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S U M M A R Y
Time-warping is a signal processing technique that, when applied to an isolated measurement
of a transient signal that propagates in a waveguide, allows contributions to that signal from
individual mode numbers to be isolated and extracted. Dispersion curves for individual mode
numbers can, in turn, be recovered. Isolation of contributions associated with individual
mode numbers is possible because after time-warping—a special environmentally dependent
non-uniform sampling—is applied, the signal energy corresponding to each mode number is
isolated in the frequency spectrum of the time-warped signal. Here we derive the time-warping
transform for teleseismic Love waves, assuming the Earth structure is approximately known,
and we illustrate the utility of time-warping using both synthetic and measured seismograms.

Key words: Time-series analysis; Guided waves; Surface waves and free oscillations.

1 I N T RO D U C T I O N

Teleseismic surface waves provide strong constraints on mantle
structure and, in particular, anisotropy of the mantle. Love waves,
the focus of this paper, play a critical role in this context as they are
controlled by the lateral shear wave velocity. Love waves are nat-
urally described as a superposition of normal modes, the toroidal
modes in a spherical earth model. Love waves in the Earth are
strongly dispersive. A useful, but challenging, approach to Love
wave analysis is to try to recover from measured seismograms the
waveforms associated with individual mode numbers and the cor-
responding dispersion curves. Overtone waveforms are particularly
useful to constrain mantle structure in the lower portion of the up-
per mantle, within the transition zone and in the lower mantle. In
typical measured seismograms some portion of the fundamental
mode waveform is temporally isolated from overtone waveforms,
while overtone waveforms overlap in time with each other and with
the early low-frequency portion of the fundamental mode wave-
form. Under such conditions, the problem of isolating overtone
waveforms is extremely challenging. Array processing techniques
provide a robust means to address this problem. Previous use of
these and other competing techniques are briefly reviewed below.
Array-processing-based approaches are well suited to continental
stations where a dense measurement array is present. In this paper
we demonstrate that it is possible to apply a recently developed
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signal processing technique known as time-warping to a seismo-
gram measured at an isolated location to extract fixed-mode-number
waveforms and corresponding dispersion curves. We demonstrate
the utility of time-warping in the analysis of Love waves using
both synthetic and measured seismograms. Time-warping has some
shortcomings, which we discuss. In spite of these shortcomings, the
results presented here lead us to anticipate that time-warping will
prove to be a useful Love wave analysis tool which is applicable in
the challenging situation in which the only information available is
a seismogram measured at an isolated location, for example at an
island-based station.

Methods to extract fixed-mode-number waveforms for teleseis-
mic Love waves, especially overtone waveforms, have been de-
veloped only recently, but the general problem of estimating sur-
face wave (both Rayleigh and Love waves) dispersion curves from
measured seismograms has deep roots. Following (Matsuzawa &
Yoshizawa 2019), we break these analysis methods into three
groups: single-station methods, interstation methods and array-
based methods. The simplest single-station method is the frequency-
time analysis (FTAN) introduced by Levshin et al. (1972), which
has been used principally to estimate some portion of a temporally
resolved fundamental mode dispersion curve. More complicated
single-station methods are based on single-mode waveform fitting
(Trampert & Woodhouse 1995; Ekström et al. 1997), mode stripping
(van Heijst & Woodhouse 1997), and multimode waveform fitting
(Yoshizawa & Kennett 2002; Visser et al. 2007; Yoshizawa & Ek-
ström 2010). A disadvantage of these methods is that they require
calculation of synthetic seismograms, which in turn requires knowl-
edge of the source function. Interstation methods (Dziewonski &
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Hales 1972; Forsyth & Li 2005; Pedersen 2006; Lin et al. 2009; Lin
& Ritzwoller 2011; Foster et al. 2014a, b; Hamada & Yoshizawa
2015) make use of phase differences between seismograms mea-
sured at different stations to estimate phase speeds. Linear-array-
based methods (Nolet 1975, 1976; Luo et al. 2015) involve analysis
of multiple stations that lie approximately on a common great circle
path; such an array allows one to perform an f−k (frequency and
local lateral wavenumber) decomposition of the measured seismo-
grams. Most recently (Matsuzawa & Yoshizawa 2019) have com-
bined traditional linear array analysis methods with the use of the
linear Radon transform (Luo et al. 2008, 2009, 2015) and have
shown that this combination of analysis methods is capable of iso-
lating fixed mode number waveforms for both Love and Rayleigh
waves under conditions in which the extracted waveforms overlap
in time.

In this paper, we make use of a signal processing technique
known as time warping. In spite of its less-than-serious sound-
ing name, time-warping rests on a firm mathematical foundation.
Time-warping is one of a larger class of unitary similarity transfor-
mations (Baraniuk & Jones 1995); such transformations preserve
energy and inner products. Applicability of time-warping to sig-
nals propagating in a waveguide was established by Le Touzé et al.
(2009). Specifically, in that paper the time-warping transform was
derived for sound waves propagating in a particular waveguide, and
it was shown that application of that transform allows one to iso-
late non-temporarily resolved fixed-mode-number contributions to
a propagating transient signal. The waveguide considered in that
paper, sometimes referred to as the ideal shallow water waveguide,
consists of a homogeneous fluid (ocean) with a flat rigid bottom
and a pressure-release surface. The ideal shallow water waveguide
is sometimes used as an approximate model of coastal underwa-
ter acoustic environments; not surprisingly, then, availability of the
time-warping transform for this environment stimulated a num-
ber of publications involving application of that transform (Bonnel
et al. 2010, 2011, 2013, 2020; Bonnel & Chapman 2011; Zeng
et al. 2013; Brown et al. 2016; Duan et al. 2016; Sergeev et al.
2017; Godin et al. 2019; Tan et al. 2019). These papers reveal that,
although the time-warping transform depends on the environment
in which it is applied, the procedure is robust in the sense that the
environment used to derive the transform need not accurately match
the environment in which measurements are made. More recently,
a general environmentally dependent time-warping transform was
derived (Brown 2019) which reduces to the ideal shallow water
waveguide time-warping transform as a special case. That general
time-warping transform is the transform that is applied in the present
paper. The ideal shallow water waveguide warping transform has
the convenient property that the relationship between warped time
t′ and unwraped time t is specified analytically and is invertible so
both t′(t) and t(t′) have simple analytical forms. More generally, the
transformations between t and t′ are performed by making use of
a table look-up procedure; this and related topics are discussed in
more detail below.

We now provide a heuristic explanation of the basic principles
underlying time-warping. The upper panel of Fig. 1 shows a set of
dispersion curves in an idealized waveguide. This figure was moti-
vated by Love waves in the Earth, but should not be thought of as
representative of a realistic earth model. Here and below we label
mode numbers starting with m = 0, the fundamental mode; m = 1
is the first overtone, etc. The coordinate axes used to plot dispersion
curves in Fig. 1 and elsewhere in this paper are frequency f, the ver-
tical axis, and group slowness Sg, the horizontal axis. This is done
because the group slowness is a scaled time axis, t = XSg, where X

Figure 1. Illustration of time-warping. Upper panel: dispersion curves in
an idealized environment. The heavy line corresponds to m = 2. Middle
panel: The m = 2 waveform corresponding to the upper panel at epicentral
distance X = 10 000 km. Lower panel: idealized spectrogram of a multimode
time-warped seismogram corresponding to the dispersion curves shown in
the upper panel. The heavy line corresponds to m = 2.

