
 

Instructions for use

Title Study on Quick Prediction of Dose Volume Statistics in Proton Beam Therapy using Deep Learning

Author(s) JAMPA-NGERN, SIRA

Citation 北海道大学. 博士(医理工学) 甲第15034号

Issue Date 2022-03-24

DOI 10.14943/doctoral.k15034

Doc URL http://hdl.handle.net/2115/86133

Type theses (doctoral)

File Information Sira_Jampa-ngern.pdf

Hokkaido University Collection of Scholarly and Academic Papers : HUSCAP

https://eprints.lib.hokudai.ac.jp/dspace/about.en.jsp


Thesis 

Study on Quick Prediction of Dose Volume 

Statistics in Proton Beam Therapy using Deep 

Learning 

(深層学習を用いた陽子線治療における線

量体積統計量の迅速予測に関する研究) 

 

 

 

03/24/2022 

Hokkaido University 

Sira Jampa-ngern 

  



  



Thesis 

Study on Quick Prediction of Dose Volume 

Statistics in Proton Beam Therapy using Deep 

Learning 

(深層学習を用いた陽子線治療における線

量体積統計量の迅速予測に関する研究) 

 

 

 

03/24/2022 

Hokkaido University 

Sira Jampa-ngern 

 

  



Table of Contents 

Presented Paper List and Conference Presentation List 1 

Introduction 2 

Abbreviation Table 4 

Chapter 1 6 

1.1 Introduction 6 

1.2 Experiment Method 7 

1.2.1 Concept and workflow of the Simple dose prediction (SDP) tool 7 

1.2.2 Image data sets and Contour-based Data Augmentation (CDA) before DL 8 

1.2.3 Investigation of appropriate parameter and data sets before DL 11 

1.2.4 Dose Planning and Calculation of the liver Dmean 13 

1.2.5 Cross-section Profiling before DL 16 

1.2.6 Data Labeling 17 

1.2.7 Convolutional Neural Network 19 

1.2.8 Measurement of accuracy and time required to predict using SDP 19 

1.3 Experiment Results 21 

1.3.1 Investigation of appropriate parameter and data sets before DL 21 

1.3.2 The relationship between the predicted liver Dmean by SDP and the planned 

liver Dmean 25 

1.4 Discussion 31 

Chapter 2.  Attempts to improve the SDP 34 

2.1 Introduction 34 

2.2 Experimental Method 35 

2.2.1 Three-dimension profiling (3DP) 35 

2.2.2 Deep learning with architecture of pre-trained models 39 

2.3 Experimental Results 50 



2.3.1 Three-dimension profiling (3DP) 50 

2.3.2 Deep learning with architecture of pre-trained models 50 

2.4 Discussion 56 

2.4.1 Three-dimension profiling (3DP) 56 

2.4.2 Deep learning with architecture of pre-trained models 56 

Summary and Conclusion 58 

Acknowledgement 60 

Citated references 61 

 

 



1 

 

Presented Paper List and Conference Presentation List 

Part of this study was presented in the following paper: 

1. Sira Jampa-ngern, Keiji Kobashi, Shinichi Shimizu, Seishin Takao, Keiji 

Nakazato, Hiroki Shirato 

Prediction of liver Dmean for proton beam therapy using deep learning and contour-

based data augmentation  

Journal of Radiation Research, 62(6), 1120-1129 (2021) 

Part of this study was presented in the following academic conferences: 

1. Sira Jampa-ngern, Keiji Kobashi, Shinishi Shimizu 

Feasibility Study on DVH Estimation by Machine Learning from Small Data 

towards Simplified Model-based Approach for Selective Use of Proton Therapy 

The 118th Congress on Japan Society of Medical Physics (JSMP), 12-14 

September 2019, Fukui, Japan 

2. Sira Jampa-ngern, Keiji Kobashi, Shinichi Shimizu 

Study of EUD estimation using machine learning from small data as pre-screening 

tool prior to MBA for PBT patient selection 

The 121st Scientific Meeting of the Japan Society of Medical Physics (JSMP), 15-

18 April 2021, Yokohama, Japan 

  



2 

 

Introduction 

Proton beam therapy (PBT) is effective for cancer treatment due to advantageous 

physical characteristics which allows minimizing unwanted doses and limits 

complication outcomes from radiation when compared with X-ray therapy (XRT) 

including intensity modulated X-ray therapy (IMXT) and stereotactic irradiation (STI). 

However, the treatment costs of PBT are much higher than IMXT and STI (Loeffler and 

Durante, 2013), and in many countries, the access of PBT systems is very limited. For 

this reason, the patient selection for PBT is important from the aspect of social healthcare 

economics. 

A biophysical model for normal tissue complication probability (NTCP) of organs at 

risk (OAR) has been proposed for the selection of PBT versus XRT prescribing the same 

dose to the cancer. However, uncertainties in the parameters of the model-based approach 

still limits its wide spread usage (Prayongrat et al., 2018). In the real world including our 

institution, the evaluation for PBT is often assessed by the dose volume statistics such as 

the mean dose (Dmean) of OAR rather than NTCP. For example, in a conventionally 

fractionated XRT, liver Dmean < 28 - 32 Gy for 5% of classical radiation-induced liver 

diseases has been often used as the dose constrains based on the clinical evidence (Marks 

et al., 2010). Applying 1.1 as the relative biological effectiveness (RBE) of PBT in the 

clinical decision (Chen et al., 2018), if the liver Dmean is lower than the threshold in PBT 

but not in XRT, the PBT is often recommended as a radiotherapy option for the cancer 

board for liver cancer in our institution.  

This raises the problem that the physician has to wait overly long before being able to 

select the treatment option for cancer patients in daily clinical practice. The physicians 

are required to prepare the results of the liver Dmean calculations for to the cancer board 

within a few hours or few days after the visit of the patient or the inquiry from a referring 

hospital. Three-dimensional (3D) radiotherapy treatment planning (RTP) using computed 

tomography (CT) requires considerable time and resources for both PBT and XRT since 

contouring of many OARs and intensity modulation has become the standard of care for 

many diseases (Cilla et al., 2021). The development and availability of a simple 

quantitative clinical decision support tool for the selection of PBT presenting less of a 

burden will be helpful to overcome these barriers.  
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Recently, a machine learning including deep learning (DL) techniques has become widely 

used in the medical field. In the radiation oncology area, deep learning is applied for many 

tasks including image segmentation and detection, image phenotyping and radiomic 

signature discovery, clinical outcome prediction, image dose quantification, dose-

response modeling, radiation adaption, and image generation (Boldrini et al., 2019). The 

DL-based automatic 3DRTP for XRT is proposed for situations with relatively large sets 

of data. Chen et al., Nguyen et al., and Ibragimov et al. have used 80 patients, 88 patients, 

and 125 patients, respectively (Ibragimov et al., 2018; Chen et al., 2019; Nguyen et al., 

2019). However, the number of training images in oncology studies are criticized as still 

too few since it is known that about 5,000 labeled examples are required as training input 

to train a convolution neural network (CNN) effectively, as a role of thumb (Goodfellow, 

Bengio and Courville, 2016). To develop CNN models of the 3DRTP for PBT, it will be 

more difficult to collect sufficient numbers of data sets than XRT studies because of the 

small number of patients who have been (and are being) treated with PBT.     

