

Title	EGR gas composition effects on ignition delays in diesel combustion	
Author(s)	Kobashi, Yoshimitsu; Todokoro, Masaki; Shibata, Gen; Ogawa, Hideyuki; Mori, Toshihiro; Imai, Daichi Fuel, 281, 118730 https://doi.org/10.1016/j.fuel.2020.118730	
Citation		
Issue Date	2020-12-01	
Doc URL	http://hdl.handle.net/2115/86349	
Rights	© <2020>. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/	
Rights(URL)	http://creativecommons.org/licenses/by-nc-nd/4.0/	
Type article (author version)		
File Information	Manuscript_clean.pdf	

1	EGR Gas Composition Effects on Ignition Delays in Diesel Combustion
$\frac{2}{3}$	Yoshimitsu Kobashi ¹ *, Masaki Todokoro ¹ , Gen Shibata ¹ , Hideyuki Ogawa ¹ ,
4	Toshihiro Mori ² , Daichi Imai ²
5	
6	¹ Division of Energy and Environmental Systems, Graduate School of Engineering, Hokkaido
7	University, Japan
8	² Advanced Powertrain Engineering Div. No.1, TOYOTA Motor Corporation, Japan
9	Abstract
10	This paper presents the effects on ignition delays of a range of exhaust gas compositions
11	recirculated in the intake air. The ignition delays were measured in a single-cylinder diesel
12	engine introducing a variety of hydrocarbons, nitrogen oxides (NO _x), and carbon
13	monoxide (CO) into the intake gas, and changing the concentrations of these components.
14	The experimental results show that the ignition delay decreases with the NO _x addition,
15	NO ₂ promotes the ignition more than NO, and this effect is more pronounced at higher
16	intake gas temperatures. The ignition delay decreases with HC addition under NOx rich
17	conditions while there is little effect under low NO _x conditions, and the ignition delay
18	changes with the kinds of hydrocarbons. The CO has little effect on the ignition delay.
19	With the aid of chemical reaction analysis, the mechanisms of these changes are
20	elucidated.

E-mail address: kobashi@eng.hokudai.ac.jp (Y. Kobashi)

^{*} Corresponding author at: Kita 13, Nishi 8, Kita-ku, Sapporo, Hokkaido, Japan

22	Keywords: Ignition Delay, Exhaust Gas Recirculation, Diesel Engine, Nitrogen Oxide	
23		
24	Nomenc	lature:
25		
26	$\mathrm{d}Q/\mathrm{d} heta$	The rate of the heat release [J/°CA]
27	$d^2Q/d\theta^2$	Derivative of the rate of the heat release [J/°CA/°CA]
28	EGR	Exhaust gas recirculation
29	HCCI	Homogeneous charge compression ignition
30	IMEP	Indicated mean effective pressure
31	LTC	Low temperature combustion
32	LTOR	Low temperature oxidation reaction
33	PAHs	Polycyclic aromatic hydrocarbons
34	$p_{ m inj}$	Injection pressure [MPa]
35	TDC	Top dead center
36	SOI	Start of injection
37	T_{in}	Intake air temperature [K]
38	$ au_{ m ign}$	Ignition delay [°CA]
39		
40		
41		
42	1. Intro	oduction

To respond to increasingly stringent emission and fuel consumption regulations, combustion improvement strategies have been developed for diesel engines. Exhaust gas recirculation (EGR) is an emission control technology enabling significant nitrogen oxides (NO_x) reductions, that are achieved due to the decreased flame temperature attributed to the decreased intake oxygen concentration and increased heat capacity. Further, increases in the EGR rate decreases the flame temperature to a level where no soot is formed [1-3], and lengthens the ignition delay while enhancing the homogeneity

50	of the gas mixture [4, 5]. Considering the features of these combustion regime termed
51	low temperature combustion (LTC), the potential application of EGR has extended
52	investigations into reductions of soot formation and cooling losses in modern diesel
53	engines [6, 7]. Also, recent research has payed attention to the effects of fuel properties
54	in the LTC since they have significant impacts on the ignition delay and mixture formation
55	that are important factors affecting engine performance and emissions [8-11].
56	As EGR affects the ignition delays of gas oil significantly, the investigations have
57	been carried out intensively, and have substantiated that the oxygen reduction and
58	thermodynamic effects due to the high specific-heat capacity of carbon dioxide (CO ₂) and
59	water (H ₂ O) lengthen the ignition delays [12-15]. In the LTC regime achieved with a large
60	amount of EGR, however, the intake gas composition would play a more important role
61	in the ignition delays, as the concentrations of unburned hydrocarbons and carbon
62	monoxide (CO) tend to increase in the recirculated intake gas together with the decrease
63	in the oxygen concentration, and as there is also a non-negligible concentration of NOx
64	that becomes recirculated at high load operation.
65	In spark-ignition engines, it is known that NOx enhances the ignition, leading to
66	knocking issues [16]. Sjöberg et al. suggested the possibility that such autoignition was
67	influenced by the presence of unburned or only partially-oxidized hydrocarbons and