is epicentral distance, so the dispersion diagram is a time-frequency
plot. A seismogram in the environment corresponding to the disper-
sion curves shown in the upper panel consists of a superposition—a
sum over contributions from many mode numbers—of many FM
(frequency modulated) sweeps. An example of one such FM sweep,
corresponding to m = 2 at X = 10 000 km, is shown in the middle
panel. Note the correspondence between the local frequency of the
FM sweep in the middle panel and the corresponding frequency for
the m = 2 dispersion curve shown in the upper panel. Now imagine
sampling the FM sweep in the middle panel with a variable sampling
rate chosen so that there are exactly eight, say, samples per local
period of the waveform. This non-uniform sampling is referred to
as time-warping. If we then compute the Fourier spectrum of the
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time-warped signal (treating the sampling interval as if it were uni-
form) we would observe a line spectrum. This situation is illustrated
in the lower panel of Fig. 1 as an idealized spectrogram, rather than
a simple spectrum. The scaling of the warped frequency axis in
that plot will be discussed below. The remarkable (and not obvious
based on the meager description that we have given here) property of
the time-warping transformation described below is that the same
non-uniform sampling, that is the same time-warping transform,
works for all mode numbers provided the asymptotic arguments
described below hold. A consequence of the fact that the same
time-warping transform works for all mode numbers is that, after
applying that transform, the Fourier spectrum of a seismogram with
contributions from many mode numbers will consist of many lines,
with each spectral line corresponding to a different mode number.
Details are provided below. The horizontal axes in the upper two
panels of Fig. 1 are the same, with t = XSg, but the horizontal axis
in the lower panel is arbitrary because warped time approaches in-
finity as Sg approaches 0.24 s km–1 in the assumed environment.
Because the spectral peaks in the warped frequency domain are
isolated, with each peak corresponding to a distinct mode number,
one need only apply a bandpass filter to the time-warped seismo-
gram (in the time-warped domain) to isolate a fixed-m contribution
to the original multimode seismogram. An inverse time-warping
transform is then applied to eliminate the warping-induced tempo-
ral distortion of the single-mode waveform that has been extracted.
If desired, a dispersion curve fm(t) = fm(XSg) can then be recovered
from the single-mode waveform by estimating the local frequency
as a function of time.

The remainder of this paper is organized as follows. In Section 2,
we present a short derivation of the time-warping transform used
in subsequent sections. In Section 3, the time-warping transform is
applied to a synthetic seismogram. In Section 4, the time warping
transform is applied to a measured seismogram. In Section 5, we
summarize and discuss our results.

2 T I M E - WA R P I N G

In this section, we have two objectives: (1) present a self-contained
explanation of the mathematics underlying time-warping and (2)
apply these results to a particular environment, thereby defining
the time-warping transform that is used in the two sections that
follow. The warping transform used here is essentially the same
transform that is described in Brown (2019), but all details are
different because the environments are different.

The environment assumed here is a slightly modified no-ocean
isotropic PREM (Preliminary Reference Earth Model) (Dziewonski
& Anderson 1981). The starting point is PREM with Earth radius
6371 km but with the ocean replaced by upper crust with a max-
imum shear wave speed of 3.0 km s–1 at the surface. A Cartesian
coordinate system is used so a preliminary step is application of the
Earth flattening transformation of Biswas & Knopoff (1970) ignor-
ing the correction to the horizontal component of the wavenumber
k; neglect of that correction is valid in the limit of large ka where a is
Earth radius, and is consistent with our extensive use of asymptotic
arguments when defining and applying the time-warping transfor-
mation. Application of the Earth-flattening transform results in a
depth-dependent profile V(z) of horizontal shear wave speed. We
assume here that V(z) varies linearly between grid points in the
PREM model. Additionally, after Earth-flattening, a small amount
of smoothing of the V(z) profile is applied to improve numerical
stability. With these comments in mind, the assumed environmental

model for time-warping should be thought as a slightly smoothed
PREM-like model. A stronger additional approximation is discussed
below. Consistent with our focus on Love waves we assume that the
measured dynamical variable is the transverse (relative to a great
circle path) component of lateral ground motion velocity v(t ; X ),
where X is epicentral distance.

As noted in Brown (2019) only three simple results are needed to
derive the time-warping transformation. First, Love waves are, to a
good approximation, slowly varying linear wave trains, so v(t, x) =
Re[a(t, x) exp(iφ(t, x))], where a(t, x) is a slowly varying amplitude
and φ(t, x) is a rapidly varying phase. The local wave frequency and
wavenumber are then

ω = ∂φ

∂t
(1)

and k = −∇φ. Secondly, in a stratified environment with hori-
zontal shear wave velocity V(z) increasing with depth, Love wave
normal modes asymptotically satisfy the dispersion (quantization)
condition

ωτ (pm) = 2π (m + γ ), (2)

where τ (pm) is the reduced traveltime, m is mode number and pm

is the horizontal phase slowness, which is constant for each (m, ω)-
pair. For modes with turning depths far from the core–mantle bound-
ary γ = 1/4 (see, e.g. Dahlen & Tromp 1998). The appendix de-
scribes a uniform asymptotic description of a Love wave modal
expansion, including a derivation of eq. (2) that provides a means
to generalize that result. The third required result is that, because
wave energy travels at the group slowness, traveltimes satisfy

t = Sg(pm)X, (3)

where the independent variable X (with no argument) is epicentral
distance. Eq. (3), with Sg = ∂km/∂ω and km = ωpm, follows from
a stationary phase evaluation of a Fourier integral representation
of a fixed-m contribution to a seismogram, for example based on
eq. (A9) after making use of the large argument asymptotic approxi-
mation to the Hankel function. Note that in the Appendix epicentral
distance is denoted by r rather than X. We make use of an asymptotic
approximation to evaluate Sg which is closely tied to eq. (2), Sg(pm)
= T(pm)/X(pm), where X(pm) = −dτ /dpm is the horizontal single-
cycle distance and T(pm) = τ (pm) + pmX(pm) is the corresponding
traveltime. The independent variable X should not be confused with
the dependent variable X(pm).

The time-warping transform follows from eqs (1) to (3). It is
useful to define a second phase function ϕ by the relationship φ =
2π (m + γ )ϕ/τ ref where τ ref is an as yet unspecified constant with
units of time. Note that φ, defined in eq. (1), is dimensionless, while
ϕ has units time. It follows from eqs (1) and (2) and the definition
of ϕ that

ω = ∂φ

∂t
= 2π

m + γ

τ (pm)
= 2π

m + γ

τre f

τre f

τ (pm)
= 2π

m + γ

τre f

∂ϕ

∂t
.

It follows from the fourth equality in the equation above that ∂ϕ/∂t
= τ ref/τ (pm). Because (1) t = SgX and (2) ∂/∂t in the equations above
is evaluated at fixed X, it follows that dϕ/dSg = Xτ ref/τ (pm). τ (Sg)
is defined parametrically, via τ (p) and Sg(p). (The pm are discrete
values of the continuous variable p.) τ (p) is always single-valued
but p(Sg) need not be; if p(Sg) is single-valued, then τ (Sg) is also
single-valued. We assume that this condition is satisfied. Then we
may integrate to give

ϕ(Sg) = Xτref

∫ Sg

So

dS′

τ (S′)
. (4)
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Figure 2. Reduced time τ versus group slowness Sg in the slightly smoothed
no-ocean PREM model described in the text after application of the Earth-
flattening transformation. The dashed curve corresponds to the unsmoothed
τ (Sg) curve. The heavy solid and dotted curves correspond to two different
ad hoc corrections to the unsmoothed τ (Sg) curve. The dotted curve is used
only for a sensitivity test described in Section 3; all other time-warping-
based processing results are based on the heavy solid curve.

So is a constant and ϕ(So) = 0; a good choice of So is the minimum
value of Sg in the environment of interest. Eq. (4) defines ϕ(Sg; X),
but t = SgX so this equation defines ϕ(t; X). Note that eq. (4) holds
for all m and recall the relationship φ = 2π (m + γ )ϕ/τ ref.