The theme of this thesis is the development of a simple quantitative clinical decision 

support tool for the selection of PBT with less of a burden.  This thesis is composed of 

Chapter 1 and chapter 2 to solve the problems in the selection of PBT.  The first chapter 

is the prediction of liver Dmean for PBT using CNN and contour-based data augmentation 

using our in-house programs.  The second chapter is about the DL with architecture of 

pre-trained models to improve our in-house program.  
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Abbreviation Table 

The abbreviations used in the body text and figures are as follows: 

2DP   2-dimension profiling 

3DP   3-dimension profiling 

BP   Bragg peak 

CDA   Contour-based data augmentation 

CNN   Convolution neural network 

Conv   Convolution 

CT   Computer tomography 

CTOI   CT of interest 

CTV   Clinical target volume 

dDVH   Differential dose volume histogram 

DICOM  Digital Imaging and Communications in Medicine 

DL   Deep learning 

Dmax   Maximum dose 

Dmean   Mean dose 

Dmin   Minimum dose 

DVS   Dose volume statistic 

DWConv  Depthwise convolution 

EUD   Equivalent uniform dose 

GTV   Gross tumor volume 

IMPT   intensity modulated proton beam therapy 
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IMXT   intensity modulated X-ray therapy 

MBA   Model-based approach 

MPE   Mean percentage error 

MRE   Mean relative error 

MSE   Mean square error 

NTCP   Normal tissue complication probability 

OAR   Organ at risk 

PBT   Proton Beam Therapy 

PC   Personal computer 

PDD   Percentage depth dose 

PTV   Planning target volume 

ReLU   Rectified linear units 

RILD   radiation-induced liver diseases 

ROI   Region of interest 

RT   Radiation therapy 

SDP   Simple dose Prediction 

SOBP   Spread-out-Bragg-peak 

STI   Stereotactic irradiation 

TCIA   The Cancer Imaging Archive 

TCP   Tumor control probability 

VOI   Volume of interest 

XRT   X-ray therapy 

β   Regression coefficient  
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Chapter 1  

 

1.1 Introduction  

There are two subjects addressed in this chapter, the first subject is the investigation 

about our proposal of a simple dose prediction tool (SDP).  We developed a prototype of 

the SDP which can predict the liver Dmean in PBT for liver cancer is possible based on 

CNN. The liver Dmean was selected since the liver can be regarded as a parallel structure 

organ in which Dmean is known to be a reasonable clinical and biological metric (Dawson 

et al., 2002). The physicians are not required to wait for a precise 3DRTP comparison 

when they only require an approximate predicted liver Dmean for rapid presentation to the 

cancer board or in discussions with the health insurance society. Compared to 3DRTP, 

the SDP requires fewer resources to predict the liver Dmean.  

The second subject is the proposal of contour-based data augmentation (CDA) before the 

generation of the CNN to predict the outcome, the liver Dmean. In the CDA, contours from 

a small number of patients are required to generate the CNN. Virtual CTV are artificially 

embedded in the liver for data augmentation of the contours of the CTV and 

corresponding liver Dmean are used as labels for the data sets. We term this approach the 

CDA approach in this study. In the training process with a big amount of conventional 

CT image data, the memory of computers is often insufficient during the training of the 

network. This can be mitigated by reduction of input data size using the CDA approach. 

Another advantage of the CDA approach is the rapidity of the model training and data 

loading. The working hypothesis of this study is that deep learning and CDA can quickly 

predict the liver Dmean for PBT without increasing the input data and time for the 

generation of the CNN. 
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1.2 Experiment Method 

1.2.1 Concept and workflow of the Simple dose prediction (SDP) tool 

A conceptual flow chart to utilize the SDP is shown in Figure 1. A simple contouring 

software package is required for the physician to do the contouring of the CTV and OARs 

on the CT images. Information about the size (mm) of a pixel of the two-dimensional 

(2D) image, the number of pixels in one image (for example, 512 x 512), and the slice 

thickness of the original image are required. The contours are input into a personal 

computer where the SDP has been installed. The SDP can be installed in the personal 

computer where the contouring has been performed. The contours are then used to 

estimate the liver Dmean based on the simple dose calculation algorithm described below. 

The predicted liver Dmean will then directly be shown on the screen. The contours are 

visualized on the screen with pre-determined homogeneous grayscales using the bitmap 

format and the physician can visually check the appropriateness of the contours input to 

the SDP.  

In a real-world clinic, the angles to treat a type of tumors are often determined by 

treatment plan protocols in the particular hospital. For example, 2 beam with almost the 

same beam angles are used for liver cancers in our institution (data not shown). In the 

SDP, therefore, several different combinations of two angles can be pre-determined for 

liver cancer. The program directly predicts the liver Dmean for the pre-determined 

combinations of portal numbers and angles. The physician can use the liver Dmean to select 

the best combination of portals based on the threshold on the liver Dmean which is also 

pre-determined by the hospital or health authorities of the country. In this study, a patient 

with a liver cancer is assumed to visit a clinic with CT images in the DICOM format. We 

have selected 3 organs as the candidate OARs for contouring: liver, spinal cord, and skin.  
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Figure 1. Flowchart of simple dose prediction (SDP) tool with the time to establish the 

inference of liver mean dose (Dmean) for a patient. 

 

1.2.2 Image data sets and Contour-based Data Augmentation (CDA) before DL 

In this study, CT images of actual patients with a single liver tumor were obtained from 

The Cancer Imaging Archive (Clark et al., 2013; Erickson et al., 2016). There were 52 

data sets which were labeled ‘liver cancer’. A radiologist and a radiation technologist 

have seen the images and removed 35 data sets of magnetic resonance images, multiple 

metastatic liver cancers, and diffuse tumors which are not good candidates for 

radiotherapy. Therefore, the remaining 17 data sets of CT images were available to be 

used in this study. The CT slice thickness and side length range was 2.5-8.0 mm and 320-

400 mm, respectively. The CTV margin for gross tumor volume was assumed to be 0.0 

cm. The contours of the CTV, liver, spinal cord, and skin surface in the CT images were 

provided by MIM (MIM Software Inc).  

To increase the data for the deep learning process, CDA was used in the training and 

validation (Figure 2). Virtual CTVs were generated and placed inside the contours of the 

liver as ellipsoids at various principal semi-axes and orientations for the data 

augmentation (Figure 3). The part of the virtual CTV which is outside the liver boundary 

was removed. For each patient data set, 199 virtual CTVs of different sizes and locations, 
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were generated making it 200 CTVs including the original and virtual CTVs for one 

patient.  

 

 

Figure 2. Flow chart for the training of the CNN in the SDP tool using CDA. CTV: clinical 

target volume, OAR: organ at risk, CNN: convolution neural network. 



10 

 

 

Figure 3. The example of creating and embedding of virtual CTVs inside the actual patient 

contour in contour-based data augmentation (CDA). 

 

In the 17 data sets of patients with a single liver tumor obtained from TCIA (Clark et al., 

2013; Erickson et al., 2016), we assumed that the minimum number of data sets for the 

test is 10 (Chen et al., 2019; Nguyen et al., 2019) and randomly selected 10 data sets from 

the 17 data sets available (Table 1).  The mean of the diameters of the CTV in the 10 

patients for tests was 3.317 cm (0.707-7.213 cm) (Table 3).  
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Table 1. CT slices parameter of the 10 patients used in test data set and the total time 

required to predict the liver Dmean for 6 plans altogether (by simultaneous model). 

Patient   

Total 

no. of 

CT 

slices  

No. 

of 

liver 

slices  

No. 

of 

tumor 

slices  

Slice 

thickness 

(cm)  

Slide 

range 

(cm)  

Pre-

processing 

time (sec)  

Dmean 

estimation 

time (sec)  

Total 

time 

(sec)  

Test 1 46 32 7 0.50 36.00 8.47 4.40 12.87 

Test 2 95 70 9 0.30 38.00 13.34 4.51 17.85 

Test 3 46 19 3 0.50 36.00 6.27 4.39 10.66 

Test 4 60 20 14 0.80 35.60 6.94 4.46 11.40 

Test 5 90 74 5 0.25 40.00 12.40 4.33 16.73 

Test 6 106 69 12 0.25 35.00 12.56 4.63 17.19 

Test 7 86 42 36 0.50 39.00 10.15 4.52 14.67 

Test 8 62 34 7 0.68 35.00 6.91 4.39 11.30 

Test 9 97 60 16 0.25 40.00 12.72 4.49 17.21 

Test 10 58 55 28 0.50 32.00 6.34 4.58 10.92 

Mean 74.60 47.50 13.70 0.45 36.66 9.61 4.47 14.08 

SD 22.50 20.83 10.60 0.19 2.56 2.94 0.09 2.96 

Abbreviation: Dmean = Mean dose, SD = Standard deviation  

The remaining 7 data sets were used for the training and validation of the prediction model. 

The validation dataset is used to prevent overfitting and selected as the best performance 

of the prediction model. No data sets for tests were used in the training and validation. 

The median volume of the CTV was 11 (range: 2-508) cm3 and the median of the liver 

volume was 1202 (896-2299) cm3 in the 7 patients for training or validation.  

 

1.2.3 Investigation of appropriate parameter and data sets before DL 

To access the best performance of our CDA method we investigated an appropriate 1) 

number of virtual CTVs by CDA, 2) ratio of training to validation data sets, 3) number of 

OARs, 4) number for parameter K, and 5) Dose prediction of 6 Dmean; simultaneously or 

separately. The MRE was used as a measure of the error between the predicted liver Dmean 

and the planned liver Dmean which was predicted from the model trained by the different 

conditions. The condition with the lowest MRE was used as the appropriate one in the 

deep learning. 