nitrogen monoxide (NO) in a homogeneous charge compression ignition (HCCI) engine fueled with gasoline and primary reference fuels [17], and Kawasaki et al. demonstrated that the ignition was enhanced with either NO and nitrogen dioxide (NO₂) in a HCCI engine fueled with natural gas [18]. Chemical kinetic studies considering the presence of hydrocarbons and NO_x suggest that the following reaction shows the highest sensitivity to enhancements in the ignition:

$$NO + HO_2 = NO_2 + OH$$
(R1)

suggesting that this reaction shows a strong dependence on the kind of fuels and that it is 7576important in the low temperature oxidation reaction (LTOR) [19, 20]. This chemical kinetic mechanism may be important for gas oil which is accompanied by large heat 77release during the LTOR. Using a primary reference fuel with octane number 90, the 78 79 authors have shown that the ignition of the spray combustion was enhanced by the entrained gas which consists of the intermediate products during the LTOR [21], but less 80 study on the effects of intermediate products on the ignition of gas oil have been 81 implemented as conventional diesel engines primarily have short ignition delays, this is 82 except for some reports which reported that the ambient gases containing methane (CH₄) 83 84 and propane (C₃H₈) have no facilitating influence on the ignition of the diesel spray [22-25]. 85

86	The present study proposes to investigate the effects of the EGR gas composition on
87	the ignition delays of diesel combustion in a low temperature combustion regime with
88	low intake oxygen concentrations, particularly focusing on cases where there is both
89	hydrocarbons and NO _x . The ignition delays were measured in a single-cylinder engine
90	while changing the concentrations of hydrocarbons, CO, and NO _x as well as the intake
91	gas temperature. Additional investigation into the effects of the chemical reaction
92	mechanism on the ignition delays were carried out with the CHEMKIN-PRO software
93	[26].
94	
95	2. Experimental Devices, Setup, and Procedures
96	2.1 Test Engine and Fuel Used
97	A four-stroke water-cooled diesel engine (YANMAR, 4TNV98T) was used to measure
98	the ignition delays. This engine was originally composed of four cylinders, and was
99	modified to be a single-cylinder engine by detaching the pistons of three of the cylinders.

Table 1 details the specifications of the test engine. The bore and stroke were 98 mm and 100

110 mm, and the stroke volume was 830 cm³. A piston with a toroidal bowl geometry was 101

- used, and the compression ratio was 17.6. The test engine was equipped with a common-102
- rail fuel injection system. The engine used a G4S injector (DENSO, G4S) equipped with 103

an 8-hole nozzle, nozzle hole diameter 0.125 mm with a spray angle of 155°. A
commercially-available gas oil was used as the test fuel.

106

115

2.2 Experimental Setup

107 Figure 1 shows an outline of the experimental setup. The in-cylinder pressure was measured with a piezoelectric pressure sensor (KISTLER, 6125B) for 180 cycles, and the 108 electrical charge was introduced via a charge amplifier (KISTLER, 5011B), converted 109 into a voltage signal, and recorded with a computer via an AD converter (Interface, CBI-110 320412). This cycle number recorded was limited by the amount of memory of the AD 111 112converter, but it was enough in cycle number to obtain representative histories of pressure and heat release rate under the conditions employed in the present study. 113Unlike the experiments where repetition of measurements is possible, it is difficult for 114

involved, and in engine test, cycle-by-cycle variations in the combustion process may

engine tests to repeat many tests at each operating point due to the many data points

117 cause a significant error and deteriorate the accuracy of measurements. In the present

study, to mitigate the effects of the cycle-by-cycle variations, the data obtained in the

- 119 experimental conditions where the coefficient of variance of indicated mean effective
- 120 pressure were less than 5% were used for the evaluation.

