

harboring ISEcp1-blaCTX-M-15 and multiple AMR genes in E. cloacae and E. coli. Based on 768 

the identified ISEcp1 at one end of each MDR insertion, it is likely that the ISEcp1 element 769 

mobilized these insertions. Nevertheless, the other mobile elements on the insertions, and the 770 

truncated ISEcp1 in two strains, may imply other intricate genetic events.  771 

Phenotypic AMR profiles suggested that chromosomal insertions carrying multiple 772 

AMR genes conferred resistance to several antimicrobial drugs. For example, the E. cloacae 773 

strain (Zam_UTH_44) had all its AMR genes on the chromosome and exhibited resistance to 774 

ampicillin, ciprofloxacin, gentamicin, and chloramphenicol. However, Zam_UTH_18 had a 775 

ciprofloxacin MIC below the clinical breakpoint despite carrying chromosomal qnrS1. 776 

Although qnrS1 gene expression studies were not conducted, the observed result is probably 777 

because PMQR determinants (such as qnrS1) only cause slight changes in quinolone 778 

susceptibility [92]. Nevertheless, these small susceptibility reductions often result in 779 

treatment failure, thus prompting some researchers to foster a movement to revise quinolone 780 

breakpoints [93]. 781 

Although the advantages of chromosomal insertions carrying ISEcp1-blaCTX-M-15 and 782 

other AMR genes are not well understood, a possible benefit is the acceleration of MDR 783 

spread through an intermediary reservoir. It is generally known that plasmids from the same 784 
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incompatibility class cannot stably reside in the same host [94]. As a result, direct gene 785 

transfer is unlikely between such plasmids; thus, the chromosome may be an intermediate for 786 

gene sharing. Also, the insertion of ISEcp1-blaCTX-M-15 and other AMR genes into the 787 

chromosomes ensures the stable propagation of MDR strains even in the absence of antibiotic 788 

selection pressure [91]. Since bacterial plasmids are likely to be lost when associated with a 789 

fitness cost [95, 96], insertion of crucial AMR genes into the chromosome may warrant 790 

survival and further AMR spread. This assumption is supported by the result on 791 

Zam_UTH_18 (E. coli), which did not contain any plasmids but had an 11 kb chromosomal 792 

insertion possessing blaCTX-M-15 and qnrS1. This strain displayed a growth rate higher than 793 

most E. coli isolates, suggesting a fitness advantage possibly conferred by the lack of 794 

plasmids. It can be speculated that Zam_UTH_18 once carried a plasmid but lost it after the 795 

crucial genes, blaCTX-M-15 and qnrS1, were integrated into the chromosome. Verifying this 796 

observation will require growth and competitive performance studies using carefully selected 797 

control strains. 798 

  799 



 47 

CHAPTER II: 800 

Clonal relationship between multidrug-resistant Escherichia coli ST69 801 

from poultry and humans in Lusaka, Zambia  802 

Summary 803 

The emergence of multidrug-resistant (MDR) Escherichia coli among chickens in 804 

Zambia poses a threat to human health. Twenty MDR E. coli strains collected from poultry in 805 

Lusaka, Zambia, were sequenced on MiSeq and MinION platforms, and the genomes were 806 

reconstructed de novo. Next, the poultry strains were compared to 36 MDR E. coli isolates 807 

previously obtained from inpatients at a teaching hospital in the same city. All the 20 poultry 808 

strains were resistant to ampicillin, chloramphenicol, and doxycycline, while 18/20 (90%) 809 

also exhibited resistance to the quinolones. Twenty-seven antimicrobial resistance (AMR) 810 

genes belonging to 11 classes were detected, with aminoglycoside resistance genes 811 

dominating (7/27, 25.9%), followed by β-lactamase genes (3/27, 11.1%). One E. coli clone, 812 

belonging to O17:H18-ST69, was identified in 4/20 (20%) poultry- and 9/36 (25%) human-813 

associated strains. In both niches, the O17:H18-ST69 clone possessed an IncFI plasmid with 814 

nine AMR genes and an IncI-complex plasmid with five AMR genes. Furthermore, the 815 

poultry and human O17:H18-ST69 strains formed one clade on phylogenetic analysis and 816 

hierarchical clustering, suggesting clonality. 817 

Further investigation showed that the strains also had distinct AMR plasmids specific 818 

for each niche; for instance, all the four poultry strains contained an IncFII(pCoo) plasmid 819 

harboring the blaCTX-M-55 gene, while the nine human isolates possessed the blaCTX-M-14 gene 820 

on an IncHI plasmid. These results were suggestive of clonal dissemination of MDR E. coli 821 

O17:H18-ST69 between poultry and humans, with the independent acquisition of blaCTX-M 822 

genes. Thus, there is a need for strategic and concerted efforts from human and animal health 823 

sectors to prevent and control foodborne MDR. 824 

 825 
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Introduction 827 

The importance of antimicrobial resistance (AMR) has been growing at the national, 828 

regional, and global levels, posing a threat to both "health and wealth." Future projections 829 

characterize the plight of AMR as a potential catastrophe for humanity that will kill 10 830 

million people every year by 2050, coupled with a loss of up to 100 trillion USD [18]. 831 

Despite the urgent need for new therapeutic agents, the antibiotic drug discovery industry is 832 

economically unattractive, and only a few compounds are currently in phase II or III clinical 833 

development [97]. The diminishing stock of novel antibiotics in the pipeline suggests that we 834 

are heading for a "post-antibiotic era" from which recovery is uncertain.  835 

As an added challenge, multidrug resistance (MDR), described as resistance to at least 836 

one antimicrobial drug from at least three antimicrobial groups [66], has become an 837 

increasing global concern due to its alarming mortality rates [98]. In Gram-negative bacteria, 838 

MDR is generally attributed to extended-spectrum β-lactamase (ESBL)-producing 839 

Escherichia coli, which are usually resistant to cefotaxime [99-101]. MDR E. coli frequently 840 

occurs among hospital patients [102, 103], but animals also serve as reservoirs [104, 105], 841 

perhaps because of antimicrobial growth promoters (AGPs). The debate around the 842 

nonrational use of antimicrobials in animals prompted the progressive ban of AGPs [106], 843 

though they are still being used in over 35 countries [107]. Moreover, the ban's effect may 844 

not be substantial as antimicrobials are still used for prophylaxis in many regions, including 845 

the USA [108]. This controversial practice is not restricted to Western countries, as shown by 846 

reports in Africa [109], with AGPs used in South Africa [110] and Zambia [111, 112]. 847 