1) Number of virtual CTVs by CDA 
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To investigate the appropriate number of CTVs (virtual CTVs + actual CTV) for 

training and validation, several different numbers of CTVs, at 10, 15, 20, 25, 30, 40, 

50, 60, 70, 80, 90, 100, 125, 150, 175, 200, 250, and 300 were used without changing 

the other parameters. The ratio of training to validation data sets was 5:2 and the 

training OAR input is only the CTV with the liver. The trained model by the different 

numbers of CTVs was tested by 10 actual patients. The MRE was used as a 

measurement of the discrepancy between the predicted liver Dmean and the planned 

liver Dmean which was predicted from the model trained by the different numbers of 

CTVs. The appropriate number of CTVs was selected at the point of convergence of 

MRE with the number of CTVs. 

2) Ratio of training to validation data sets 

To investigate the appropriate ratio of data sets of patients for training to for validation, 

we changed the ratio (training: validation) from 1:6, 2:5, 3:5, 4:3, 5:2, 6:1, to 7:0 

without changing the other parameters. The training OAR input was for the liver only 

(with the CTVs) and the number of virtual CTVs were 199 for each actual patient. 

The model was trained and tested by 10 actual patient data sets. The MRE was used 

as a measure of the error between the predicted liver Dmean and the planned liver Dmean 

which was predicted from the model trained by different ratios in the training and 

validation. The condition with the lowest MRE was used as the appropriate ratio. 

3) Number of OARs 

To investigate the appropriate number of OARs in deep learning, the model was 

trained with different conditions of OARs without changing the other parameters, 1) 

3 OARs including skin, liver, and spinal cord, 2) 2 OARs including skin and liver, 3) 

1 OAR including only the skin, and 4) 1 OAR including only the liver. The ratio of 

training to validation data sets was 5:2 and the number of CTVs (virtual CTVs + 

actual CTV) were 200 for each actual patient. The model trained by different 

conditions was tested by 10 actual patient data sets. The MRE was used as a measure 

of the error between the predicted liver Dmean and the planned liver Dmean which was 

predicted from the model trained by the different conditions of the OAR(s). The 
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condition with the lowest MRE was used as the appropriate number of OARs in the 

deep learning. 

4)  Number for parameter K 

To investigate the appropriate number for parameter K, the models were trained with 

different numbers of parameter K from 4-15 without changing the other parameters. 

The ratio of training to validation data sets was 5:2, the training OAR input was only 

livers and the CTVs, and the number of CTVs (virtual CTVs + actual CTV) was 200. 

The trained models by different parameter K were tested by 10 actual patients’ data. 

The appropriate parameter K was selected at the convergence of MRE with the 

parameter K. 

5)  Dose prediction of 6 Dmean simultaneously or separately 

We also investigated which is better to use 6 different plans simultaneously in one 

model (simultaneous model) or separately in 6 different models (Separate model).  

 

1.2.4 Dose Planning and Calculation of the liver Dmean  

As the dose calculation algorithm, a simple 2-dimensional percentage depth dose 

program for PBT was used in the in-house RTP in this study as follows.  

A simple analytical approximation for depth dose distribution of a spread-out-Bragg-

peak (SOBP) proton beam is introduced by Bortfeld (Bortfeld and Schlegel, 1996) and used 

in this study. The SOBP is achieved by superposition of elementary Bragg peak depth-dose 

curves. 

The equation of depth-dose curve of a monoenergetic broad beam at depths between d 

= 0 cm and d = R cm, DBP(d), can be approximated as in the following equation. The 

Bragg curve, DBP(d), is in units of dose per incident particle fluence (Gycm2) as shown in 

equation (1).  

𝐷𝐵𝑃(𝑑) =  −
1

𝜌

𝑑𝐸

𝑑𝑑
=  

1

𝜌𝑝𝛼1 𝑝⁄ (𝑅−𝑑)1−1 𝑝⁄       (1) 

where, ρ is the density of the body and p is an exponent of the range-energy relation, 
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and equal to 1.5. The proportionality factor, α, is equal to 1.9e-3. The Bragg peaks at 

different positions R is superimposed to the SOBP with weighting factors, W(R) for the 

Bragg peak using equation (2). The superposition of Bragg peaks results in a flat SOBP 

of height D0 within an interval [da, db]. The SOBP resulting from convolving the 

individual Bragg peak with the weighting function is expressed using equation (3).   

Figure 4 shows the relative depth-dose distribution assuming D0 as 1.0. 

𝑊(𝑅) =  {   𝜌𝐷0

𝑝 sin(
𝜋

𝑝
)𝛼1 𝑝⁄

𝜋(𝑑𝑏−𝑅)1 𝑝⁄                    ∶ 𝑓𝑜𝑟 𝑑𝑎 ≤ 𝑅 < 𝑑𝑏             

0                                            ∶ 𝑓𝑜𝑟 𝑅 < 𝑑𝑎 𝑜𝑟 𝑅 > 𝑑𝑏

  (2) 

𝐷𝑆𝑂𝐵𝑃(𝑑) =  ∫ 𝑊(𝑅)𝐷𝐵𝑃(𝑑, 𝑅)𝑑𝑅
𝑑𝑏

𝑑𝑎
      (3) 

 

The estimation of 3D Dmean of CTV and OARs from 2D Dmean uses simple mathematics. 

For the calculation of the Dmean as the 3D Dmean, the following equation (4) is used. 

 

3𝐷𝐷𝑚𝑒𝑎𝑛 =  ∑ 2DDmean(i) x F(i)𝑇
𝑖=1       (4),  

where T is the total number of CT slices which contain the CTV or OAR of interest, and 

F(i) is the ratio of i-th slice volume (slice area times slice thickness) to the summation of 

that of the T slices. The 2DDmean(i) is the mean dose of the ROI of the CTV or OAR in the 

i-th CT slice. 

 

Figure 4. Relationship between the relative dose and depth in the case that [da, db] is equal 

to [10, 20] cm generated by equation 1-3. 
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All of the densities in the body were assumed to be 1.0. No consideration was given to 

the lateral spread in the calculations. The planning treatment volume (PTV) margin was 

1.0 cm for the CTV in the transaxial plane with no margin for the cranio-caudal direction, 

for simplicity. The size and shape of fields and energies of PBT were determined to cover 

the PTV. The “2D Dmean”
 for the CTV and 3OARs in each CT slice were calculated from 

the differential dose volume histogram (dDVH) using the in-house RTP. The 3D Dmean, 

for the CTV and 3OARs in the 3D space were calculated using a simple estimate from 

the 2D planning as described above.  

 For simplicity, 6 different combinations of 2-portals were assumed to be pre-determined 

as the treatment plan protocol for the liver PBT in this study. Plan A is anterior-posterior 

(AP), plan B is anterior-right (AR), plan C is anterior-left (AL), plan D is posterior-right 

(PR), plan E is posterior-left (PL), and plan F is right-left (RL), respectively (Figure 5).  

 

Figure 5. The dose distribution in a slice of CT contour in 6 different plans, Plan A-F, 

generated by in-house RTP.  
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Thus, 6 sets of dose distributions were generated for one set of CTV after CDA and 

3OARs.  The mean and standard deviations of the planned 3D Dmean, for CTVs and for 

the normal liver (liver – CTV), were 72.40±1.71 Gy(RBE) and 5.11±4.67 Gy(RBE) 

respectively in the 10 patients for tests.  The mean and standard deviations of the planned 

3D Dmean, for CTVs and for the normal liver (liver – CTV), were 73.43±1.40 Gy(RBE) 

and 4.63±4.36 Gy(RBE) respectively in the 7 patients for training or validation.  