121 The engine employed a low-pressure loop EGR system which contains a diesel

122 oxidation catalyst (DOC) to reduce unburned emissions and a diesel particulate filter
123 (DPF) to remove soot particles. A 5 kW heater was installed into the channel of the intake
124 manifold to control the intake air temperature. The EGR rate was controlled by adjusting
125 the opening positions of two gate valves. One was installed in the EGR channel to control
126 the EGR rate, another was installed in the exhaust channel to maintain a constant exhaust
127 gas pressure equal to the intake air pressure.

To simulate the EGR gas composition with pure components, pure gases were 128introduced into the intake pipe from gas cylinders while controlling the flow rate with 129130 mass flow controllers (KOFLOC, Model 3665 for CO and Model 3660 for the other gases) which have accuracy better than ± 1.5 and $\pm 1.0\%$ of full scale output (FSO). The 131flow rates of the pure gases were adjusted to the targeted concentrations at the intake that 132133are calculated with the flow rate of the intake air. The flow rate of the intake air was determined with a differential pressure type flowmeter, and the pressure difference was 134135measured with a digital manometer (Tsukasa Sokken, PE-33-D) which has accuracy better than $\pm 0.5\%$ of FSO. Considering these facts, the impact of the measurement error 136on the flow rate is negligibly small. Furthermore, the concentrations in the intake gas 137138were measured with the gas analyzer for verification purposes.

139 The intake NO₂ concentration was changed while introducing NO and O₂ into a heated

140 oxidation catalyst.

The concentrations of the intake and exhaust gas components were measured with a 141 gas analyzer (Best Sokki, BEX-5100D), with the total hydrocarbons (THC) measured 142with FID (Flame ionization detector); NO_x with CLD (Chemiluminescence detector); CO 143and CO₂ with NDIR (Non dispersive infrared); oxygen (O₂) with a dumbbell-type sensor. 144145More detailed measurements of hydrocarbon species in the exhaust gas were carried out 146 with a Fourier transform infrared (FTIR) spectrometer (HORIBA, MEXA-4000FT) which quantifies the concentrations of specified chemical species as detailed in Table 2. 147148A part of the exhaust gas was collected with a sampling bag, and introduced into the FTIR spectrometer after diluting the exhaust gas collected with nitrogen (N₂) to an appropriate 149concentration. 150

151 2.3 Definitions of the Ignition and Start of Injection

The definitions of the ignition and start of injection are shown in Fig.2. The ignition timing was determined as the derivative of the heat release rate $d^2Q/d\theta^2$ where it exceeds 5 J/°CA/°CA, and the fuel injection timing was adjusted to fix the ignition timing at -3°CA ATDC. The fuel injection timing was determined as the timing of the drop in the fuel pressure measured with the G4S injector.

158 **3. Results and Discussion**

159 **3.1** Nitrogen Oxide Addition under Real EGR Conditions

160 **3.1.1 Experimental Conditions**

The experimental conditions are detailed in Table 3. The injection quantity was fixed at 20 mm³/cycle. With this fuel quantity, the indicated mean effective pressure (IMEP) was around 0.25 MPa. A naturally aspirated operation was implemented without any boosting, while the oxygen concentration was reduced to 7% with the EGR to ensure low temperature combustion. The intake air temperature was changed to examine the dependence of the ignition delay on the in-cylinder gas temperature.

Prior to the ignition delay measurements, the composition of the intake gas was 167measured. As a result, the concentrations of CO, CO₂, and NO_x were 4%, 7%, and 0 ppm, 168 169and those of the hydrocarbons are as shown in Fig.3. The unknown hydrocarbons which are the difference between the THC measured with the FID (BEX-5100D) and the 170171hydrocarbons measured with the FTIR spectrometer (MEXA-4000FT) were approximately half. One major reason for this discrepancy is that the detectable species 172of the FTIR spectrometer are limited as listed in Table 2. And the FTIR spectroscopy was 173174carried out after the gas was collected with a sampling bag at room temperature so that high boiling point components could not be detected, while the BEX-5100D gas analyzer 175

sucked the gas in via a hot hose maintained at the temperature of 191°C. Except for

177 unknown species, the highest concentration of hydrocarbons was CH₄, followed by C₂H₄,

and C₆H₆. Small amounts of C₃H₆, 1,3-C₄H₆ and iso-C₄H₈ were also detected.

In this section, NO_x which was not present in the intake gas was supplied from gas cylinders together with the EGR while changing the intake air temperature T_{in} . The intake NO_x concentration changed more widely than can be anticipated in practical diesel engines, to more fully understand details of the dependence on the experimental parameters. The addition of the gases to the intake flow had no direct impact on the EGR rate set to maintain the constant oxygen concentration due to the very low concentrations.