As a consequence, there has been an increase in the incidence of MDR E. coli in 848 

food-producing animals like cattle [113], pigs [114, 115], and poultry [116], with the 849 

occurrence of zoonotic transmission through clonal expansion or horizontal gene transfer 850 

[117]. Chicken meat is among the most typical risks of MDR E. coli transmission to humans 851 

[118, 119]; therefore, poultry surveillance is essential in controlling MDR dissemination. 852 

Such surveillance activities have revealed a high prevalence of MDR E. coli in poultry strains 853 

from Asia [120-122], and reports in Africa have increased [116, 123]. In Zambia, MDR E. 854 

coli strains were isolated from chicken meat [17], but no information regarding their clonal 855 

relationship with human isolates was available. Although reports on MDR E. coli have 856 

increased among Zambian human patients [15, 124], the proportion originating from poultry 857 

remains unknown. 858 



 49 

In this study, the One Health approach revealed the MDR patterns and clonal 859 

relationships between poultry and human E. coli isolates from Lusaka, Zambia. Analyzing 860 

the samples by whole-genome sequencing (WGS) showed that 4/20 (20%) poultry strains 861 

were closely related to 9/36 (25%) clinical isolates. Furthermore, the four poultry and nine 862 

human isolates belonged to O17:H18-ST69 and carried 14 identical AMR genes on two 863 

plasmids, suggesting clonal spread. Further comparison analysis also revealed that these 864 

isolates harbored blaCTX-M-carrying plasmids that were niche-specific. These results 865 

demonstrate a clinically important link between MDR E. coli associated with poultry and 866 

humans in Lusaka, highlighting the role of the food chain in disseminating MDR strains. 867 
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Materials and methods 869 

Strain collection from poultry 870 

In December 2019, cloacal swabs were collected by randomly sampling 1,000 871 

disease-free laying hens at a large commercial farm in Lusaka, Zambia. The sampled farm is 872 

a major supplier of poultry and poultry products in Lusaka and surrounding districts. 873 

Therefore, the farm was selected based on the large catchment area it serves. The swabs were 874 

pooled into 200 batches, each containing samples from five birds. The 200 pooled samples 875 

were then transported in buffered peptone water (Oxoid Ltd, UK) and plated on cefotaxime-876 

supplemented (1 µg/ml) MacConkey agar, followed by 18 hours of incubation at 37 ºC. One 877 

colony suspected to be E. coli was picked from each plate and confirmed by amplifying the 878 

16S rRNA gene using PCR, followed by sequencing on the 3130 Genetic Analyzer (Applied 879 

Biosystems, USA) with primers described previously [125].  880 

 881 

Screening for MDR 882 

Phenotypic AMR profiles of cefotaxime-resistant E. coli were ascertained based on 883 

the Minimum Inhibitory Concentrations (MICs) measured for nine different antimicrobials. 884 

The drugs chosen were ampicillin, chloramphenicol, ciprofloxacin, colistin, doxycycline, 885 

gentamicin, imipenem, nalidixic acid, and nitrofurantoin; the breakpoints used are shown in 886 

Table 1. The choice of these antimicrobial drugs was guided by the local prescription patterns 887 

[87] and research-based recommendations [126]. Nonetheless, the safety issues associated 888 

with ciprofloxacin use in pediatric populations [127] prompted the addition of relatively safer 889 

nalidixic acid [128], hence the two quinolones. 890 

The strains were grown in cefotaxime-supplemented (1 µg/ml) LB at 37°C for 18 891 

hours, shaking at 155 rpm. The cultures were then diluted 104-fold and added to triplicates of 892 

2-fold serial dilutions of antibiotics in a 96-well plate. Next, the 96-well plates were 893 

incubated at 37°C for 18 hours while shaking at 1,600 rpm. Using the Multiskan FC 894 

Microplate Photometer (Thermo Scientific, USA) to measure optical densities at 595 nm 895 

(OD595), positive bacterial growth was considered OD595 values of at least 0.1. Therefore, the 896 

MIC was defined as the lowest antibiotic concentration giving an OD595 smaller than 0.1. The 897 

reference strains, E. coli MG1655 and E. coli 10-β (NEB, USA), were used for quality 898 

control. 899 

 900 
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Growth rate determination 901 

The growth of bacterial cultures in antibiotic-free LB was monitored in real-time for 902 

16 hours in a 96-well plate. This was achieved by observing the OD600 of 103-fold-diluted 903 

overnight cultures in duplicate at 37°C using the Varioskan LUX Multimode Microplate 904 

Reader (Thermo Scientific, USA) while shaking at 600 rpm. By fitting growth curves in R 905 

using the package grofit version 1.1.1 [49], the obtained slopes were used as estimates of the 906 

growth rates. 907 

 908 

Whole-genome sequencing 909 

Genomic DNA was extracted from overnight cultures prepared in LB supplemented 910 

with 1 µg/ml cefotaxime using a QIAamp PowerFecal DNA Kit (Qiagen, Hilden, Germany). 911 

A Ligation Sequencing Kit (SQK-LSK109) and an R9 flowcell (FLO-MIN106D) were used 912 

on the MinION (Oxford Nanopore Technologies, United Kingdom) for long-read sequencing. 913 

Furthermore, short-read 2 x 300 bp sequencing was conducted on libraries prepared with 914 

NexteraXT (Illumina, USA) using MiSeq (Illumina). Trim Galore version 0.4.2 915 

(https://github.com/FelixKrueger/TrimGalore) was used to process the short reads by 916 

trimming adapters and poor-quality sequences with options of "--paired --nextera". Nanopore 917 

FAST5 reads were basecalled with Guppy version 4.5.2, followed by de novo assembly using 918 

Canu version 2.1.1 [50], with the "corOutCoverage = 1000 genomeSize = 6m" options. 919 

Gepard version 1.40 [51] was used to identify and fix false duplications at terminal ends of 920 

contigs. Also, a base-error correction of contigs was achieved with Illumina reads using Pilon 921 

version 1.23 [52].  922 

 923 

Phylogenetic analysis 924 

To elucidate the evolutionary relatedness of poultry and human strains, whole 925 

genome-based phylogenetic trees were constructed with Parsnp version 1.2 [53] and 926 

TreeGraph 2 [54] was used for visualization. Multilocus sequence typing (MLST) was done 927 

in silico by uploading raw Illumina short reads to an MLST web server 928 

(www.cbs.dtu.dk/services/MLST) [55]. 929 
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 930 