 

1.2.5 Cross-section Profiling before DL 

To extract the features of the CTV and OARs in terms of its location, size, and shape, 

the following procedure is performed before the deep learning. We used only CT images 

where tumors are available in deep learning. The first pixel in the first column and row 

in each CT slice is defined as the location (0,0) and the last pixel in the last column and 

row is the location (n, n) in the CT slice. A two-dimensional region of interest (ROI) in 

each CT slice is used as the data set (Figure 6).  To extract the feature of an ROI, we used 

horizontal and vertical segmentation of the ROI. In either segmentation, the ROI is 

divided into K segments with uniform intervals. Each segment of the ROI in the CT slice 

is expressed by the centroid location (Gx, Gy) in the CT slice and the corresponding partial 

area (A) of the ROI in the segment. If we have used 10 as the number for K in this study, 

the matrix size for one ROI in the CT slice is, therefore, (number of ROI) x 2 (horizontal 

and vertical) x 3 (Gx, Gy, A) x K = number of ROI x 60. We term the extracted features 

of CTV and OARs in each CT slice as 2-dimension profiling (2DP). 
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Figure 6.  Profiling of the ROI from a CT slice. k: the total number of segmentations for 

profiling, GRxi; The x-coordinate of the gravity center of the ith segment of liver in the 

horizonal segmentation. GRyi; The y-coordinate of the gravity center of the ith segment of 

liver in the horizonal segmentation. ARi; The corresponding partial area of the ith segment 

of liver. GCxj; The x-coordinate of the gravity center of the jth segment of liver in the 

vertical segmentation. GCyj; The y-coordinate of the gravity center of the jth segment of 

liver in the horizonal segmentation. ACj; The corresponding partial area of the jth segment 

of liver. The parameters i and j are from 1 to 10 when we use k = 10. 

 

1.2.6 Data Labeling 

Labeling of the data set was performed before the training and validation of the CNN 

(Figure 2).  After the 3D liver Dmean is calculated using the in-house RTP, the data set for 

training and validation is labeled with the planned 3D liver Dmean. We used the data sets 

of the ROIs in all CT slices for the 3D dose calculation. A total of 6 different treatment 

plans (A – F) were made for each CTV and the data sets were labeled with the 6 liver 

Dmean.  Flowchart of preprocessing, model training, and prediction in shown in Figure 7. 



18 

 

 

Figure 7.  Flowchart of preprocessing, model training, and prediction. 
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1.2.7 Convolutional Neural Network 

A convolutional neural network (CNN) was made on PyTorch. The input is the set of 

contours of the ROIs (2DP) in section 1.2.5 and the output is the set of 6 liver Dmean 

(Figure 8). No additional information including none for the beam arrangement or the 

Hounsfield units of the CT for planning were given during the training of the CNN. The 

CNN architecture is based on a basic CNN compound which has been used for digit 

classification (Gu et al., 2018). The ADAM optimizer (α= 10-4, β1= 0.9, β2= 0.999) with 

a weight decay of 0.0001 was used for the training (Kingma and Ba, 2015). Rectified 

linear units (ReLU) were used as the activation function (Nair and Hinton, 2010). The 

mean square error (MSE, L2 loss) was selected as the loss function. All networks were 

trained using an NVIDIA Quadro P5000.  

 

Figure 8.  Illustrated outline of the CNN. Conv: convolution layer, FC1 – FC 5: Fully-

connected layer 1 to 5, Dmean; liver mean dose. 

The maximum epoch number was set to 200 epochs with an early stopping strategy. The 

early stopping strategy lets the training process continue as long as the training and 

validation error is decreased. The appropriate model was saved at the epoch, where the 

lowest validation loss occurred, to avoid overfitting.  

1.2.8 Measurement of accuracy and time required to predict using SDP 

The accuracy of the predictions of the liver Dmean using the validated model were tested 

by using independent data sets of 10 actual patients. The number of unlabeled data sets 

was 10 for each beam combination in the test. The accuracy of the predicted 3D liver 

Dmean was investigated by comparison with the liver Dmean which had been calculated 

using the in-house RTP. We termed the 3D liver Dmean calculated using the in-house RTP 

as the planned liver Dmean (ground truth) in this study. The mean relative error (MRE) is 

used as a measurement of the discrepancy between the predicted liver Dmean and the 
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planned liver Dmean which is predicted from the validated model. The regression 

coefficient (β) is used to describe the relationship between the predicted and planned liver 

Dmean. The p-value of a two-tailed student’s t-test at a 0.05 significance level was used to 

assess the difference between the means of the predicted liver Dmean and the means of the 

planned liver Dmean of 6 different treatment plans in the 10 patients tested. 

The CT images of the 10 patients in the tests were re-evaluated using VQA (Hitachi, 

Tokyo), which is a commercially available 3DRTP that has been used in PBT for actual 

patients with liver cancer in our institution. Intensity modulated proton beam therapy 

(IMPT) was simulated using the actual beam data from PROBEAT-RT (Hitachi, Tokyo), 

which is a commercially available PBT used in our institution. The CT number was used 

for the calculations without assuming the density as 1.0. The CTV, PTV, and prescription 

dose were the same as for the in-house RTP. The beam angles were selected by a 

physician without knowledge of the recommendation and the predicted Dmean by the SDP. 

The liver Dmean was calculated using the VQA and compared with that calculated using 

the in-house RTP and SDP for the 10 patients in the test. 

We measured the time required to train the CNN for the liver Dmean of all of the 6 different 

treatment plans. We also measured the time for the inference of liver Dmean using the SDP. 
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1.3 Experiment Results 

1.3.1 Investigation of appropriate parameter and data sets before DL 

The appropriate parameters and data sets for deep learning are investigated in section 

1.2.3 of the experimental method. The MRE was used as a measure of the error between 

the predicted liver Dmean and the planned liver Dmean which was predicted from the model 

trained by the different conditions. 

1) The appropriate number of CTVs (virtual CTVs + actual CTV) 

To investigate the appropriate number of CTVs (virtual CTVs + actual CTVs) for 

training and validation, several different numbers of CTVs, at 10, 15, 20, 25, 30, 40, 50, 

60, 70, 80, 90, 100, 125, 150, 175, 200, 250, and 300 were used without changing the 

other parameters. The test data set is 10 actual patients. The MRE between the planned 

and predicted Dmean were shown on the y-axis of Figure 9(a) with the number of CTV on 

the x-axis. The result shows that the MRE was reduced and converged at the number of 

virtual CTV around 200. This result ensures that the number of virtual CTVs at 199 is 

appropriate to use with the 200 CTVs (199 virtual CTVs + 1 actual CTVs = 200 CTVs) 

for training. Table 2 shows the MRE between the planned Dmean and the predicted Dmean 

of models trained by different number of CTVs. 

 

Figure 9 (a) The MRE between planned liver mean dose (Dmean) and predicted liver Dmean 

in model trained by different number of virtual tumors by CDA. (b) The MRE between 

planned liver Dmean and predicted liver Dmean in model trained by different number of 

parameter K. 
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Table 2.  The MRE between planned Dmean and predicted liver Dmean in model trained by 

different number of virtual tumors by contour-based data augmentation. 

Number of CTVs 

(Actual CTV + Virtual CTV) 

MRE 

10 0.5059 

15 0.2033 

20 0.1743 

25 0.1897 

30 0.2065 

40 0.1954 

50 0.1940 

60 0.1838 

70 0.1936 

80 0.2112 

90 0.1933 

100 0.1739 

125 0.1554 

150 0.1608 

175 0.1509 

200 0.1637 

250 0.1466 

300 0.1622 

Abbreviation: CTV = Clinical target volume, MRE = Mean Relative Error 
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2)  The appropriate ratio of training to validation data sets 

To investigate the appropriate ratio of data sets of patients for training and for 

validation, we changed the ratio (training: validation) from 1:6, 2:5, 3:4, 4:3, 5:2, 6:1, to 

7:0 without changing other parameters. The MRE between the predicted and the planned 

liver Dmean was 0.2402, 0.2053, 0.2342, 0.1914, 0.1637, 0.1917, and 0.1766 respectively. 

The MRE was the lowest at 5:2. To investigate whether the predictive performance 

increases with more patients in the training, the number of patients in the training data set 

was changed from 1 to 5 keeping the number of patients for validation at 2. The MRE 

between the predicted and the planned liver Dmean of 1, 2, 3, 4, and 5 training data sets 

was 0.2334, 0.2143, 0.2235, 0.1959, and 0.1637, respectively showing that MRE 

improved with the number of training data sets. Based on this, we decided to use 5 patients 

for training and 2 patients for validation in the following. The patients were randomly 

selected for training and validation. The characteristics of the data sets for training and 

validation are shown in Table 3. The number of CT slices used for training and validation 

was 52 (37 of 5 patients for training and 15 of 2 patients for validation). As a result, the 

number of labeled data sets was 10,400 (200 CTV x 52 CT slices). 

 

Table 3. Diameter of CTVs after data augmentation and liver volume determination. The 

characteristics of the data sets for the training, validation, and test. 