Suppose that, in a known environment at an experimentally rel-
evant value of X, eq. (4) is evaluated so ϕ(t) is known at that X. In
addition, define the warped time t′ by

t ′ = ϕ(t) (5)

and assume that the seismogram at X is sampled uniformly in warped
time t′. Then the corresponding warped radian frequencies are ω′

= ∂φ/∂t′ = (∂/∂t′)((2π (m + γ )/τ ref)t′) = 2π (m + γ )/τ ref. With this
relationship in mind we choose τ ref = 1 s. Then warped frequency
expressed in cycles per s is

f ′ = (m + γ )(1 Hz). (6)

If the measured seismogram consists of a superposition of contri-
butions from many mode numbers m, the corresponding warped
frequency spectrum will consist of many lines (whose widths are
controlled by the length of the time-warped signal), consistent with
the idealized behaviour shown in Fig. 1. The critical step in per-
forming the time-warping transform is evaluation of the integral in
eq. (4); to do so requires that τ (Sg) be single-valued.

Before completing our description of the warping transform we
present numerical results for the assumed slightly smoothed no-
ocean PREM model. τ versus Sg for that environmental model is
shown in Fig. 2. The minimum value of Sg in Fig. 2 and elsewhere
corresponds to the ray or mode whose turning depth grazes the
core–mantle boundary. Because eq. (2) was derived assuming that
modal turning depths are far from this interface, our numerical re-
sults are not valid for Sg values close to this minimum value. Fig. 2
was constructed by exploiting the parametric dependence, τ (p) and
Sg(p). Fig. 2 shows that τ (Sg) is not a single-valued function; in

the approximate domain 0.215 s km−1 < Sg < 0.235 s km−1 there
are two or more τ -values associated with each Sg. To evaluate the
integral in eq. (4) and define the time-warping transform τ (Sg) must
be single-valued. To correct the multivaluedness problem we have
explored two options: (1) smooth V(z); (2) apply a correction di-
rectly to τ (Sg). Our experience has shown option (2) is preferable
and that the results of performing time-warping using such a lo-
calized correction are not sensitive to details of the correction that
is applied. This statement is consistent with remarks made earlier
about the relatively low sensitivity of the ideal shallow water waveg-
uide time-warping transform to environmental mismatch. Unless
otherwise noted, time warping results presented in this paper are
computed with the correction shown in Fig. 2 with the solid curve.
The corresponding ad hoc correction applied was Sg(τ ) = a − b(τ
− τ 0) − c(τ − τ 0)3 with τ 0 = 101.16 s, a = 0.225 s km−1, b =
0.1592 × 10−4 km−1, c = 0.8603 × 10−8 s−2 km−1 for 12.57 s <

τ < 189.75 s. It is important to appreciate that a price is paid for
applying the correction to τ (Sg). We will return to this point below.

The left-hand panel of Fig. 3 shows ϕ versus Sg at X = 8000 km,
computed by evaluating the integral in eq. (4). As noted above,
converting ϕ(Sg) to ϕ(t) is a trivial stretching (relabeling of the Sg

axis) because t = SgX. The time-warping transform t′(t), which is
defined by setting t′ = ϕ(t), eq. (5), is illustrated graphically in the
right panel of Fig. 3. Note that uniform sampling in t′ involves non-
uniform sampling in t, and vice versa. The warped-time sampling
interval 	t′ is chosen so as to avoid aliasing in the warped-frequency
f ′ domain. With the scaling that we have chosen (τ ref = 1 s) eq. (6)
holds. We choose 	t ′ = (2 × 100 Hz)−1 = 0.005 s corresponding
to a Nyquist mode number of approximately 100. Because t′ = ϕ

(eq. 5) and ϕ depends on epicentral distance X (eq. 4), our choice
to use the same fixed value of 	t′ at all X dictates that the number
of t′ samples is proportional to X.

In addition to non-uniform sampling associated with the time-
warping transform, an amplitude correction is applied whose pur-
pose is to preserve the energy of the time-warped signal. Let v(t)
and v̄(t ′) denote the unwarped and warped signals, respectively,
and let W and W−1 denote forward and inverse warping oper-
ators, respectively. Then v̄(t ′) = W [v(t)] = √|dt/dt ′|v(t ′(t)) and
v(t) = W −1[v̄(t ′)] = √|dt ′/dt |v̄(t(t ′)).

The frequency spectrum of a time-warped seismogram consists
of line-like features [recall eq. (6) and Fig. 1], each corresponding
to a fixed mode number m. A bandpass filter can then be applied
to isolate the contribution corresponding to a particular choice of
m. Finally, applying the inverse warping transform, t′ to t, yields
the contribution to the original seismogram corresponding to that
choice of m, that is a fixed mode number waveform.

3 A P P L I C AT I O N T O S Y N T H E T I C
S E I S M O G R A M S

The synthetic seismograms used in this section were computed as
a superposition of toroidal normal modes using the Mineos soft-
ware package (Masters et al. 2011). The assumed environment was
a no-ocean PREM, similar to the model described in the previ-
ous section but without the additional smoothing that is described
in that section. Also, the ad hoc correction to τ (Sg) discussed in
the previous section plays no role in the Mineos-based synthetics
used here. In other words, the environment used to compute the
Mineos-based synthetics is based on an earth model similar, but not
identical, to the model used to define the time-warping transform.
The synthetics used here are identical to the Love wave synthetics
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Figure 3. Left-hand panel: ϕ versus Sg at X = 8000 km, evaluated using eq. (4). Right-hand panel: graphical illustration of the time-warping transform t′(t) at
X = 8000 km.

Figure 4. Heavy curves: exact dispersion curves for isotropic no-ocean
PREM model computed using Mineos. Dashed curves: asymptotic disper-
sion curves based on an approximation to the no-ocean PREM model. The
plotted red dots are time-warping-based estimates based on analysis of the
synthetic seismogram at X = 8000 km shown in Fig. 5.

used in Matsuzawa & Yoshizawa (2019). These synthetics do not
include any additive noise.

Fig. 4 shows two sets of dispersion curves. One set of curves
is computed using Mineos using the assumed no-ocean isotropic
PREM model. The other set of curves is computed using the ap-
proximate asymptotic results described in the previous section,
making use of the modified τ (Sg) curve. [Given τ (Sg), dispersion
curves are defined by eq. (2), with γ = 1/4.] The Mineos-based
dispersion curves should be thought of as exact for the assumed
PREM model and for the Mineos-based synthetics that we process

in this section. The differences between the two sets of disper-
sion curves have simple explanations. The m = 0 curves at Sg >

0.24 s km–1 are sensitive to near surface structure; those curves
are different due to the near-surface modification that we applied.
The cause of the multivaluedness of the exact dispersion curves for
0.215 s km−1 < Sg < 0.235 s km−1 is the multivaluedness of τ (Sg)
in that Sg domain (see Fig. 2); recall that we eliminated the multi-
valued structure to allow the time warping transform to be defined.
(Without making the τ (Sg) modification shown in Fig. 2, the asymp-
totic dispersion curves closely match the exact dispersion curves in
the corresponding Sg domain.) Finally, and most significantly, the
asymptotic curves fail to reproduce the negative slope regions of
the dispersion curves at very low f. The cause of this more serious
shortcoming of the asymptotic results is that eq. (2) does not prop-
erly treat the core–mantle boundary, leading to errors for modes (at
sufficiently low frequency and high mode numbers) with turning
depths near this interface.