Detection of strain serotypes, plasmid replicons, AMR genes, and AMR mutations 931 

To predict O:H serotypes and plasmid replicons, contigs were screened against the 932 

EcOH [57] and PlasmidFinder [56] databases, respectively, accessed under ABRicate version 933 

0.8.10 (https://github.com/tseemann/abricate) with options "--mincov 90 --minid 90". Next, 934 

acquired AMR genes were detected by employing the AMRFinderPlus tool [58] using the "-i 935 

0.7" option. Finally, quinolone resistance mutations were called against the genes gyrA, gyrB, 936 

parC, and parE from the reference strain E. coli MG1655 (GenBank accession no. 937 

NC_000913) using snippy version 4.6.0 [129]. 938 

 939 

Comparison of poultry isolates with human strains 940 

To investigate possible MDR E. coli transmission between poultry and humans, 20 941 

poultry-associated cefotaxime-resistant E. coli strains were compared to 36 cefotaxime-942 

resistant E. coli isolates previously collected from human patients at the University Teaching 943 

Hospital (UTH) in Lusaka, Zambia [130]. Using the R package ComplexHeatmap [59], the 944 

AMR phenotype, AMR genes, and plasmid replicons were compared across the two niches. 945 

In addition, plasmids with common replicons were annotated using DFAST version 1.2.4 946 

[60] and subjected to comparison analysis using Mauve [61]. Finally, tandem repeats were 947 

identified by comparing plasmid sequences using NCBI BLAST 948 

(https://blast.ncbi.nlm.nih.gov/Blast.cgi) and reading the hit table by genoPlotR [62]. 949 

 950 
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Results 952 

MDR prevalence among poultry E. coli strains 953 

A total of 20 cefotaxime-resistant E. coli strains were obtained after screening 200 954 

pooled cloacal samples collected from 1,000 laying hens at a commercial poultry farm in 955 

Lusaka, Zambia. The 20 strains, whose selection criteria was a cefotaxime MIC ≥ 2 µg/ml 956 

(Table 7), were subjected to susceptibility tests against nine other antimicrobials representing 957 

eight classes. All (20/20, 100%) strains were resistant to three or more antimicrobial 958 

categories, thus meeting the MDR definition [66]. In addition, all (20/20, 100%) strains 959 

exhibited resistance towards ampicillin, chloramphenicol, and doxycycline, while 18/20 960 

(90%) were resistant to ciprofloxacin and nalidixic acid. Only 13/20 (65%) strains showed 961 

resistance to gentamicin (13/20, 65%), and none (0/20, 0%) of the strains were resistant to 962 

colistin, imipenem, or nitrofurantoin (Table 8).  963 
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Table 7. Characteristics of 20 E. coli poultry strains, collected in December 2019 in Lusaka. 965 

Strain ID Sequence type Serotype CTX MICa Growth rate 

CVRI_01 69 O17H18 ≥ 512 0.123 

CVRI_02 155 O8H51 128 0.133 

CVRI_03 155 O108:H51 ≥ 512 0.200 

CVRI_04 69 O17H18 ≥ 512 0.221 

CVRI_05 155 O8H51 256 0.197 

CVRI_06 69 O17H18 ≥ 512 0.145 

CVRI_07 155 O8H51 256 0.143 

CVRI_08 155 O8H51 256 0.128 

CVRI_09 69 O17H18 ≥ 512 0.229 

CVRI_10 155 O108:H51 128 0.081 

CVRI_11 155 O8H51 ≥ 512 0.118 

CVRI_12 155 O8H51 256 0.136 

CVRI_14 155 O8H51 ≥ 512 0.114 

CVRI_15 155 O8H51 ≥ 512 0.087 

CVRI_16 155 O8H51 256 0.154 

CVRI_17 155 O8H51 256 0.139 

CVRI_18 155 O8H51 256 0.148 

CVRI_19 155 O8H51 256 0.161 

CVRI_20 155 O8H51 256 0.170 

CVRI_21 155 O8H51 256 0.216 
 966 
aMICs are in µg/ml 967 
 968 
 969 
  970 
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 971 

Table 8. Summary of antimicrobial susceptibility test results 972 

Antimicrobial Number of resistant isolates Percentage resistance 

Ampicillin 20/20 100 

Chloramphenicol 20/20 100 

Ciprofloxacin 18/20 90 

Colistin  0/20 0 

Doxycycline  20/20 100 

Gentamicin  13/20 65 

Imipenem  0/20 0 

Nalidixic acid 18/20 90 

Nitrofurantoin 0/20 0 

 973 
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Genetic diversity among poultry strains 975 

To comprehensively characterize the isolates, WGS was performed, and nearly 976 

complete genome sequences were reconstructed. The average size of the draft genomes 977 

ranged from 5,112,451 to 5,855,691 bp, and mean read depths ranged from 178x to 333x. In 978 

addition, the number of contigs varied from 5 to 18, with N50 values ranging from 4,599,588 979 

to 5,263,002 bp. 980 

The strains were classified by in silico MLST into ST69 (4/20, 20%) and ST155 981 

(16/20, 80%) (Table 7). While all ST69 isolates were classified as O17:H18 (4/4, 100%), 982 

ST155 strains were categorized as either O8:H51 (14/16, 87.5%) or O108:H51 (2/16, 12.5%) 983 

(Table 7). Despite ST155 strains having closely related genomes, the genes wzx and wzy, 984 

which encode the O-antigen processing proteins responsible for translocating and 985 

polymerizing oligosaccharides to synthesize lipopolysaccharides, were identified in two 986 

strains. Specifically, strains CVRI_03 and CVRI_10 carried the wzx-O108var1 and wzy-987 

O108var1 genes, suggesting the utilization of the Wzx/Wzy-dependent pathway. In contrast, 988 

14 ST155 strains harbored the wzm-O8 and wzt-O8 genes, suggesting O-antigen translocation 989 

via the ABC transporter pathway [131]. 990 

To investigate the possibility of MDR dissemination across niches, the 991 

abovementioned 20 poultry isolates were compared to 36 E. coli strains isolated from human 992 

patients hospitalized at the UTH. A WGS-based phylogenetic analysis of 56 (20 poultry and 993 

36 human) strains showed clustering of poultry isolates into two ST-specific clades, with 994 

ST155 strains further separating into two subclades based on O:H serotype (i.e., O8:H51 and 995 