Data sets 

CTV Liver 

Number 

of 

patients 

Number 

of 

CTVs 

Equivalent 

diameter (cm) Number 

of 

patients 

Number 

of 

livers 

Volume 

(cm3) 

mean (range) 
median 

(range) 

Training 5 1000 
4.82 (1.44-

11.42) 
5 5 

1202 (896-

2036) 

Validation 2 400 
5.38 (1.73-

12.58) 
2 2 

1624 (948-

2299) 

Test 10 10 
3.31 (0.707-

7.213) 
10 10 

2005 (637-

3559) 

Abbreviation: CTV = clinical target volume 
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3)  The appropriate number of OARS 

To determine the influence of the number of OARs in the deep learning, the model was 

trained with the following different conditions without changing other parameters; 1) 3 

OARs including skin, liver, and spinal cord, 2) 2 OARs including skin and liver, 3) 1 

OAR including only skin, and 4) 1 OAR including only the liver. The MRE between the 

planned Dmean and predicted Dmean, which was trained by different numbers of OARs, 

were 1) 0.1832, 2) 0.1841, 3) 0.2126, and 4) 0.1637, respectively. Since the MRE from 

the model trained by CTV and only liver as the OAR was the lowest, we used the model 

trained by only CTV and liver in the following study. 

4) The appropriate number of parameter K 

To find the appropriate number of K, we have trained the model with different numbers 

of parameter K from 4-15. The test data set is the 10 actual patients. The MRE between 

the planned Dmean and the predicted Dmean of each model were compared in Figure 9(b) 

and Table 4. The MRE not substantially different in cases where K is between 8 and 15, 

confirming that K at 10 is an appropriate number to be used in this model.  

5)  Dose prediction of 6 Dmean simultaneously or separately 

The MRE between the planned and predicted liver Dmean was 0.1637 in the 

simultaneous model while 0.1606 in the separated models.  There was no statistical 

difference between the predicted Dmean from the simultaneous model and separated 

models (p=0.2168). In the following analysis, we used the simultaneous prediction model 

which is a bit faster.  
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Table 4. The MRE between planned liver Dmean and predicted liver Dmean in model trained 

by different number of parameter K. 

Number of K MRE 

4 0.1977 

5 0.1671 

6 0.1813 

7 0.1833 

8 0.1629 

9 0.1636 

10 0.1637 

11 0.1579 

12 0.1656 

13 0.1782 

14 0.1791 

15 0.1600 

Abbreviation: MRE = Mean Relative Error 

 

1.3.2 The relationship between the predicted liver Dmean by SDP and the planned liver 

Dmean 

The model trained by different conditions was tested by 10 actual patient data sets shown 

in Table 1. The number of CTVs (virtual CTVs + actual CTV) were 200 for each actual 

patient and the ratio of training to validation data sets was 5:2. Only CTV and liver were 

used in the model training. The parameter K was determined to be 10.  The simultaneous 

model was used.  Using these appropriate numbers and conditions, the trained model 

saved at epoch 98, in which validation loss is the lowest. The training and validation loss 
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during model training was shown in Figure 10. 

 

Figure 10. The training and validation loss over the epochs during model training. 

 

Consequently, the relationship between the predicted Dmean by SDP and the planned liver 

Dmean calculated by in-house RTP is shown in Figure 11 (a) (10 patients x 6 plans = 60 

points in plot). The MRE between the predicted and the planned liver Dmean is 0.1637 and 

for the β it is 0.9455. There was no significant difference in the mean of predicted liver 

Dmean and the mean of the planned liver Dmean of the 6 different treatment plans for the 10 

actual patients tested (Table 5). Table 6 shows a comparison data for the liver Dmean 

calculated using the VQA, in-house RTP, and the predicted liver Dmean by the SDP.  The 

predicted results using separated models is also shown in Table 6.  
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Figure 11.  Plots of the planned liver mean dose (Dmean) and predicted liver Dmean with 

the line of identity (β = 1). (a) model trained with CDA, (b) model trained without CDA. 
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Table 5. Differences between the mean of the planned Dmean and the mean of the 

predicted Dmean of 6 different treatment plans A to F for the 10 patients in the test. 

Patien

t 
Plan 

Liver Dmean (Gy(RBE)) ∆Dmean (Planned-

Predicted) (Gy(RBE)) 
p-value 

Planned Predicted 

Test 1 
Mean 4.876 4.699 0.176 

0.137 
SD 0.787 0.902 0.244 

Test 2 
Mean 2.129 2.082 0.047 

0.644 
SD 0.300 0.134 0.234 

Test 3 
Mean 2.710 2.927 -0.216 

0.429 
SD 0.469 0.326 0.616 

Test 4 
Mean 12.678 13.516 -0.839 

0.059 
SD 3.340 2.762 0.842 

Test 5 
Mean 0.783 0.721 0.062 

0.308 
SD 0.157 0.091 0.133 

Test 6 
Mean 1.907 2.527 -0.620 

0.038 
SD 0.301 0.625 0.544 

Test 7 
Mean 20.020 17.942 2.078 

0.027 
SD 3.312 4.058 1.645 

Test 8 
Mean 1.661 1.654 0.007 

0.952 
SD 0.253 0.420 0.282 

Test 9 
Mean 4.535 4.556 -0.021 

0.971 
SD 1.233 0.462 1.334 

Test 

10 

Mean 9.893 12.231 -2.337 
0.007 

SD 3.283 3.057 1.322 

Abbreviation: Dmean = Mean dose, ∆Dmean (Planned-Predicted) = Differences between 

the mean of the planned Dmean and the mean of the predicted Dmean, SD = standard 

deviation  
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Table 6.  The comparison among three-dimensional radiation treatment planning 

system commercially available, in-house radiation treatment planning system, and the 

simple dose prediction tool in the beam angles and liver Dmean. 

Patient 

Beam 

Angles 

(degree) 

Prescribed 

dose at 

CTV 

(Gy(RBE)) 

Liver -GTV (Gy (RBE)) 

3DRTP  

(CT 

number) 

In-house 

RTP  

(ρ = 1.0) 

Prediction 

by SDP 

using  

simultaneous 

model 

 (ρ = 1.0) 

Prediction 

by SDP  

using 

separated 

models 

 (ρ = 1.0) 

Test 1 
270, 

180 
72 4.316 3.837 3.340 4.191 

Test 2 
270, 

180 
73 2.217 1.756 1.886 1.824 

Test 3 
270,  

0 
70 3.892 2.086 3.215 3.089 

Test 4 
270, 

180 
74 7.885 7.480 9.189 9.027 

Test 5 
270,  

0 
70 1.196 0.669 0.750 0.817 

Test 6 
270,  

0 
73 2.062 1.579 2.796 2.747 

Test 7 
270,  

0 
74 14.137 15.808 14.453 13.120 

Test 8 
270,  

0 
75 2.144 1.680 2.055 1.613 

Test 9 
270,  

0 
72 5.171 6.223 4.184 4.781 

Test 10 
270,  

0 
71 7.729 8.287 9.144 9.194 

Abbreviation: Dmean = Mean dose, CTV = clinical target volume, GTV = gross target 

volume, RBE = relative biological effectiveness, 3DRTP = three-dimensional radiation 

treatment planning system, RTP = radiation treatment planning system, ρ = density, SDP 

= simple dose prediction tool. 
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To investigate whether CDA was effective to improve the predictive performance, 

results without CDA were compared with those with CDA. Figure 11(b) plots the 

relationship between the planned and predicted liver Dmean predicted from the model 

trained without CDA. The MRE between the planned and predicted liver Dmean is 0.3211 

while in the model which was trained with CDA is 0.1637. There was statistically 

significant difference between the MRE from model trained without and with CDA by 

two-tailed student’s t-test (p<0.001). Therefore, the CDA was shown to be effective to 

improve the predictive performance. 

The mean percentage error (MPE), which is defined as the ((predicted Dmean - planned 

Dmean)/ planned Dmean)*100, has also been evaluated. The MPE between the planned liver 

Dmean and the predicted liver Dmean is 6.60% ± 23.52%.  

The time required for training and validation of the CNN was 1 hour and 23 minutes for 

all of the 6 treatment plans. The mean time required for the inference of the liver Dmean of 

the 6 different treatment plans for a patient using the SDP was 4.47±0.09 seconds in 10 

actual patient data sets in the tests as shown in Table 1.  
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1.4 Discussion 

We have generated a CNN for the prediction of the liver Dmean in 6 different treatment 

plans from the contouring of only CTV and liver. The propose of the model is to predict 

Dmean of the liver which is a regression problem. The CNN architecture is flexible for both 

regression and classification problems. And once the model is trained, the prediction time 

is extremely short. There are numerous variants of CNN architectures. However, the basic 

components of these are similar to each other. We follow the well-known principle of 

‘Occam’s razor” in which simpler theories are preferable to more complex ones but there 

could be more sophisticated architectures of CNN which predict more accurately. 