Some qualitative features of Fig. 4 are noteworthy.
The limits on Sg in the asymptotic dispersion curves
[0.1385 s km−1, 0.3333 s km−1] impose limits on the time win-
dow within which Love wave energy is expected to arrive,
(0.1385 s km−1) (X ) < t < (0.3333 s km−1) (X ) . This time window
can be described as the Love wave time window. The fundamental
mode (m = 0) dispersion curve is seen to extend over the entire Sg

domain while all overtone energy corresponds approximately to Sg

< 0.235 s km–1. The m = 0 tail for Sg > 0.235 s km–1 looks rather
insignificant in Fig. 4, but often most of the energy in measured
seismograms is m = 0 energy. The significance of the temporal
bounds on the overtone energy (assuming Fig. 4 is qualitatively
correct) is that temporal bounds may be placed on seismograms
to isolate overtone energy. Assuming the time-frequency structure
shown in Fig. 4 (recall t = SgX) is approximately correct, that
structure can be exploited when processing seismograms by mak-
ing use of a combination of bandpass filtering and time-gating. For
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Figure 5. Upper panel: Synthetic seismogram for a no-ocean isotropic
PREM model at X = 8000 km. Lower panel: corresponding time-warped
synthetic seismogram. Only the early energetic portion of the time-warped
seismogram is shown; at X = 8000 km warped time is defined for t′ in excess
of 1000 s as in Fig. 3.

example, because typically most of the overtone energy in seis-
mograms is in the lowest overtones, much of the energy in the
negative slope portion of the overtone dispersion curves that is
not treated correctly in our asymptotic analysis can be removed
by high-pass filtering seismograms, with a cut-off frequency of
a few mHz. With these comments in mind we have imposed the
following temporal bounds, with smooth tapers where appropri-
ate, when processing both synthetic and measured seismograms:
(0.1385 s km−1) (X ) < t < (0.3333 s km−1) (X ) for the fundamen-
tal mode; (0.1385 s km−1) (X ) < t < (0.2400 s km−1) (X ) for over-
tones. Also, we have high-pass filtered all seismograms with a cut-
off frequency of 2.0 mHz. All filtering performed in this paper was
done using the Python scipy.signal.sosfiltfilt function to eliminate
spurious time-shifts.

The upper panel of Fig. 5 shows a synthetic seismogram at X =
8000 km for a source depth of 50 km in the Love wave time window,
(0.1385 s km–1) (8000 km) < t < (0.3333 s km–1) (8000 km). The
lower panel shows the corresponding time-warped seismogram. The
corresponding warped frequency power spectral density is shown
in Fig. 6. According to eq. (6) with γ = 1/4 the warped frequency
power spectral density should have peaks at f ′ = (m + 1/4) (1 Hz).
Indeed, spectral peaks are seen at these values of the warped fre-
quency f ′ for m-values from 0 to 4. We shall focus our attention on
those peaks. Other warped-frequency power spectral density peaks
that are seen in Fig. 6 are discussed below. Before proceeding with
the task isolating of energy corresponding to a fixed value of m we
show results, similar to those in Fig. 5, but based on processing the
same seismogram after time-windowing to isolate overtone energy.

Recall that Fig. 4 shows that overtone energy is expected to arrive
at times less than approximately (0.24 s km–1) (X). With that in mind,
if our goal is to extract energy in one or more overtones, we may
time-gate the original seismogram, excluding times greater than
approximately (0.24 s km–1)(X). Use of the time-gated time-series
may be advantageous if the fundamental mode is so energetically

Figure 6. Power spectral density versus warped frequency, f ′ = (m +
γ ) (1 Hz), corresponding to time-warped synthetic seismograms. Dashed
curve: no taper applied to the seismogram prior to time-warping. Solid
curve: taper applied to seismogram prior to time-warping. Shaded regions
show the locations of expected spectral peaks for γ = 1/4.

Figure 7. Same as Fig. 5 but computed using a time-windowed seismogram,
as described in the text, to isolate contributions from overtones.

dominant that side lobes from the m = 0 peak in the warped fre-
quency spectrum (shown in Fig. 6 and described later) interferes
with, and possibly obscures, the overtone peaks. With this in mind,
we have applied a taper to the seismogram and repeated the anal-
ysis shown in Fig. 5 using the tapered seismogram as a starting
point. The applied taper, which effectively eliminates energy with
Sg > 0.24 s km–1, has temporal weighting 0.5×[1 − tanh ((t −
tc)/tw)] with tc = (0.235 s km−1)(X) and tw = (0.005 s km−1) (X ) .
The tapered seismogram, before and after time-warping, is shown
in Fig. 7. Fig. 6 shows warped spectral density corresponding to
both untapered and tapered seismograms.

The warped frequency spectral density shown in Fig. 6 reveals
several peaks at the expected locations, f ′ = (m + 1/4) (1 Hz).
The next processing steps are to select a value of m, bandpass filter
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Figure 8. Upper panel: the time-warping-based estimate of the m = 3
waveform, v3(t ; 8000 km), corresponding to the PREM model synthetic
seismogram at X = 8000 km shown in the upper panel of Fig. 5. Lower
panel: the same m = 3 waveform, v3(t ; 8000 km) after bandpass filtering,
10 mHz < f < 20 mHz.

the time-warped seismogram to extract the energy associated with
that spectral peak, and perform an inverse time-warping transform
to produce the relevant fixed-m waveform, vm(t ; X ). All bandpass
filtering in the warped frequency domain performed in this paper
uses cutoff frequencies of m +0.05 Hz and m +0.45 Hz; note that
this band is centred at (m + 1/4) (1 Hz).

vm(t ; X ) for m = 3, X = 8000 km is shown in the upper panel of
Fig. 8. The analysis methods that we have applied do not properly
treat the Airy phase at the leading edge of the waveform, so the early
portion of the recovered waveform is not accurate. Also, recalling
the comments made earlier about Fig. 2, we choose to focus on t
< 1760 s. (1760 s = (0.22 s km–1)(8000 km) where 0.22 s km–1

is an approximate upper limit on Sg values that we expect to be
negligibly affected by multivaluedness of τ (Sg).) Consistent with
these restrictions, two related analysis methods can be applied. The
simplest is to apply additional bandpass filtering of the vm(t ; X ) so
as to strip out energy in those frequency bands that we don’t have
full confidence in. The choice of which frequency band to focus
on for each m is based primarily on the dispersion curves shown
in Fig. 4. An example of such a band-limited fixed-m waveform
is shown in the lower panel of Fig. 8. Some energy is seen in that
figure arriving later than the fuzzy upper bound of 1760 s that we
have set, but most of that late arriving energy is due to diffractive
smearing of energy in the 10–20 mHz passband.

A more complete set, corresponding to m = 0 through 4, of
bandpassed vm(t ; X ) are shown in Fig. 9 together with Mineos-
based synthetics of the same fixed-m waveforms. Agreement is
seen to be good for all m = 0 through 4.

An alternative way to process time-warping-based estimates of
vm(t ; X ) was alluded to earlier: construct dispersion curves by es-
timating the local frequency of the fixed-m broad-band waveform
from the times between zero-crossings. For this purpose it is useful
to make use of both the waveform and its Hilbert transform. This
is a form of FTAN analysis mentioned earlier. The result of per-
forming this analysis for m = 0, 1, 2, 3, 4 is shown by the points
plotted in Fig. 4. For m = 0 all estimates correspond to Sg-values
greater than approximately 0.235 s km–1; agreement with Mineos-
based dispersion curves for the isotropic PREM model is seen to
be good. (Note that the data-based point estimates of f(Sg) cluster

Figure 9. The solid black curve in each panel shows a band-limited fixed-
m waveform vm (t ; 8000 km) extracted from the seismogram shown in the
upper panel of Fig. 5 using time-warping. The solid black m = 3 waveform
is identical to that shown in the lower panel of Fig. 8. The dotted black
curves show similar waveforms based on processing the same seismogram
after adding noise as described in the text. The red curves are Mineos-based
synthetics corresponding to the same band-limited fixed-m waveforms. In
each panel the vertical scale for the solid black curve and the dotted black
curve is identical; the vertical scale for each red curves is chosen so that
peak amplitudes for red and black solid curves are the same.