O108:H51). Notably, the constructed phylogenic tree showed clustering of four (4/20, 20%) 996 

poultry and nine (9/36, 25%) human strains belonging to O17:H18-ST69, implying clonality 997 

(Fig 10A). Furthermore, a detailed phylogenic analysis of the chromosomes of ST69 strains 998 

revealed that poultry and human strains from Zambia did not cluster based on the host but 999 

were distributed within the tree. Moreover, the Zambian poultry and human strains were 1000 

closely related but distant from international sequences from Switzerland (SWI) and Egypt 1001 

(EGY) (Fig 10B).   1002 
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A. Poultry strains formed two clusters based on two STs; one cluster had four ST69 strains, 1027 

while the other had 16 ST155 strains. The ST155 group was further divided into two 1028 

subgroups based on O:H serotypes; 14 strains belonged to O8:H51, and the remaining two 1029 

were O108:H51. In addition, the genome of E. fergusonii (GenBank accession number 1030 

NZ_CP057659.1) was included as an outgroup. Furthermore, E. coli strain CFSAN061770 1031 

(GenBank accession number NZ_CP023142.1), belonging to ST69 and isolated from raw 1032 

milk cheese in Egypt (here abbreviated as EGY), and E. coli strain 3347558 (also ST69) 1033 

(GenBank accession number CP071073.1) isolated from a patient in Switzerland (here 1034 

Figure 10. Phylogenetic analysis. Whole genome-based phylogenetic tree for 20 poultry 
and 36 human E. coli strains. 

ST69 

O108:H51-ST155 

 

O8:H51-ST155 

A.  B.  
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abbreviated as SWI) were also included in the analysis. Red; poultry (Zambia). Black; human 1035 

(Zambia). Green; International.  1036 

B. Detailed phylogenic tree focusing on ST69 chromosomes only. The Zambian poultry and 1037 

human strains were closely related and did not cluster based on the host. 1038 
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Location of blaCTX-M genes among poultry strains 1040 

To detect the AMR genes present in poultry strains, the AMRFinderPlus tool [58] was 1041 

used. A total of 27 AMR genes targeting 11 antibiotic classes were identified, dominated by 1042 

targets of aminoglycosides (7/27, 25.9%), β-lactams (3/27, 11.1%), quinolones (3/27, 1043 

11.1%), and trimethoprim (3/27, 11.1%) (Table 9). These AMR genes existed on plasmids of 1044 

various incompatibility (Inc) groups.  1045 

The primary AMR mechanism in E. coli involves CTX-M type ESBLs, encoded by 1046 

blaCTX-M genes [132]. All the 20 (100%) strains carried an allele of the blaCTX-M gene; 18/20 1047 

(90%) strains harbored blaCTX-M-55, while the other 2/20 (10%) isolates carried blaCTX-M-14. 1048 

The blaCTX-M-55 and blaCTX-M-14 genes existed 421 bp and 326 bp, respectively, downstream of 1049 

the insertion sequence IS26.  1050 

Previous studies show that OqxAB-encoding genes seldom correlate with 1051 

ciprofloxacin and nalidixic acid resistance [133]. Furthermore, aminoglycoside modifying 1052 

enzymes exhibit divergent substrate specificities, with APH(6)-Id-like and APH(3'')-Ib-like 1053 

types ineffective against gentamicin [134]. Consistently, the current study showed low 1054 

positive predictive values (PPVs) for genes encoding OqxAB (PPV = 0% for both oqxA2 and 1055 

oqxB), APH(6)-Id (PPV = 56.25 % for aph(3'')-Ib), and APH(3'')-Ib (PPV = 65% for aph(6)-1056 

Id). In contrast, there was a perfect correlation between other detected AMR genes and the 1057 

observed phenotypes (PPV = 100%) (Table 10).  1058 
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Table 9. Diversity of AMR genes among the 20 poultry strains 1060 

Target drug class AMR genes detected 

b-lactam 

Aminoglycoside 

 

Trimethoprim  

Tetracycline 

Chloramphenicol 

Sulfonamide  

Fosfomycin  

Macrolide  

Quinolone 

Disinfectant 

Bleomycin  

blaTEM-1, blaCTX-M-14, blaCTX-M-55 

aac(3)-IIa, aac(3)-IId, aadA1, aadA2, aadA5, 

aph(3'')-Ib, aph(6)-Id 

dfrA12, dfrA14, dfrA17 

tet(A), tet(M) 

cmlA1, floR 

sul1, sul2 

fosA3 

mph(A) 

oqxA2, oqxB, qnrS1  

qacL, qacEdelta1 

bleO 

 1061 
 1062 
  1063 
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Table 10. Prediction of phenotype from AMR genes. 1064 

GEN  aac(3)-IIa aac(3)-IId aadA1 aadA2 aadA5 aph(3'')-Ib aph(6)-Id 
R 2 4 

0 
4 

100 

4 
0 
4 

100 

4 2 9 13 
S 0 0 0 7 7 
Total 2 4 2 16 20 
PPV (%) 100 100 100 56.25 65 
 1065 
 1066 
CIP oqxA2 oqxB qnrS1 
R 0 0 4 
S 2 2 0 
Total 0 0 4 
PPV (%) 0 0 100 
 1067 
 1068 
NAL oqxA2 oqxB qnrS1 
R 0 0 4 
S 2 2 0 
Total 0 0 4 
PPV (%) 0 0 100 
 1069 
 1070 
DOX tet(A) tet(M) 
R 20 4 
S 0 0 
Total 20 4 
PPV (%) 100 100 
 1071 
 1072 
CHL cmlA1 
R 4 
S 0 
Total 4 
PPV (%) 100 
 1073 

GEN = gentamicin, CIP = ciprofloxacin, NAL = nalidixic acid, DOX = doxycycline, CHL = 1074 

chloramphenicol 1075 

R = resistant, S = susceptible 1076 
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Quinolone resistance mutations in gyrA, parC, and parE  1078 

The high quinolone resistance rate (90%) observed in this study could not be 1079 

explained by mobile quinolone resistance genes (PPV = 0% for oqxA2 and oqxB) (Table 10). 1080 