The time required to predict the Dmean by the SDP was short enough to be of use in the 

clinic. The time to do the contouring of the CTV and 3OARs will depend on the tool 

being used in a clinic. We have not detailed this part further in this study because it is 

outside of scope of the study. Conventional tools for manual contouring for CT images 

in the DICOM format are widely available at reasonable cost. Using sophisticated tools 

for automatic contouring would be quicker but more expensive. A clinic can decide what 

kind of contouring tool is to be used depending on the needs of the clinic.  

Studies using machine learning in the selection of PBT are becoming more common. 

Kouwenberg et al. have proposed the use of machine learning and automated treatment 

planning for pre-selection of patients for IMPT. It was found to reduce the volume of a 

formal workload-intensive model based selection procedure with a negative outcome by 

67% (Kouwenberg et al., 2021). They concluded that such a system could help to screen 

larger patient populations and avoid unnecessary delays in the start of radiotherapy for 

head & neck cancer patients. They used 45 patients and trained a Gaussian naïve Bayes 

classifier. Although they achieved a large reduction in the workload in the selection 

process of IMPT, the number of data sets in their study may still be too small and the 

excellent prediction may have been specific to the institutional protocol. Recently, 

Guerreiro et al. have used a CNN model to predict the Dmean of CTV and OARs by PBT 

for pediatric abdominal tumors (Guerreiro et al., 2021). They included 80 patients: 48 

patients for training, 12 patients for validation, and 20 patients for testing with a 5-fold 

cross validation procedure. They reported that the MPE between the planned and 

predicted Dmean of all OARs was - 0.3% ± 2.9% a variation which is superior to our results. 
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However, they need precise 3D volumes and 3D dose distributions as the input for the 

CNN, something that requires a very large data volume, high performance computer, and 

large resources. Our approach requires only 2D contours of the liver and CTV as the input, 

it requires fewer resources, and is cost-effective to predict liver Dmean directly. Since there 

are no compatible approaches with the same cost-effectiveness as ours, our approach will 

likely become regarded as a benchmark in this category. If only gross estimations of the 

liver Dmean, is required for the selection of PBT by the cancer board, we think our approach 

is reasonably accurate as can be seen in Figure 11(a). Chen et al. have published a deep 

learning prediction of patient-specific DVH of IMXT for nasopharyngeal cancer using 

153 cases for training and 27 cases for testing (Chen et al., 2021). Except for the optic 

organs, their CNN model performs better than or is comparable to conventional 3DRTP 

with the mean difference in the proportion of points of interest 3.59% ± 7.78% with 14.5 

hours for the training of 16 volume of interests and less than 1 minute to generate DVHs 

for one patient. The excellent results of these studies are encouraging but again the precise 

prediction methods require the creation of large and tumor-specific databases to account 

for multicenter treatment planning diversity.  

The shortcomings of this study are as follows. We used a simple 2D treatment planning 

of PBT and not the 3DRTP which is used for actual patients. The benefit in simplicity 

and cost of the SDP can be attributed to the simple RTP, at least to some extent. The dose 

distribution must be changed by the assumption of the density as 1.0 throughout the body 

in in-house RTP. We compared the accuracy of the in-house RTP and commercially 

available 3DRTP and found that the difference in Dmean is acceptable as long as the 

purpose of the SDP is for an approximate estimate to select the PBT as a possible 

treatment of choice in a busy clinic. However, further improvement is obviously required 

for more precise predictions of the liver Dmean. Secondly, the liver may be one of the most 

straightforward OAR to apply with our concept of SDP. For other treatment sites such as 

the head and neck, the accuracy of the prediction may be lower since the relationship 

between CTV and OARs are more complicated. Thirdly, from the viewpoint of the 

physician, because the contouring of CTV and OARs still requires a significant amount 

of time, the method that does not require contour information is preferable. Auto-

contouring can be a key technology for this residual problem since a recent study showed 
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that the average time was reduced from 108 minutes in manual contouring to 10 minutes 

by auto-contouring (p < 0.001) (Fung et al., 2020). Also, it is well known that tools based 

on deep learning could have an overfitting problem. In this study, the data set was spilt 

into training and validation data sets to detect possible overfitting and the model with the 

lowest validation error was selected. We have not used cross-validation but that could 

have made the prediction better. 

To summarize, we developed a SDP to predict a liver Dmean, in which a physician is only 

required to do contouring of the CTV and liver in the clinic, and assessed its accuracy and 

usability. The SDP is cost-effective and usable for an approximate estimation of liver 

Dmean in the clinic, however, the accuracy should be improved further if we need the 

accuracy of liver Dmean to be compatible with 3DRTP. The same concept as our SDP can 

simply be applied to the dose distribution of STI and IMXT. After the development of the 

CNN for these treatments, we will be able to compare the Dmean or other dose volume 

statistics of the PBT and XRT. It will be meaningful to examine whether the Dmean can be 

changed to other dose volume statistics such as the Dmax of the OARs which have a serial 

structure or the Dmin of the CTV, depending on the requirements in different situations.  
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Chapter 2.  Attempts to improve the SDP  

 

2.1 Introduction 

   We have developed the SDP tool in Chapter 1 and published.  Because the speed of 

improvement in the DL is rapid, we have continuously attempted to improve the accuracy 

and speed of the SDP further.   

  One idea is to change the cross-section profiling method before DL. In chapter 1, the 

independent two-dimensional CT images are used to train the model in deep learning. 

The input of model was 2DP which were explained in section 1.2.5 of chapter 1. However, 

the three-dimensionally reconstructed CT for profiling may be an option to improve the 

accuracy of prediction model. In this chapter, the 3D cross-section profiling (3DP) 

method was constructed and investigated about its effectiveness. 

  Another idea is to use architecture of pre-trained models in the deep learning. In the 

chapter 1, we used a rather, but the accuracy may be improved if we used the contour 

image with more complex architecture of prediction model. In this chapter, the pre-trained 

models used are Alexnet, VGG-net, GoogLeNet, Inception net V3, Resnet, Wide Resnet, 

Densenet, and Shufflenet V2, which are neural network for image classification in 

Pytorch. We applied the contour-based data augmentation (CDA) approach, which were 

the generation of virtual CTV before model training in DL, to pre-trained model-based 

prediction model training. The feature to train the model is contour bitmap image of CTV 

and 3 OARs (skin surface, liver, and spinal cord) and corresponding liver Dmean are used 

as labels for the data sets. 
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2.2 Experimental Method 

2.2.1 Three-dimension profiling (3DP) 

We call the profiling used in chapter 1 as two-dimensional profiling (2DP) and the 

profiling using three-dimensionally reconstructed CT as three-dimensional profiling 

(3DP).  In 3DP, CTV and OARs in 3D space are used for profiling. In the 3D space, the 

first voxel in the first column, row and layer is defined as location (0, 0, 0) and the last 

voxel was defined as (n, n, m), where n and m represent the side length and the total 

thickness in mm of the CT images. We term the CT images to be used for the profiling as 

CTOI (CT of interest). The CTOI contains only CT slices where liver exists. The CTV 

and OARs in the CTOI are divided into J cross-sections perpendicular to cranio-caudal 

direction with similar intervals. When the number of contours of the CTV or OARs is 

equal or more than J, the contours are grouped into J groups of cross-sections. When the 

number of contours of the CTV or OARs are fewer than J, virtual cross-sections are 

created by interpolation. We have termed the CTV and OAR in the CTOI as the volume 

of interest (VOI) in this study.  

 

 

Figure 12.  The matrix of 3DP of an OAR, liver (J = 10, K=10). The example segmented 

image of liver at j = 3 was shown.  

 

The Figure 12 shows the 3DP of liver. A cross-section of the VOI is divided into K 

segments with uniform intervals with 2 types of segmentation: one horizontal and the 
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other vertical. To do profiling of one VOI in the CTOI in 3D space, 2(horizontal and 

vertical) x K x J segments are generated. We have used 10 as the number for K as well as 

for J in this study. In the 3DP, each segment of the cross-section of a VOI can be expressed 

by the centroid location (Gx, Gy, Gz) of the segment in the 3D space and the corresponding 

partial volume of VOI in segment (V).  