around the correct dispersion curve for the underlying PREM model
and not the slightly different dispersion curve corresponding to the
model that was used to define the time-warping transform.) For m
= 1, 2, 3, 4 all f-estimates for Sg-values less than approximately
0.22 s km–1 are seen to be in fairly good agreement with PREM-
based values. Estimates of f(Sg) in the region where theoretical
curves are not single-valued are not in agreement with theoretical
curves, however. This behavior is expected because to derive the
time-warping transform it was assumed that eq. (2) with constant
γ is valid and that τ (Sg) is single-valued. With these assumptions
dispersion curves f(t) [or f(Sg)] must also be single-valued. This fol-
lows from the observation that single-valuedness of f(Sg) requires
that dSg/df is everywhere non-zero and

dSg

d f
= dSg

dτ

dτ

d f
= −dSg

dτ

m + γ

f 2
. (7)

The second equality follows from eq. (2) with m fixed and constant
γ . Thus, with the assumptions that we have made, zeros of dSg/dτ

coincide with zeros of dSg/df, so single-valuedness of τ (Sg) implies
single-valuedness of f(Sg) for all m. As a consequence of this limi-
tation, for the PREM-based synthetics analysed here we don’t have
confidence in dispersion curve estimates in the approximate range
0.215 s km−1 < Sg < 0.235 s km−1. The beating behavior seen in
the m = 3 waveform shown in the upper panel of Fig. 8 at times
greater than approximately 1800 s is a manifestation of our time
warping operator failing for this band of Sg-values.
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For the same event, with a source depth of 50 km, we have
processed seismograms at epicentral distances X of 6000 and
10 000 km. Results are essentially identical to those described above
for X = 8000 km. A small difference in results at the three values of
X is that the length of the warped-time time-series is proportional
to X. As a result, warped frequency spectral resolution, for example
in Fig. 6, improves with increasing X.

At all three values of X results for a (synthetic) event at a depth of
200 km led to results that are clearly inferior to results at the same
X corresponding to a source depth of 50 km. This suggests that a
shallow source is advantageous for Love wave time-warping. This
issue will be discussed below.

To investigate sensitivity to noise we have added Gaussian white
noise to the synthetic seismogram shown in the upper panel of
Fig. 5 and repeated the time-warping-based processing. Fixed-m
waveforms corresponding to a temporally integrated SNR of 20 dB
are shown in Fig. 9. Results are nearly identical to the no-noise fixed-
m waveforms, suggesting robustness to moderate additive noise.
Note that, because seismogram energy is mostly in the m = 0 mode
and the 20 dB measure of SNR is based on time-integrated measures
of signal and noise levels, the effective SNR is greater than 20 dB
for m = 0 and less than 20 dB for m ≥ 1.

We have noted that the warped-frequency spectral density shown
in Fig. 6 is expected to have narrow peaks (widths are approxi-
mately equal to the reciprocal of the length of the energetic portion
of the warped time-series) at warped frequencies equal to (m +
1/4) (1 Hz). Those peaks are indeed seen in Fig. 6 for m = 0, 1, 2,
3, 4 and possibly slightly higher m-values. But Fig. 6 also shows
peaks at other frequencies. Those spurious peaks are not consis-
tent with eq. (2) with γ = 1/4, the result derived in the Appendix.
The cause of the spurious peaks and the fact that the m + 1/4
peak pattern is clear only for small m is likely tied to the incor-
rect treatment in the Appendix of the boundary condition at the
core–mantle boundary. eq. (2) with γ = 1/4 does not hold at very
low frequencies and/or high mode numbers, that is for modes with
turning depths at or near the core–mantle boundary. For high-angle
modes that reflect off the core–mantle boundary eq. (2) holds with
γ = 0; see table 12.1 in Dahlen & Tromp (1998). Replacement
of γ = 1/4 by γ = 0 does not account for the spurious peaks in
Fig. 6. It may be possible to explain those peaks as transitional
between non-reflecting and reflecting modes, as outlined in the Ap-
pendix, but for those transitional modes the dispersion relation will
be considerably more complicated than eq. (2) with a constant value
of γ .

4 A P P L I C AT I O N T O M E A S U R E D
S E I S M O G R A M S

In this section, we present time-warping results for a seismogram
corresponding to the 2019 Mw 7.1 Ridgecrest earthquake in Cali-
fornia (http://ds.iris.edu/ds/nodes/dmc/tools/event/11058875). The
seismogram analysed here was based on measurements made at
the PM.ROSA seismic station on São Jorge Island in the Azores,
downloaded from the Incorporated Research Institutions for Seis-
mology (IRIS). The epicentral distance is X = 7573.53 km. The
time-warping transform used here is the transform described in
Section 2 based on the isotropic PREM model described in that
section. Consistent with our use of this model to define the time-
warping transform, we assume that the dispersion characteristics of
the measured seismogram and the qualitative features of the under-
lying earth model are as described above.

Figure 10. Upper panel: ridgecrest event seismogram (transverse horizon-
tal velocity) in the Love wave time window at the PM.ROSA station; X
= 7573.53 km. Middle panel: same seismogram after applying a taper to
isolate overtone contributions. Lower panel: time-warped seismogram cor-
responding to the unwarped seismogram shown in the middle panel. Only
the early energetic portion of the time-warped seismogram is shown; at X =
7573.53 km warped time is defined for t′ as large as approximately 1000 s
as in Fig. 3.

The upper panel of Fig. 10 shows the PM.ROSA record of trans-
verse horizontal ground velocity in the Love wave time window for
the Ridgecrest event. The corresponding tapered seismogram that
isolates Love wave overtone contributions is shown in the middle
panel. The same X-dependent taper that was applied to the synthetic
seismogram in the previous section was used here. The time-warped
seismogram corresponding to the tapered seismogram is shown in
the lower panel. As was the case in Figs 5 and 7, only the early en-
ergetic portion of the time-warped seismogram is shown in Fig. 10.

Fig. 11 shows warped frequency spectral density correspond-
ing to time-warped seismograms, both without and with tapering
applied prior to time-warping. As was the case for the synthetic seis-
mogram analysed in the previous section (recall Fig. 6), in Fig. 11 the
taper is seen to remove most of the fundamental mode energy while
leaving unchanged the overtone energy. This similarity between
Figs 6 and 11 gives us confidence that the dispersion characteristics
of the synthetic and measured seismograms are qualitatively similar.

Fig. 11 shows that the warped spectral density has peaks at the
expected locations, where f ′ = (m + 1/4)(1 Hz) for m = 0, 1, 2,
3, 4; additional spectral peaks are discussed below. As in the pre-
vious section, the next steps to isolate the corresponding fixed-m
waveform, vm(t ; X ), are to choose a value of m, apply a narrow
bandpass filter to the time-warped seismogram to isolate the energy
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Figure 11. Power spectral density versus warped frequency, f ′ = (m + γ )
(1 Hz), corresponding to time-warped seismograms. Dashed curve: no taper
applied to the seismogram prior to time-warping. Solid curve: taper applied
to seismogram prior to time-warping. Shaded regions show the locations of
expected spectral peaks for γ = 1/4.

Figure 12. Upper panel: the m = 3 waveform, v3(t ; 7573.53 km), corre-
sponding to the seismogram at X = 7573.53 km shown in the middle panel
of Fig. 10. Lower panel: the same m = 3 waveform, v3(t ; 7573.53 km) after
bandpass filtering, 10 mHz < f < 20 mHz.

at that value of m, and then apply an inverse warping transform, t′

to t. Note that to construct the m = 0 waveform v0(t ; X ) the entire
seismogram (without taper applied) is used prior to time-warping.
An example of vm(t ; X ) corresponding to m = 3, is shown in the
upper panel of Fig. 12. The lower panel of the same figure shows a
band-limited version of v3(t ; X ). As was the case when discussing
Fig. 8, the reason for applying the final bandpass filter is to focus
on the energy in which we have the greatest confidence.