Furthermore, only 4/18 (22.2%) quinolone-resistant strains carried the qnrS1 gene that 1081 

encodes the QnrS1 protein to protect topoisomerases from quinolones. Moreover, the 1082 

reduction in quinolone susceptibility by this mechanism is only complementary and not 1083 

sufficient to meet the clinical breakpoint prescribed by the CLSI (0.5 µg/ml and 32 µg/ml for 1084 

ciprofloxacin and nalidixic acid, respectively) [92]. To understand the observed resistance, 1085 

mutations in the quinolone resistance determining regions (QRDRs) of gyrA, gyrB, parC, and 1086 

parE were explored. In agreement with previous reports [135-137], missense mutations were 1087 

detected in three genes: gyrA (Ser83Leu and Asp87Asn), parC (Ser80Ile), and parE 1088 

(Ser458Ala). Two O108:H51-ST155 strains that did not harbor any mutations in the 1089 

abovementioned genes were susceptible to both ciprofloxacin (MIC ≤ 0.0625 µg/ml) and 1090 

nalidixic acid (MIC = 16 µg/ml). However, 14 O8:H51-ST155 strains with the Ser83Leu 1091 

mutation in the gyrA gene exhibited resistance to ciprofloxacin (MIC range; 0.5–1 µg/ml) 1092 

(Fig 11) and nalidixic acid (MIC range; 512–1024 µg/ml) (Fig 12). Lastly, the four O17:H18-1093 

ST69 strains possessed mutations at all the four positions mentioned above and showed high 1094 

resistance levels to ciprofloxacin (MIC ≥ 64 µg/ml) and nalidixic acid (MIC ≥ 2048 µg/ml). 1095 

The same four mutations were observed in nine human-associated O17:H18-ST69 strains that 1096 

also exhibited high-level quinolone resistance (Fig 11 and 12). While quinolone resistance 1097 

has also been linked to amino acid substitutions at positions 426 and 447 of gyrB [138], none 1098 

of these mutations were detected in the present study.  1099 
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 1101 

 1102 

The lack of mutations in the QRDR of gyrA, parC, and parE was associated with very low 1103 

ciprofloxacin MIC (blue bars), but strains with a single mutation at position 83 of the gyrA 1104 

gene had ciprofloxacin MIC above the CLSI breakpoint of 0.5 μg/ml. Furthermore, co-1105 

occurrence of mutations at all four positions coincided with high-level ciprofloxacin 1106 

resistance (MIC ≥ 64 μg/ml). 1107 

CIP; ciprofloxacin. 1108 

 1109 
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Figure 11. Ciprofloxacin resistance. Missense mutations in the QRDR of gyrA, parC and 
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 1111 

The lack of QRDR mutations in two O108:H51-ST155 strains (blue) was associated with 1112 

susceptibility to nalidixic acid. In contrast, 14 O8:H51-ST155 strains (orange) possessing a 1113 

single gyrA gene mutation (Ser83Leu) exhibited nalidixic acid resistance with MICs 1114 

exceeding the clinical breakpoint by several folds. Furthermore, the four poultry and nine 1115 

human O17:H18-ST69 strains (brown), harboring quinolone resistance mutations in gyrA, 1116 

parC, and parE, displayed high-level resistance to nalidixic acid (MIC ≥ 2048 µg/ml).  1117 

*Clinical and Laboratory Standards Institute [73] 1118 
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Hierarchical clustering of ST69 strains from poultry and humans 1121 

To determine the mechanism of MDR propagation among poultry and human strains, 1122 

clustering patterns of isolates were explored by examining various phenotypic and genotypic 1123 

characteristics. Fifteen plasmid replicons were identified across the 20 poultry isolates, the 1124 

commonest being IncFII(29)_1_pUTI89 (16/20, 80%), followed by 1125 

IncFII(pHN7A8)_1_pHN7A8 (14/20, 70%), and IncN_1 (14/20, 70%). A comparison of 1126 

poultry and human strains based on AMR phenotype, AMR genes, and plasmid replicons 1127 

showed clustering into five main clades (referred to as C1, C2, C3, C4, and C5) (Fig 13). 1128 

Most human isolates occupied separate clusters from poultry strains; however, C1 comprised 1129 

four poultry and nine human isolates belonging to O17:H18-ST69. These strains displayed 1130 

similar AMR patterns and had similar AMR genes and plasmid replicons, suggesting clonal 1131 

spread (Fig 13). Poultry and human strains from C1 shared the plasmid replicons 1132 

Col(MG828)_1, ColpVC_1, IncB/O/K/Z_2, IncFIA_1, IncFIB(AP001918)_1, and IncX1_1. 1133 

However, the IncHI2A_1 and IncHI2_1 replicons were only present in human-associated 1134 

strains but not in poultry strains. On the contrary, the human isolates lacked the 1135 

IncFII(pCoo)_1_pCoo replicon present in poultry strains. Other overlapping replicons 1136 

included two O108:H51 poultry strains in clade C5 sharing IncHI2_1 and IncHI2A_1 1137 

replicons with one human isolate in C3 (Zam_UTH_28, Onovel28:H5-ST156) and nine 1138 

human strains in C1 (O17:H18-ST69).  1139 

  1140 
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 1141 

 1142 

All (20/20, 100%) poultry strains exhibited MDR phenotypes, but none of them was resistant 1143 

to colistin, imipenem, or nitrofurantoin. Only two blaCTX-M alleles were detected across the 20 1144 

poultry strains, with blaCTX-M-55 occurring in 18/20 (90%) strains and the remaining 2/20 1145 

(10%) isolates harboring the blaCTX-M-14 gene. Similarly, there was a narrow plasmid replicon 1146 

diversity among poultry strains, with only 15 types detected compared to 24 types among 1147 
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human isolates. On hierarchical clustering, five distinct clades were formed across the 20 1148 

poultry and 36 human isolates; C1 was composed of four poultry and nine human O17:H18-1149 

ST69 strains, C2 and C3 comprised human strains of various STs, C4 consisted of 14 1150 

O8:H51-ST155 strains, while C5 constituted two O108:H51-ST155 strains. Only a few 1151 

plasmid replicons were common between poultry and human strains. 1152 

Red; poultry. Black; human. 1153 

 1154 

 1155 

  1156 
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Comparison of AMR plasmids among poultry and human E. coli ST69 strains 1157 