 

Figure 13. The segmentation process in 3DP for virtual tumor (J=10, K=10). See test. 

The segmentation process in 3DP is a little complexed one and illustrated in Figure 13.  

(I) Assuming that the contours of the VOI exist in CT slices from 1 to 15 of the CTOI 

with a slice thickness of 10 mm. The CT slices are group into J cross-sections, which 

equals to 10 sections in this study. (II) The cross-section j=1 consists of the corresponding 

partial volume of the CTV in CT slice = 1 and 2. (III) The calculation for the center of 

the segment (Gx, Gy, Gz) and the corresponding partial volume (V) of the CTV of the 

segment is explained for cross-section j=1 as an example. The view is from the top of z-

axis of cross-section j=1 of the CTV. Cross-section j =1 is divided into K segments 

horizontally (K=10). The corresponding part of the CTV in the CT slice=1 and that in CT 

slice=2 is divided horizontally to be the sub-segment. At the segment [j=1, k=1], the 
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corresponding sub-segment is in CT slice 2 but not in CT slice 1. The center of this 

segment and the corresponding partial volume (V) of CTV is calculated using the sub-

segment of CTV in slice 2. On the other hand, at segment [j=1, k=7] as an example, the 

corresponding sub-segments are in both CT slice 1 and CT slice 2. Then the centroid 

location of this segment is the center of the mass calculated from the sub-segment in CT 

slice 1 (k=7, 1) and the sub-segment in CT slice 2 (k=7, 2). The corresponding partial 

volume (V) of CTV of this segment (j=1, k=7) is calculated from a summation of the sub-

segments in slice 1 and in slice 2. (IV) Cross-section j=1 is also divided vertically into k 

segments and treated similar to (III). 

The detailed flowchart of the preprocessing, model training, and prediction using 3DP 

is shown in Figure 14. 
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Figure 14 Flowchart of the preprocessing, model training, and prediction using 3DP as 

input. 
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2.2.2 Deep learning with architecture of pre-trained models 

The pre-trained models for image classification in Pytorch package, including Alexnet 

(Krizhevsky, 2014), VGG-net (Simonyan and Zisserman, 2015), GoogLeNet (Szegedy et 

al., 2015), Inception net V3 (Szegedy et al., 2016), Resnet (He et al., 2016), Wide Resnet 

(Zagoruyko and Komodakis, 2016), Densenet (Huang et al., 2017), and Shufflenet V2 

(Ma et al., 2018), were used as the Dmean prediction model. The last layer of models was 

fine-tuned to be fully connected layer with 6 outputs, which were liver Dmean of 6 different 

treatment plans. A conceptual flow chart to utilize the SDP with pre-trained model 

architecture is shown in Figure 15. Figure 16-23 show the architecture of liver Dmean 

prediction model based on each pre-trained model. The loss function was changed from 

cross-entropy in the original model, which is appropriate for classification problem, to 

the mean square error (MSE, L2 loss), which is appropriate for regression problem. The 

ADAM optimizer (α= 10-4, β1= 0.9, β2= 0.999) with a weight decay of 0.0001 was used 

for the training (Kingma and Ba, 2015). The input of pre-trained model-based architecture 

prediction models is two-dimensional contour bitmap images, which were generated by 

the DICOM-RT structure of the CTV and OARs in SDP tool. In the preprocessing process, 

the contour bitmap images were resized to 224x224 and were normalized for model 

training. However, for Inception net V3, the contour bitmap images were resized to 

299x299, as the requirement of the model input size. The number of virtual CTVs by 

CDA were 199 for each actual patient in training and validation process. Figure 24 shows 

the detailed of flowchart of the preprocessing, model training, and prediction of pre-

trained model-based prediction model. 
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Figure 15. Flowchart of simple dose prediction (SDP) tool with pre-trained model-based 

structure of liver mean dose (Dmean) prediction model.  
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Figure 16. Alexnet-based liver Dmean prediction model architecture 
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Figure 17. VGGnet-based liver Dmean prediction model architecture 
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Figure 18. GoogLenet-based liver Dmean prediction model architecture. 
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Figure 19.  Inception net V3-based liver Dmean prediction model architecture 
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Figure 20. Resnet-based liver Dmean prediction model architecture 
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Figure 21. Wide Resnet-based liver Dmean prediction model architecture 
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Figure 22. Densenet-based liver Dmean prediction model architecture 



48 

 

 

Figure 23. Shufflenet V2-based liver Dmean prediction model architecture. 
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Figure 24. Flowchart of preprocessing, model training, and prediction of pre-trained 

model-based prediction model.  
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2.3 Experimental Results 

2.3.1 Three-dimension profiling (3DP) 

  In model trained by 3DP as input, the model was tested by 10 actual patients as shown 

in Table 1 in the chapter 1. The MRE between the predicted and the planned liver Dmean 

is 0.4611 and for the β it is 1.1070. The plot of relationship between predicted Dmean and 

planned Dmean was shown in Figure 25.   

 

 Figure 25.   Plots of the planned liver mean dose (Dmean) and predicted liver Dmean with 

the line of identity (β = 1) using the model trained by 3DP with contour-based data 

augmentation. 

2.3.2 Deep learning with architecture of pre-trained models 

In pre-trained model-based architecture models, the model were tests by 10 actual 

patients as shown in Table 1 in the chapter 1. The MRE between planned and predicted 

liver Dmean which was predicted by each pre-trained model architecture, and the training 

time of pre-trained model-based prediction model are summarized in Table 7 and 8.  

In Alexnet-based prediction model trained with CDA, the MRE between the predicted 

and planned liver Dmean is 0.2363 and for the β it is 0.8455. The MRE is 0.2807 in case 

of model trained without CDA. Comparing with 2DP-based prediction model, the MRE 

between planned and predicted liver Dmean is moderately higher. Moreover, the time 

required to trained Alexnet-based model is 3 hours and 47 minutes, which is 
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approximately 2.7 times longer than model trained by 2DP. 

In VGG net-based prediction model, there are 3 different models depending on the 

number layers including VGG13, VGG16, and VGG19.  The MRE and β between the 

predicted liver Dmean which was predicted by VGG13-based model trained with CDA, 

and the planned liver Dmean is 0.1539 and 0.8975. The MRE is 0.5910 when we trained 

the model without CDA. In the VGG16-based model trained with CDA, the MRE 

between predicted and planned liver Dmean is 0.1017 and the β is 0.9948. Without CDA 

in VGG16-based model, the MRE is 0.2472. In VGG19-based model trained with CDA, 

the MRE between predicted and planned liver Dmean is 0.1338 and the β is 0.9831. In 

VGG19-based model trained without CDA, the MRE is 0.3967.  

In GoogLenet-based prediction model, the MRE and β between predicted and planned 

liver Dmean is 0.0797 and 0.9747, respectively, for model trained with CDA. In model 

trained without CDA, the MRE between predicted and planned liver Dmean is 0.3133. 

When we compare between GoogLenet-based prediction model and 2DP based CNN 

model, in model trained with CDA, the MRE between planned and predicted liver Dmean 

is significantly reduced by using GoogLenet-based model. It means that the GoogLenet-

based prediction model have more accuracy to predict liver Dmean than those 2DP based 

CNN model. However, the training time for GoogLenet based prediction model was 4 

hours and 55 minutes, which was approximate 3.5 times of the training of 2DP based 

CNN model. In separated models, in which the 6 liver Dmeam are predicted separately, the 

MRE between predicted and planned liver Dmean is 0.0989 and for β it is 0.9990. The time 

required for train the 6 separated models are 22 hours and 57 minutes, which is 

approximately 4.6 times of simultaneous model of GoogLenet-based prediction model. 

Figure 26 shows the relationship between the predicted Dmean and the planned liver Dmean.  
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Figure 26 Plots of the planned liver mean dose (Dmean) and predicted liver Dmean, which 

was predicted by GoogLenet-based prediction model, with the line of identity (β = 1). (a) 

simultaneous model with contour-based data augmentation, (b) simultaneous model 

without contour-based data augmentation, (c) separated models with contour-based data 

augmentation. 