Bandpassed vm(t ; X ), estimated using time-warping, for m = 0
through 4 are shown in Fig. 13. Unlike Fig. 9, fixed-m band-limited
synthetics are not shown in this figure. The reason is that, unlike
Fig. 9, the underlying earth model is not known. The qualitative
similarity between Figs 9 and 13 suggest, however, that the time-
warping-based estimates of vm(t ; X ) shown in Fig. 13 are correct
and that the underlying earth model does not deviate significantly
from PREM. One could use differences between the vm(t ; X ) shown

Figure 13. Band-limited fixed-m waveforms vm (t ; 7573.5 km) extracted
from the seismogram shown in Fig. 10 using time-warping. Solid and dot-
ted curves correspond to warping transforms based on the solid and dotted
curves, respectively, shown in Fig. 2. The m = 3 solid curve is identical to
that shown in the lower panel of Fig. 12.

Figure 14. Heavy curves: exact dispersion curves for isotropic no-ocean
PREM model computed using Mineos. The same curves are shown in Fig. 4.
The plotted dots, both red and blue, are based on time-warping analysis of
the seismogram at X = 7573.53 km shown in Fig. 9. Red and blue dots
correspond to warping transforms based on the solid and dotted, respectively,
τ (Sg) curves shown in Fig. 2.

in Fig. 13 and PREM-based synthetics as the basis for an inversion
algorithm.

As was done in the previous section, points on dispersion curves
can be estimated from the times between successive zero-crossings
of the fixed-m waveforms vm(t ; X ) and their Hilbert transforms.
Fig. 14 shows those measurement-based points together with theo-
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retical (as computed by Mineos) dispersion curves for the isotropic
PREM model. The theoretical dispersion curves shown in Fig. 14
are identical to those shown in Fig. 4. The approximate agree-
ment between PREM-based theoretical dispersion curves and the
seismogram-based estimates of points on those curves is indicative
that (1) the underlying earth model does not differ significantly from
the assumed PREM model and (2) the time-warping processing is
performing as it is intended to.

The cause of the beats in the high frequency tail of the waveform
shown in the upper panel of Fig. 12 is that the local frequency f3(t),
estimated as just described, does not increase monotonically for t
greater than about 0.225 s km–1 X. The same behavior is observed
in the m = 1, 2 and 4 waveforms. As was the case in our analysis
of PREM-based synthetics in the previous section, we interpret this
behaviour as an indication that, within a narrow band of Sg-values
near 0.225 s km–1, the underlying earth model violates the assumed
condition that τ (Sg) is single-valued. For that reason we do not have
confidence in time-warping-based estimates of f(Sg) for Sg-values
near 0.225 s km–1.

It is natural to ask how sensitive time-warping-based estimates
of fixed-m waveforms and dispersion curves are to the choice of
the reference model used to define the warping transform. This was
not done in the previous section where the focus was on comparing
time-warping-based estimates of fixed-m waveforms to synthetics.
Of particular interest in regard to sensitivity to the reference model
is the somewhat arbitrary manner that τ (Sg) (recall Fig. 2) was modi-
fied to be single-valued. To investigate this issue a different modified
model was used to define the warping transform and all process-
ing steps were repeated. The modified model, which is shown in
Fig. 2, used a linear correction, Sg(τ ) = a − b(τ − τ 0) with τ 0 =
101.79 s, a = 0.225 s km−1, b = 0.8754 × 10−4 km−1 for 12.57 s
< τ < 191.01 s. Also, the additional smoothing that was used in
the reference model described earlier was not applied in the modi-
fied model. Fixed-m waveforms and dispersion curves constructed
using the modified reference model are shown in Figs 13 and 14,
respectively. Results are seen to be nearly identical to results based
on the previously described reference model. We emphasize that
neither choice of τ (Sg) overcomes the requirement that τ (Sg) be
everywhere single-valued, and for both choices we do not have con-
fidence in results corresponding to Sg values in the approximate
range 0.215 s km–1 < Sg < 0.235 s km–1. It is nevertheless reassur-
ing that extracted waveforms and dispersion curves do not exhibit
strong sensitivity to the assumed reference model.

The test just described does not focus on sensitivity to the near-
surface structure in the reference model used to define the warping
transform. The fundamental mode is most sensitive to this structure
as evidenced by Fig. 4, where it is seen that asymptotic dispersion
curves (based on a smoothed near-surface structure) differ appre-
ciably from exact dispersion curves only for m = 0. But Fig. 4
suggests that use of a smoothed near-surface structure to define
the warping transform does not result in a biased m = 0 disper-
sion curve estimate. When analysing the Ridgecrest earthquake we
don’t know the correct dispersion curves or the correct near-surface
structure, but the following argument strongly suggests that the
time-warping-based estimates of points on the m = 0 dispersion
curve shown in Fig. 14 are not subject to a bias associated with a
poor choice of the reference model. Because all energy with Sg >

0.24 s km–1 is expected to be m = 0 energy we can estimate the m = 0
dispersion curve independent of time-warping by applying our ver-
sion of FTAN analysis after time-windowing the measured seismo-
gram. Results (not shown) are nearly identical to the time-warping-
based estimates shown in Fig. 14. These arguments suggest that an

approximate near-surface reference model such as the one used here
should work well in teleseismic applications. A reference model
with more accurate crustal and Moho structure may be needed for
regional studies.

In principle, an ocean layer can be handled by applying the
traction-free boundary condition at the seafloor. There may, how-
ever, be associated practical challenges that we have not considered
here. These include: (1) proper treatment of a soft sediment layer;
(2) observational challenges associated with noisy horizontal mo-
tion components measured on broadband ocean-bottom seismome-
ters and (3) possible enhancement (relative to continental structure)
of the SH low-velocity structure in the asthenosphere under the
oceanic lithosphere. The latter issue is tied to the condition that
τ (Sg) must be single valued to define the time-warping transform.

Fig. 11 reveals peaks both at expected locations, f ′ = (m + 1/4)
(1 Hz) for integer m, and at unexpected locations. The m + 1/4
peaks for m = 2 and 3 are not a strong as those seen in Fig. 6 (for
the synthetic), but there are resolved peaks at the locations predicted
by theory. Both figures show a hint that the m + 1/4 pattern of peaks
extends to m = 5 and larger. Also, in both figures there are peaks at f
′ values that differ from the predicted peak locations, f ′ = (m + 1/4)
(1 Hz). The origin of those peaks is not clear. Figs 6 and 11 have
both (1) many features that are consistent with the simple theoretical
arguments we have given and (2) some unexplained features.

We have performed a time-warping analysis of the same event us-
ing seismograms measured at other locations. Results are consistent
with but inferior to (e.g. fewer resolved peaks in warped-frequency
spectral density plots at expected locations) results reported here.
This behavior may be due to local structure near the measurement
locations.

We have also performed a time-warping analysis of seismograms
at several locations corresponding to the 2021 Mw 7.1 Honshu
event (http://ds.iris.edu/ds/nodes/dmc/tools/event/11377253). Re-
sults were much less favorable than those corresponding to the
Ridgecrest event. The Ridgecrest event was unusually shallow, with
depth estimates ranging from 4 to 9 km (Lin 2020; Lomax 2020;
Wang et al. 2020), while the Honshu event was a deep subduction
zone event, at a depth of about 50 km (IRIS location). As was the
case with the our analysis of synthetics, the source depth—and per-
haps, more generally, source dynamics—seems to be an important
factor that controls whether time-warping will work well or not.