A comparison analysis was carried out on plasmids carrying identical AMR genes and 1158 

sharing plasmid replicons to understand the spread patterns of MDR among poultry and 1159 

human strains. Two distinct plasmids were identified in four O17:H18-ST69 poultry isolates 1160 

and nine human-associated O17:H18-ST69 strains. One of the plasmids belonged to 1161 

incompatibility group IncFI, was 83 kb in size, and carried nine AMR genes (i.e., aac(3)-IId, 1162 

aadA1, aadA2, cmlA1, dfrA12, floR, qacL, sul2, and tet(M)). The other one belonged to IncI-1163 

complex, was 124 kb long, and carried five AMR genes (aph(6)-Id, bleO, dfrA14, qnrS1, and 1164 

tet(A)) (Table 11). Comparison of contigs across niches revealed almost identical 1165 

corresponding plasmids (Fig 14A and 14B). However, the isolates also contained other AMR 1166 

plasmids specific for each niche, probably signifying additional independent mechanisms of 1167 

AMR acquisition. Despite the difference in plasmid content between poultry and human 1168 

O17:H18-ST69 strains, growth rates measured in antibiotic-free LB were comparable across 1169 

niches (Fig 15), suggesting similar fitness.  1170 

Precisely, poultry-associated O17:H18-ST69 strains harbored a 71 kb IncFII(pCoo) 1171 

plasmid carrying the blaCTX-M-55 gene (Table 11). This plasmid shared over 90% nucleotide 1172 

sequence similarity with pL37-4 (GenBank accession no. CP034592.1), a blaCTX-M-55-1173 

carrying plasmid also belonging to IncFII(pCoo), reported in an E. coli O9:H37-ST48 isolate 1174 

originating from a goose farm in Jiangsu, China (Fig 16). In contrast, O17:H18-ST69 strains 1175 

from humans contained a 225 kb IncHI plasmid harboring blaCTX-M-14 and several other AMR 1176 

genes (Table 11). Additionally, this IncHI plasmid exhibited over 85% nucleotide sequence 1177 

similarity with another blaCTX-M-14-carrying IncHI plasmid in two O108:H51-ST155 poultry 1178 

strains, signifying origin from a common plasmid ancestor (Fig 14C). In both cases, the fosA3 1179 

gene existed 611 bp downstream of the blaCTX-M-14 gene on a 4.8 kb unit flanked by a pair of 1180 

IS26 copies (Fig 17). 1181 

  1182 



 69 

 1183 

Table 11. Plasmids in E. coli O17:H18-ST69 from humans and poultry. 1184 

Strain ID Plasmid Inc. 
group 

Plasmid size 
(bp) Plasmid replicons AMR genes 

CVRI_01 
(Poultry) 

IncFI 83,168 IncFIA_1, 
IncFIB(AP001918)_1 

tet(M), qacL, 
aadA1, cmlA1, 
aadA2, dfrA12, 
floR, sul2, 
aac(3)-IId 
 

IncI-
complex 124,080 IncB/O/K/Z_2, 

IncX1_1 

aph(6)-Id, 
qnrS1, bleO, 
dfrA14, tet(A) 
 

IncFII(pCoo) 70,832 IncFII(pCoo)_1_pCoo 
 

blaCTX-M-55 

Zam_UTH_32 
(Human) 

IncFI 82,946 IncFIA_1, 
IncFIB(AP001918)_1 

tet(M), qacL, 
aadA1, cmlA1, 
aadA2, dfrA12, 
floR, sul2, 
aac(3)-IId 
 

IncI-
complex 125,522 IncB/O/K/Z_2, 

IncX1_1 

aph(6)-Id, 
qnrS1, bleO, 
dfrA14, tet(A) 
 

IncHI 224,891 IncHI2A_1, IncHI2_1 

fosA3, blaCTX-M-

14, sul2, 
aph(3'')-Ib, 
aph(6)-Id, 
tet(A), floR, 
aph(3')-I 
 

 1185 
  1186 
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 1188 

Two plasmids, (A) IncFI and (B) IncI-complex, were shared across human- and poultry-1189 

associated E. coli O17:H18-ST69 strains. (C) In contrast, a blaCTX-M-14-harboring IncHI 1190 

plasmid was present in human-associated E. coli O17H18-ST69 strains but not in poultry-1191 

associated E. coli O17H18-ST69. A related IncHI plasmid with over 85% nucleotide 1192 

sequence homology was detected in two poultry E. coli O108:H51-ST155 strains. (D) IncHI 1193 

plasmid in the two O108:H51-ST155 poultry strains possessed multiple AMR genes on a 1194 

putative 29.9 kb IS26-flanked TU. This suspected TU existed in tandem duplication in strain 1195 

CVRI_03 and was associated with a higher cefotaxime resistance (CTX MIC ≥ 512 μg/ml) 1196 

relative to CVRI_10 (CTX MIC = 128 μg/ml).  1197 

 1198 

  1199 

Figure 14. Comparison of plasmids among E. coli strains from humans and poultry. 
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 1213 

 1214 

No significant difference was found between the growth rate of poultry (n = 4) and human (n 1215 

= 9) isolates (Mann-Whitney U test; P = 0.414).  1216 
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Figure 15. Comparison of growth rates between poultry and human E. coli O17:H18-
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Several studies have reported the coexistence of blaCTX-M-14 and fosA3 [139, 140] 1220 

among Enterobacteriaceae strains. One frequently observed gene arrangement includes 1221 

IS26–blaCTX-M-14–611 bp–fosA3–1222 bp–IS26, with directly oriented flanking IS26 copies 1222 

[141]. However, a slightly different genetic architecture was identified in this study (IS26–1223 

blaCTX-M-14–611 bp–fosA3–1274 bp–IS26), where IS26 existed 1274 bp downstream fosA3. 1224 

Furthermore, the flanking IS26 copies in this study were inverted with respect to each other, 1225 

thus not fulfilling the architecture required to form a cointegrate or a translocatable unit (TU) 1226 

[142] during IS26-mediated co-transfer of blaCTX-M-14 and fosA3. Further analysis of the two 1227 

poultry-associated O108:H51-ST155 strains uncovered that the abovementioned 4.8 kb unit 1228 

was part of a larger segment bracketed by two IS26 copies in direct orientation, resulting in a 1229 

potential 29.9 kb TU. This unit harbored several mobility-associated elements, including 1230 

seven copies of IS26, an integrase gene (int), and a transposase gene (tnpA). Pseudo-1231 

compound transposons flanked by IS26 may facilitate gene amplification by excising a TU 1232 

that reinserts to create an array of two or more TUs [143]. Notably, the suspected 29.9 kb TU 1233 

occurred in tandem duplication in one O108:H51-ST155 strain (CVRI_03), increasing the 1234 

copy number of the blaCTX-M-14 and several other AMR genes (Fig 14D). Nanopore reads 1235 

traversing the junctions of this segment ruled out the possibility of erroneous assembly. 1236 