 

In Inception net V3-based liver Dmean prediction model, the MRE between the predicted 

liver Dmean, which was predicted by model trained with CDA, and the planned liver Dmean 

is 0.1061 and for the β it is 1.0127. The MRE of those without CDA is 0.3676.  
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In Resnet-based prediction models, there are 3 different models depending on the 

number layers including Resnet50, Resnet101, and Resnet152. The MRE between the 

predicted liver Dmean, which was predicted by Resnet50, Resnet101, and Resnet152-based 

model trained with CDA, and the planned liver Dmean are 0.1022, 0.0924, and 0.1104, 

respectively, and the β are 1.0370, 0.9930, and 0.9944. In Resnet-based prediction model 

trained without CDA, the MRE are 0.4748, 0.3352, and 0.4824 for Resnet50, Resnet101, 

and Resnet152. 

In Wide Resnet-based prediction model, the MRE between the predicted and planned 

liver Dmean is 0.0815 for model trained with CDA and for the β it is 0.9858. In Wide 

Resnet-based prediction model trained without CDA, the MRE between predicted and 

planned liver Dmean is 0.4997. 

In Densenet-based prediction model, the MRE between planned and predicted Dmean, for 

model trained by CDA, is 0.0912 and for β it is 0.9858. In case pf Densenet-based liver 

Dmean prediction model trained without CDA, the MRE between planned and predicted 

Dmean is 0.3456. 

In Shufflenet V2-based liver Dmean prediction model trained with CDA, the MRE 

between planned and predicted liver Dmean is 0.0901 and the β is 0.9871. For the 

Shufflenet V2-based model trained without CDA, the MRE between planned and 

predicted liver Dmean is 0.3494. 
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Table 7. The summary of MRE between planned liver Dmean and predicted liver Dmean, 

which were predicted by different model structure as simultaneous model, with and 

without CDA, and separated models. 

Model Structure 
MRE between planned and predicted liver Dmean 

CDA Non-CDA Separated models 

Alexnet 0.2363 0.2807 0.2330 

VGG13 0.1539 0.5910 0.1316 

VGG16 0.1017 0.2472 0.1100 

VGG19 0.1338 0.3967 0.1215 

GoogLenet 0.0797 0.3133 0.0989 

Inception net V3 0.1061 0.3676 0.1156 

Resnet50 0.1022 0.4748 0.0970 

Resnet101 0.0924 0.3352 0.0912 

Resnet152 0.1104 0.4824 0.1046 

Wide Resnet101 0.0815 0.4997 0.0956 

Densenet 0.0912 0.3456 0.0814 

Shufflenet V2 0.0901 0.3494 0.9869 

Abbreviation: MRE = Mean relative error, CDA = Contour-based data augmentation. 
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Table 8. The summary of training time of pre-trained model-based structure as 

simultaneous model and separated models. 

Model Structure 
Training time 

Simultaneous model Separated models 

Alexnet 3 hours 47 minutes 16 hours 29 minutes 

VGG13 8 hours 58 minutes 50 hours 7 minutes 

VGG16 10 hours 6 minutes 65 hours 14 minutes 

VGG19 11 hours 20 minutes 65 hours 17 minutes 

GoogLenet 4 hours 55 minutes 22 hours 57 minutes 

Inception net V3 8 hours 55 minutes 46 hours 13 minutes 

Resnet50 6 hours 4 minutes 34 hours 20 minutes 

Resnet101 9 hours 3 minutes 54 hours 51 minutes 

Resnet152 12 hours 17 minutes 70 hours 45 minutes 

Wide Resnet101 15 hours 39 minutes 95 hours 21 minutes 

Densenet 12 hours 59 minutes 55 hours 49 minutes 

Shufflenet V2 4 hours 21 minutes 19 hours 25 minutes 
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2.4 Discussion 

2.4.1 Three-dimension profiling (3DP) 

   Despite my expectation, comparing to the results of 2DP shown in Chapter 1, there was 

no improvement by using the 3DP.  Considering the complexity of the 3DP comparing to 

2DP, we decided not to use the 3DP for SDP tool.  

2.4.2 Deep learning with architecture of pre-trained models 

Comparing to the result in Chapter 1, the most of prediction model based on pre-trained 

model architecture have higher accuracy to predict liver Dmean, except for only Alexnet-

based model. The GoogLenet-based prediction model seem to have the highest accuracy 

in liver Dmean prediction of 10 patients in the test data set. In the GoogLenet structure, 

their consists of 22 layers, which part of these layers is 9 inception modules. This 

inception module is a neural network that leverages feature detection at different scales 

through convolutions with different filters and reduced the computational cost of training 

an extensive network through dimensional reduction (Szegedy et al., 2015). The present 

study showed that GoogLenet-based model can predict liver Dmean with the highest 

accuracy with shorter training time than other pre-trained model-based liver Dmean 

prediction models such as VGGnet, Resnet, and Densenet. In fact, the accuracy of 

GoogLenet-based model is still inferior to the research of Guerreiro et al., which reported 

that the MPE between the planned and predicted Dmean of all OARs in pediatric abdominal 

tumors was -0.3% ± 2.9% (Guerreiro et al., 2021). The MPE between the planned and 

predicted liver Dmean, which was predicted by our GoogLenet model was 5.08% ± 9.47%. 

However, my model input is contour bitmap which required less performance computer 

and resource when compared to their work which use precise 3D volumes and 3D dose 

distributions.  

The MRE between planned liver Dmean and predicted liver Dmean, which was predicted 

by VGG16, Inception net V3, Resnet101, Wide Resnet 101, Densenet, and Shufflenet V2 

are 0.1017, 0.1061, 0.0924, 0.0815, 0.0912, and 0.0901, respectively. The results of MRE 

of various pre-trained model-based structures are not significantly different each other. 

Litjens et al have reviewed many papers in medical image analysis and discussed about 

the key aspects of successful deep learning methods that the architecture is not the most 

important factor for a good result (Litjens et al., 2017). There are many researchers that 
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obtained good result without improved the deep neural network structure but focusing on 

other aspects, for example data preprocessing, augmentation techniques, or model hyper-

parameter optimization. Therefore, the key point to improve the liver Dmean prediction 

model may not be only these pre-trained model-based structure, but others.  More work 

is required from these aspects in future. 
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Summary and Conclusion 

1. We developed an SDP tool to predict a liver Dmean, in which a physician is only 

required to do contouring of the CTV and OARs (skin surface, liver, and spinal 

cord), and assessed its accuracy and usability. 

2. The SDP tool is cost-effective and usable for an approximate estimation of liver 

Dmean, however, the accuracy should be improved further in case of we need the 

accuracy to be compatible with 3DRTP. 

3. The same concept as our simple dose prediction (SDP) tools, which are deep 

learning models trained with our contour-based data augmentation (CDA), can 

be applied to the dose distribution of STI and IMXT. 

4. The pre-trained model-based liver Dmean prediction model have high accuracy in 

liver Dmean prediction, especially in GoogLenet-based prediction model. The 

model can predict liver Dmean from only ROI Contour Module of CTV and 

OARs in DICOM RT structure as input. 

It is important to conclude that an SDP tool using deep learning can predict liver Dmean 

directly with much shorter time than conventional 3DRTP. It is notable that requirement 

for the prediction of liver Dmean using an SDP tool is only DICOM RT structure set of 

CTV and 3 OARs (skin surface, liver, and spinal cord). It is also important to stress that 

the CDA is useful technique in deep learning to develop the SDP tool. We proved that 

the result of liver Dmean prediction model trained with CDA technique is more accurate 

than those without CDA technique in case of small training data sets. The CDA technique 

is useful to solve the problem of lacking data set in model training. Direct liver Dmean 

prediction has potential to use in the busy clinic. The accuracy of predicted results of our 

main method described in Chapter I is acceptable but not perfectly accurate. Deep 

learning with architecture of pre-trained models described in Chapter II can improve the 

prediction accuracy without increasing the time for calculation in SDP.  

 

As a possible research development of the new findings obtained in this study, the concept 

of CDA can be applied to other deep learning for radiation dose prediction.  For example, 

doses for other OARs and CTV will be able to be predicted.  Also, any other organs in 
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the body, such as lung and pancreas, can be the target of new research. Using additional 

biological assumptions, prediction of normal tissue complication probability (NTCP) or 

tumor control probability (TCP) is good targets of research to be investigated. The 

accuracy of prediction can be improved not only by the model architecture but other 

factors such as techniques of data preprocessing, augmentation, or model hyper-

parameter optimization in deep learning method. Research for these factors is also 

important step forwards to improve the accuracy and speed of prediction of dose 

distribution in precise PBT and any other radiotherapies.     
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