5 D I S C U S S I O N

We have shown that fixed-m Love wave waveforms and correspond-
ing dispersion curves can be recovered from a seismogram measured
at an isolated location using time-warping techniques. This state-
ment is based on several observations. First, the warped frequency
spectral density shown in Figs 6 and 11 reveals peaks at those loca-
tions predicted by theory, f ′ = (m + 1/4) (1 Hz) for m = 0 through
4. Secondly, the recovered dispersion curves shown in Figs 4 and
14 are in agreement with PREM dispersion curves excluding the
Sg band where we have argued that time-warping is expected to
fail. And third, the agreement shown in Fig. 9 between fixed-m
waveforms extracted using time-warping and Mineos-based fixed-
m synthetics is good. While we have no proof that the corresponding
measurement-based fixed-m waveforms shown in Fig. 13 are cor-
rect, all indications are that these waveforms can be trusted and
used as the basis for an inversion algorithm. Not surprisingly, time-
warping as implemented here also has some shortcomings, some of
which will now be discussed. It is important to keep in mind that
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the problem of extracting fixed-m waveforms from a seismogram
measured at an isolated station is extremely challenging. Overall,
our assessment of time-warping as implemented here is that it is an
imperfect tool, but a useful tool.

Time-warping as implemented here is subject to a set of modest
geometric constraints. Like many other widely used seismic meth-
ods we have assumed a 1-D earth model which precludes treatment
of lateral structure and deviations from propagation along great cir-
cle paths. This assumption is somewhat restrictive, but remains a
good approximation in many applications. Also, to use the meth-
ods described here it is advantageous to choose time windows that
isolate Love wave energy. This places restrictions on epicentral dis-
tance.

The results that we have described suggest that a shallow source is
advantageous for Love wave time-warping. A plausible explanation
for this is that in the frequency band that we have focused on,
roughly 5–25 mHz, toroidal Earth modes for mode numbers less
than approximately 5 have no nodes at depths shallower than about
50 km. Thus, those mode numbers are expected to be excited across
the entire 5–25 mHz frequency band provided the source depth does
not exceed approximately 50 km. In contrast, a deeper source will
lie near the first node for some mode numbers at some frequencies,
leading to poor, or at least non-uniform in frequency, excitation
of energy with those mode numbers. This argument is expected to
apply robustly in the sense of being independent of details of source
dynamics because, independent of those details, the same modal
depth structure weighting applies.

In underwater acoustic applications of time-warping (Bonnel
et al. 2020) argue that deconvolution—correcting for a non-
impulsive source function—is a useful pre-processing step, for in-
stance when the acoustic source is an underwater explosion with a
known time history including bubble pulse oscillations. The same
pre-processing could be applied to seismic data. We have chosen not
to pursue that issue here because of concerns relating to uncertainty
of the seismic source time history.

The time-warping results that we have presented are based on
eq. (2) and some of the shortcomings that we have mentioned are
tied to shortcomings of that equation. The principle weakness of
eq. (2), which is derived in the Appendix, is the lower boundary
condition (at z → −∞) that was assumed. Use of this approximate
boundary condition precludes proper treatment of the core–mantle
boundary and, in particular, energy reflecting from this boundary
back into the mantle. As outlined in the Appendix, a more accurate
dispersion relationship could be derived without too much difficulty.
The improved dispersion relation would, however, likely not lead to
a warping transform that could be implemented as described here.
This topic is may be worth pursuing, even if it doesn’t result in an
improved time-warping transform, because this exercise could ex-
plain the origin of the warped frequency spectral peaks that we have
observed at locations other than f ′ = (m + 1/4) (1 Hz). Using the
time-warping transform that we have described and implemented,
we have shown that it is possible to avoid shortcomings of eq. (2) by
focusing on m-dependent frequency bands within which eq. (2) is a
good approximation. It should be understood, however, that our use
of a time-warping transform based on eq. (2) as a mantle imaging
tool leads to a blind spot near the core–mantle boundary.

Another shortcoming of the time-warping transform that we have
described is the restriction that τ (Sg) be single-valued. As we have
seen, that condition is violated in the assumed isotropic PREM
model. We satisfied the condition by making an ad hoc correction
that forced τ (Sg) to be single-valued. The ad hoc correction allows
a time-warping transform to be defined but does not eliminate all

potential problems; if the single-valuedness condition is violated in
the environment in which measurements are made (which of course
may be different from the isotropic PREM model), time-warping-
based processing should be expected to produce spurious results
for Sg values within the domain in that environment over which
τ (Sg) is not single-valued. Our synthetic seismogram numerical re-
sults strongly suggest that, while errors are present, those errors are
isolated within the band of Sg-values over which τ (Sg) is not single-
valued. Similar results were observed in our analysis of measured
seismograms, suggesting that the corresponding mantle structure is
associated with a multivalued τ (Sg) structure similar to that in the
isotropic PREM model. The associated physical domain is the man-
tle transition zone. As was the case when dealing with shortcomings
of eq. (2), errors can be eliminated by applying bandpass filters that
eliminate waveform energy that we don’t have full confidence in.
In this case, the price paid is that we have limited ability to image
details of the mantle transition zone. As a practical matter, this is a
more significant shortcoming than limited ability to image structure
near the core–mantle boundary.

We have made no attempt here to account for attenuation-induced
dispersion (Kanamori 1977). We do not expect this to be a significant
factor limiting the validity of our time-warping results, but the issue
is worthy of further investigation. These effects are accounted for
in the Mineos-based dispersion curves shown in Figs 4 and 14.
We have attributed some of the differences between our dispersion
curves and those predicted by Mineos to smoothing of our PREM-
like model and our use of asymptotic theory, but attenuation-induced
dispersion could also be a contributing factor.

To put the present study in a broader context, it is important
to mention alternative methods that have proven to be useful to
extract fixed-m (including overtone) waveforms for Love waves.
Array processing methods (see Matsuzawa & Yoshizawa 2019,and
references therein) offer an attractive alternative to achieve the same
goal, but those methods can be used only when a fairly dense array of
receiving stations is present. An alternative approach is to make use
of waveform fitting and stripping methods (van Heijst & Woodhouse
1997; Yoshizawa & Kennett 2002; Beucler et al. 2003; Visser et al.
2007; Yoshizawa & Ekström 2010). Those methods do not require
an array of receiving stations and avoid some of the restrictions
associated with time-warping that we have described, but they have
the disadvantage that the source function must be known to compute
accurate synthetics, which is critical to the fitting and stripping
algorithm. Thus, in spite of some shortcomings of time-warping
as described here, this method offers a viable alternative to other
available methods to isolate fixed-m Love wave waveforms.
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A P P E N D I X : A U N I F O R M A S Y M P T O T I C
M O DA L E X PA N S I O N O F L OV E WAV E S

We present here a normal mode expansion of Love waves excited by
a point source in a stratified environment, making use of a uniform
asymptotic treatment. eqs (A9, A12, A13, A16, A17 and A18)
could be used as the basis for constructing Love wave synthetic
seismograms for modes with turning depths far from the core–
mantle boundary. The asymptotic dispersion relation, eq. (A16),
plays a critical role in derivation of the warping transform. Although
that equation is not new (see, e.g. Dahlen & Tromp 1998) the
arguments presented here provide a relatively simple framework for
generalizing that result as described later.

We use a cylindrical coordinate system: r is the horizontal dis-
tance from the source (assumed to be a point source); θ is the polar
angle in the horizontal plane, so dy = rdθ is a small horizontal
displacement normal to the radial direction; and z is the vertical
coordinate, increasing upwards. v is the transverse horizontal com-
ponent of ground motion velocity. Because we are interested only in
very small ground motions at locations not close to the source (at r
= 0) we may think of (r, y, z) as a local cartesian coordinate system
and v as the y-component of ground motion velocity. We assume that
medium properties, shear modulus μ and density ρ are functions of
z only. In the following an overbar denotes Fourier transform, for
example from s(t) to s̄(ω), with exp ( − iωt) dependence assumed in
the inverse Fourier transform. In the main body of this publication
X (rather than r) is used to denote epicentral distance along a great
circle path.