Moreover, the observed duplication, which included the blaCTX-M-14 gene, coincided with a 1237 

higher cefotaxime MIC in CVRI_03 (≥ 512 µg/ml) compared to CVRI_10 (128 µg/ml) 1238 

(Table 7). While the two O108:H51-ST155 strains were very similar, CVRI_10 carried an 1239 

extra 198 kb IncFII(29)_1_pUTI89 plasmid, lacking in CVRI_03. This difference in the 1240 

plasmid content was accompanied by a discrepancy in growth rate between CVRI_03 (µ = 1241 

0.200) and CVRI_10 (µ = 0.081), complicating the assessment of the amplified TU’s effect 1242 

on the fitness of CVRI_03. 1243 

  1244 
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 1245 

 1246 

Both plasmids belonged to IncFII(pCoo) incompatibility group, with over 90% nucleotide 1247 

sequence similarity and harboring the blaCTX-M-55 gene (red). 1248 

 1249 

  1250 

Figure 16. Similarity between plasmids pCV1_IncFII(pCoo) and pL37-4. 
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 1251 

The IncHI plasmid in poultry-associated ST155 strains shared a 4.8 kb unit with ST69 1252 

isolates from humans. This unit carried blaCTX-M-14 and fosA3 genes, flanked by IS26 copies 1253 

in inverted orientation. 1254 

 1255 

  1256 
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Discussion 1257 

In this study, 20 cefotaxime-resistant E. coli isolates obtained from poultry in Lusaka, 1258 

Zambia, were characterized by WGS. These isolates were tested for MDR and compared to 1259 

36 cefotaxime-resistant E. coli strains isolated from hospital patients in the same city. Four 1260 

out of 20 (4/20, 20%) poultry isolates shared clonality with 9/36 (25%) human strains. The 1261 

four poultry and nine human strains had the same ST and O:H serotype and exhibited 1262 

identical MDR profiles and QRDR mutations. The said strains also possessed two nearly 1263 

identical plasmids carrying the same 14 AMR genes, suggesting clonal origin. Interestingly, 1264 

the strains also had blaCTX-M-harboring plasmids different for each niche, implying separate 1265 

ESBL acquisition modes. These results indicate a clinically important link between MDR E. 1266 

coli strains in poultry and humans, underscoring that a multisectoral approach is required to 1267 

mitigate the threat of MDR.  1268 

ST69, which is among the most challenging lineages known, is the second most 1269 

frequent extraintestinal pathogenic E. coli [144]. In Zambia, 25% of ESBL-producing E. coli 1270 

at the UTH belonged to the MDR clone E. coli ST69 [130]. Because of this predominance, 1271 

there is a need to reveal the potential reservoirs and acquisition routes of the E. coli ST69 1272 

clone. Notably, the present study reports a linkage between this clone and E. coli ST69 1273 

isolates obtained from poultry in the same city. Apart from two plasmids (i.e., IncFII(pCoo) 1274 

present only in poultry strains and IncHI found only in human isolates), the poultry- and 1275 

human-associated ST69 lineages were nearly identical, with the same O:H serotypes and 1276 

resistance plasmids (IncFI and IncI-complex). Furthermore, the ST69 isolates from poultry 1277 

and humans also shared several AMR genes and QRDR mutations. The close phylogenic 1278 

relationship between poultry and human strains without host-specific clustering could imply 1279 

clonality. These results suggest that MDR propagation between poultry and humans likely 1280 

occurred through the direct transmission of the ST69 clone, including the two plasmids 1281 

belonging to IncFI and IncI-complex. The clones could have subsequently diverged along 1282 

separate evolutionary trajectories in response to various selection pressures associated with 1283 

the host environment, culminating in the acquisition of distinct ESBL-encoding plasmids (Fig 1284 

18).  1285 

One crucial trait among bacteria is the ability to resist multiple antimicrobials, leading 1286 

to their persistence in challenging ecological habitats, such as patients and animals on 1287 

antibiotic treatment. The 20 poultry strains in the present study were all resistant to various 1288 

antimicrobials of clinical significance, such as ampicillin, chloramphenicol, and doxycycline. 1289 
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The observed MDR pattern could result from the current practices and antimicrobial use in 1290 

Zambian poultry, where amoxicillin, chloramphenicol, and doxycycline are among the 1291 

frequently used drugs, according to the Zambia National Public Health Institute (ZNPHI) 1292 

[111]. However, the observed MDR prevalence (100%) among the poultry samples was 1293 

likely overestimated since the selection criterion, cefotaxime resistance, is often associated 1294 

with MDR [101]. 1295 

Of particular concern was the observation that 90% of the isolates exhibited resistance 1296 

to ciprofloxacin and nalidixic acid, clinically significant quinolones commonly used as first- 1297 

and second-line drugs to treat a wide range of bacterial infections. The high quinolone 1298 

resistance observed in this study was similar to the prevalence among clinical strains from the 1299 

UTH, where close to 90% of the MDR Enterobacteriaceae displayed resistance to 1300 

ciprofloxacin and nalidixic acid [130]. Again, the actual quinolone resistance burden might 1301 

be overstated by these results since this study only included cefotaxime-resistant strains, 1302 

potentially associated with quinolone resistance [145, 146]. Despite most poultry strains 1303 

showing resistance to the quinolones, MICs were much higher in the four E. coli ST69 1304 

isolates carrying mutations in the QRDRs of gyrA, parC, and parE. Similarly, the nine 1305 

human E. coli ST69 isolates mentioned above showed equally high MICs for ciprofloxacin 1306 

and nalidixic acid and harbored the same quinolone resistance mutations, thus supporting the 1307 

proposed clonal expansion hypothesis.  1308 

Studies elsewhere show that E. coli ST155 is common among poultry samples from 1309 

other African countries [147]. In the present study, ST155 predominated the poultry samples 1310 

at 80% (16/20), but it was absent in the clinical strains. However, other studies have reported 1311 

this ST in humans [116], making it a potential MDR threat in Zambia. Besides, the MDR-1312 

encoding IS26-flanked TU identified on an IncHI plasmid in a pair of ST155 strains 1313 

(CVRI_03 and CVRI_10) is a call for concern. Research on IS26-associated TUs carrying 1314 

various β-lactamase genes (blaTEM-1B [143], blaOXA-1, and blaCTX-M-15 [148]) shows an 1315 

associated increase in resistance to β-lactam antibiotics. Consistently, the blaCTX-M-14-carrying 1316 