Assuming a conveniently normalized point source at (r, z) = (0,
z0) with time dependence s(t) the equation satisfied by v̄(r, z; ω) is

1

μ(z)
∇ · (μ(z)∇v̄) + ω2ρ(z)

μ(z)
v̄ = − s̄(ω)

μ(z0)

δ(r )

2πr
δ(z − z0). (A1)

The upper surface is traction-free so ∂v̄/∂z = 0 at z = 0. Also, we
assume that v̄ → 0 as z → −∞. The homogeneous form of eq. (A1)
admits a separable solution v̄(r, z) = R(r )ψ(z) (for convenience, ω-
dependence is suppressed here). R(r) and ψ(z) satisfy

d2 R

dr 2
+ 1

r

dR

dr
+ ω2 p2 R = 0 (A2)

and

d

dz

(
μ(z)

dψ

dz

)
+ ω2ρ(z)ψ = ω2 p2μ(z)ψ, (A3)

respectively, where ω2p2 is a separation constant. The solution to
eq. (A2) for r 
= 0 that satisfies the radiation condition at large r is a
Hankel function of the first kind, H (1)

0 (ωpr ). eq. (A3) together with
the stated boundary conditions defines an eigenvalue–eigenvector
(Sturm–Liouville) problem with weighting function μ(z). Solutions
correspond to a discrete set of p-values (eigenvalues) pn; eigenfunc-
tions (normal modes) �n(z; ω) corresponding to different eigenval-
ues satisfy the orthogonality condition∫ 0

−∞
μ(z)�n(z; ω)�m(z; ω) dz = δnm . (A4)

Note that there is a different set of modes at each frequency and
that it is assumed here and in the following that the modes are
normalized. Completeness of the �n(z; ω) allows for a solution to
eq. (A1) of the form

v̄(z, r, ; ω) =
∑

n

An(ω)�n(z; ω)H (1)
0 (ωpnr ), (A5)

where the An(ω) are constants. The Hankel function satisfies(
d2

dr 2
+ 1

r

d

dr
+ ω2 p2

n

)
H (1)

0 (ωpnr ) = 4i
δ(r )

2πr
, (A6)

so the An(ω) satisfy

∑
n

An(ω)�n(z; ω) = i

4

s̄(ω)

μ(z0)
δ(z − z0). (A7)

By exploiting the orthogonality of the modes, eq. (A4), we find

Am(ω) = i

4
s̄(ω)�m(z0; ω). (A8)

Substituting Am(ω) into eq. (A5) yields

v̄(z, r, ; ω) =
i

4
s̄(ω)

∑
n

�n(z0; ω)�n(z; ω)H (1)
0 (ωpnr ). (A9)

So far, the principal limiting assumption that we have made is
the assumption that the environment is stratified. In addition, we
note that evanescent energy is not accounted for in the modal sum,
eq. (A9)

We turn our attention now to finding the pn and the corresponding
�n(z; ω). We make use of a uniform asymptotic treatment which,
like traditional WKBJ methods, leads to good approximations to
exact solutions when medium properties vary slowly on a scale of
wavelengths. Additionally, the uniform treatment described here re-
mains valid at modal turning depths where traditional WKBJ meth-
ods fail. Arguments similar to those presented here can be found,
for example in Ahluwalia & Keller (1977). We assume that the
horizontal shear wave speed V = √

μ/ρ increases monotonically
with increasing depth. (Our treatment does not account for energy
trapped in low-velocity layers (LVLs). Because the Cartesian de-
scription used here is used after application of the Earth-flattening
transformation this assumption is less restrictive than it might ap-
pear; a weak LVL in a spherical Earth model may be eliminated by
the Earth flattening transformation. Also, even if an LVL is present,
LVL-trapped modes are only very weakly excited by a source out-
side the LVL. For the purposes described in this paper, little is lost if
the LVL is smoothed out, thereby eliminating LVL-trapped energy.)

The normal modes �n(z; ω) and corresponding pn satisfy eq. (A3)
with p replaced by pn and ψ(z) replaced by �n(z; ω). We retain
for now the notation used in eq. (A3). Consistent with the stated
assumptions we seek to find a solution of the form ψ(z) = B(z) W[ −
ω2/3S(z)] where W[x] satisfies the Airy differential equation W

′′
[x]

− xW = 0, while S(z) and B(z) are to be determined. Substituting
ψ(z) into eq. (A3), and subsequently collecting and equating terms
on left and right in descending powers of ω, gives, to O(ω2),

S(z)(S′(z))2 = V −2(z) − p2, (A10)

and, to O(ω),

B(z)
d

dz

(
μ(z)S′(z)

) + 2B ′(z)μ(z)S′(z) = 0. (A11)

Let ž(p) denote the turning depth of the mode (or ray) whose hor-
izontal slowness is p, where V −2(ž(p)) = p2. Then the solution to
eq. (A10) is

S(z) =
[

3

2

∫ z

ž(p)
(V −2(z′) − p2)1/2dz′

]2/3

(A12)
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for z > ž(p) and

S(z) = −
[

3

2

∫ ž(p)

z
(p2 − V −2(z′))1/2dz′

]2/3

(A13)

for z < ž(p). The solution to eq. (A11) is

B(z) = (μ(z)S′(z))−1/2. (A14)

With S(z) and B(z) as defined here, the function W (recall ψ(z)
= B(z) W[ − ω2/3S(z)]) that satisfies the assumed lower boundary
condition, ψ → 0 as z → −∞ is the Airy function Ai. To satisfy
the boundary condition ψ

′
(z) = 0 at z = 0 to leading order in ω, we

make use of the large argument asymptotic relationship Ai
′
( − x)

∼ x1/4π−1/2sin ((2/3) x3/2 − π /4). This leads to the condition

sin

(
ω

∫ 0

ž(p)
(V −2(z′) − p2)1/2dz′ − π

4

)
= 0. (A15)

The integral in this expression is recognized as one-half the reduced
traveltime τ (p), here based on the horizontal shear wave speed V(z).
To satisfy eq. (A15) the modal dispersion relation (or, equivalently,
quantization condition)

ωτ (pm) = 2π

(
m + 1

4

)
m = 0, 1, 2, . . . (A16)

must be satisfied. At each frequency ω this equation defines a dis-
crete set of pm-values, which, in turn, are used in the corresponding
functions Sm(z) (eqs A12 and A13) and Bm(z) (eq. A14). The final

expression for �m(z; ω) is then

�m(z; ω) = am(μ(z)S′
m(z))−1/2Ai(−ω2/3 Sm(z)), (A17)

where am is a normalization constant which is constrained by
eq. (A4). For n = m this condition reduces to, after making a change
of variables from z to qn(z) = ω−2/3Sn(z),

ω−2/3a2
m

∫ qm (0)

−∞

(
dqm

dz

)−2

Ai2(−qm)dqm = 1. (A18)

The normalization constant am is independent of the shear modulus
profile μ(z), so, in the asymptotic treatment used here, the modal
expansion of the wavefield (A9, A17) depends on μ only at the
source depth z0 and at the surface z = 0 where we seek to compute
the ground motion.

The validity of the solution described above, including eq. (A16),
is limited to modes with turning depths in the mantle far from
the core–mantle boundary. That restriction can be relaxed by re-
placing the stretched depth dependence on Ai by dependence on
a linear combination of Ai and Bi (the Airy function of the sec-
ond kind) and applying a traction-free boundary condition at the
core–mantle boundary. In the limit of small pm (corresponding
to steep reflecting modes) that solution leads to a dispersion re-
lation similar to eq. (A16) but with 1/4 replaced by 0 (see also
Dahlen & Tromp 1998). The same solution holds for interme-
diate (near grazing) modes, but in that case the dispersion rela-
tion is a more complicated expression involving the derivatives of
Ai and Bi.
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