TU in CVRI_03 seemed to have increased the cefotaxime MIC of this strain. However, no 1317 

apparent treatment implications are expected from this change since it takes only a single 1318 

copy of blaCTX-M to cause cefotaxime resistance. Also, the said ST155 strains (CVRI_03 and 1319 

CVRI_10) exhibited identical phenotypic AMR profiles. Still, this finding is clinically 1320 

relevant because IS26 can transfer AMR genes among various Enterobacteriaceae clones and 1321 

species [149], highlighting that ST155 is a potential MDR reservoir for human pathogens in 1322 

Zambia.  1323 
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Nevertheless, it is unclear whether the high prevalence observed for ST155 was 1324 

expected since previous reports in Zambia [17, 150] did not characterize MDR E. coli in 1325 

terms of MLST. Moreover, all the samples included in this study were collected from the 1326 

same farm, making it difficult to generalize and carefully interpret the findings. Hence, more 1327 

extensive studies, including more isolates and sampling points, will be required to answer 1328 

many questions definitively. Nevertheless, the results presented here still raise public health 1329 

concerns since the farm sampled is commercial and supplies poultry products to several 1330 

communities in Lusaka and nearby districts. 1331 

Furthermore, the clonal relationship between E. coli ST69 strains from poultry and 1332 

humans suggests that MDR could have spread between these two niches. While there is a 1333 

possibility that poultry and humans independently acquired the E. coli ST69 clone from 1334 

another source, the model (Fig 18) in the present study seems plausible considering how 1335 

common poultry products are and the associated antibiotic use during production. In Zambia, 1336 

poultry accounts for 50% of the country’s meat consumption, and the industry generates 5% 1337 

of the national GDP [151]. As the national population expands, there is an increase in the 1338 

demand for animal-source protein, including poultry and poultry products. To meet this 1339 

demand, poultry companies heighten production by raising large numbers of birds through 1340 

intensive farming methods that often require antibiotic usage for prophylaxis and sometimes 1341 

for growth enhancement. While this is crucial to alleviating food shortage problems, the 1342 

associated MDR escalation is incredibly problematic.  1343 

To address this dilemma, the Ministry of Health and the Ministry of Livestock and 1344 

Fisheries (MLF) should make tradeoffs that limit MDR spread while adequate poultry 1345 

production is maintained. The University of Zambia has been a critical stakeholder in 1346 

fostering One Health [152], leading to a rise in the discourse on the concept. These efforts 1347 

have attracted crucial partners such as the ZNPHI, who recently launched a One Health 1348 

Surveillance Platform for AMR in Zambia [153]. Moving forward, there is a considerable 1349 

need to build on the progress made so far by strengthening the main pillars of AMR 1350 

prevention using a multisectoral approach. Achieving the desirable outcomes demands the 1351 

MLF to educate poultry farmers about the dangers of non-rational antibiotic use and the 1352 

benefits of improving animal conditions and hygiene. In addition, there should be more 1353 

restrictions on the sale of antibiotics for prophylaxis. At the same time, AGP use must be 1354 

guided by recommendations from thorough risk analysis and solely limited to nonmedically 1355 

important antibiotics. Finally, routine food inspection must be strengthened by including 1356 

antibiotic residue monitoring to increase the quality of the data available for policymaking. 1357 
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Moreover, extending these tests to include other food animals would help identify various 1358 

potential MDR reservoirs.  1359 

  1360 
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 1361 

The model proposes that the E. coli O17:H18-ST69 strain, along with the two AMR plasmids 1362 

(IncFI and IncI-complex), was likely acquired by poultry or humans from an unknown 1363 

source. This could have been followed by direct transmission between poultry and humans; 1364 

the strain probably underwent different evolutionary trajectories in the two hosts where the 1365 

poultry lineage acquired a blaCTX-M-55-carrying IncFII(pCoo) plasmid, while the human 1366 

lineage gained a blaCTXM-14-carrying IncHI plasmid. 1367 

  1368 

Figure 18. Schematic proposal for the transmission of E. coli O17:H18-ST69 between 
poultry and humans. 
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General conclusion 1369 

Therapeutic challenges faced by clinicians during the management of patients 1370 

infected with drug-resistant Enterobacteriaceae raise considerable concern. The problem is 1371 

further exacerbated by the rise of animal-related AMR following antibiotic use for 1372 

prophylaxis and growth promotion. Developing practical control strategies requires 1373 

epidemiologic research linking AMR and patient outcomes. However, the lack of detailed 1374 

molecular data in many developing countries limits the successful implementation of 1375 

effective AMR control policies. In Zambia, for example, previous studies on ESBL-mediated 1376 

AMR in humans and poultry have relied on limited technologies such as PCR. Therefore, 1377 

building on previous efforts, this work provides a WGS-based analysis of 46 human- (one E. 1378 

cloacae, nine K. pneumoniae, and 36 E. coli) and 20 poultry-associated (E. coli) ESBL-1379 

producing strains. 1380 

In Chapter I, the study characterized susceptibility profiles and AMR genes among 46 1381 

cefotaxime-resistant hospital Enterobacteriaceae. The results revealed that the spread of 1382 

blaCTX-M genes is perpetuated by the persistence of a few resilient STs, with E. coli ST69 1383 

dominating. In addition, one E. cloacae and three E. coli strains carried large chromosomal 1384 

insertions co-harboring the ISEcp1-blaCTX-M-15 transposition unit and various AMR genes 1385 

originating from plasmids. The findings imply that ISEcp1 mobilizes large blaCTX-M-15-1386 

containing MDR segments in diverse Enterobacteriaceae species. The stable maintenance of 1387 

these MDR segments on chromosomes may facilitate the spread and persistence of MDR 1388 

clones and lead to treatment failure and poor patient outcomes.  1389 

In Chapter II, the phylogenetic relationship of MDR E. coli from poultry and humans 1390 

in Zambia was inferred to establish the possibility of MDR spread between the two niches. 1391 

The results revealed a close relationship between MDR E. coli ST69 from poultry and 1392 

humans, suggesting possible transmission between the niches. The observation highlights the 1393 

need for a closer multisectoral collaboration between human and animal health experts under 1394 

the One Health umbrella. In addition, risk analysis and genome-based surveillance should 1395 

guide policy formulation on AGP use in food animals.  1396 

The results presented here provide an important benchmark for further studies to 1397 

forecast and limit MDR spread from poultry to humans in Zambia.  1398 

 1399 
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