185**3.1.2 Effects of Nitrogen Oxide Addition on Ignition**

Figure 4 shows the changes of the ignition delays with the NO_x concentrations. The open symbols are the case where pure NO was introduced into the intake gas, while the closed symbols are for where a NO and NO₂ mixture produced from NO via the heated oxidation catalyst is introduced into the intake air. The volume fractions of NO and NO₂ are detailed in Table 4. Approximately half of NO was converted into NO₂ via the oxidation catalyst.

192 The ignition delay decreased with increasing intake NO concentration, and it 193 decreased significantly with lower concentrations of NO at the higher intake temperature

195

 $T_{\rm in}$. At the lower temperature, reactions R2 and R3 have an inhibiting impact on the ignition vis-a-vis reaction R1, as follows [20, 27]:

$$RO_2 + NO = RO + NO_2$$
 (R2)

197
$$NO + OH (+M) = HONO (+M)$$
 (R3)

Where R is an alkyl radical. With increasing temperature, reaction R1 becomes more important, and the dissociation of HONO exceeds its production (R3 is reversed), enhancing the ignition.

201 The intake NO₂ has the stronger impact on acceleration of the ignition. A possible 202 explanation is that NO₂ produces reactive radicals in the C_1 - C_2 chemistry as follows [16]:

$$203 \qquad R' + NO_2 = RO + NO \qquad (R4)$$

Where R' is a small alkyl radical. As the intake gas consisted of small hydrocarbons (see Fig.3), this reaction enhanced the oxidation reaction of the in-cylinder gas during the compression stroke, and the ignition of the spray combustion was promoted while entraining the intermediate products into the spray.

hydrocarbons contained in the in-cylinder gas ignited with the aid of the NO reactions. 212With the NO concentrations less than 370 ppm, there appeared to be a small heat release 213before the main heat release. This is a low temperature oxidation reaction (LTOR) of the 214215gas oil as evidenced by the fact that the timing of the heat release is changed with the start of injection (SOI). To compare the LTOR, the heat release rate $dQ/d\theta$ arranged with the 216crank angle after the SOI is shown in Fig.6. Beginning from 3°CA after SOI, there is a 217small heat release due to the LTOR. This heat release increased with increases in the NO, 218suggesting that the intermediate products of the in-cylinder gas facilitated the LTOR. 219

220 **3.2** Nitrogen Oxide and Hydrocarbon Additions under N₂-dilution Conditions

221

3.2.1 Experimental Conditions

The intake gas composition was changed by introducing pure gases from the gas 222223cylinders without use of EGR. The gas compositions investigated for this are detailed in Table 5. The recent paper elucidated that much polycyclic aromatic hydrocarbons (PAHs) 224are formed in the LTC regime [28], and thus it would be interesting to examine the effects 225of the PAHs on the ignition. The FTIR spectrometer employed in the present study, 226however, is not able to detect the PAHs, so that the investigation did not cover the effects 227228of the PAHs on ignition. There is a paper showing that much HCHO is formed and affects ignition delays in the LTC [29], but low concentration of HCHO in the order of tens of 229

230	ppm was recirculated into the intake according to the FTIR measurement, and HCHO was
231	not introduced in the intake in the present study. The oxygen concentration was set at 11%
232	which is higher than that in the above section, as operation failed due to misfiring at lower
233	oxygen concentrations. In the above section, the passage in the exhaust pipe was narrowed
234	with a valve to recirculate the large amount of the exhaust gas into the intake, causing the
235	increase in the exhaust gas pressure, and in the amount of hot residual gas in the
236	combustion chamber. This might increase the in-cylinder temperature, and shorten the
237	ignition delay. On the other hand, the exhaust valve was fully opened in this section, and
238	less residual gas was remained in the combustion chamber.
238 239	less residual gas was remained in the combustion chamber. The CO, NO, and hydrocarbons were introduced on a one-by-one basis to examine
238 239 240	less residual gas was remained in the combustion chamber. The CO, NO, and hydrocarbons were introduced on a one-by-one basis to examine their impact on the ignition. To examine the combined effects of NO and hydrocarbons,
238 239 240 241	less residual gas was remained in the combustion chamber. The CO, NO, and hydrocarbons were introduced on a one-by-one basis to examine their impact on the ignition. To examine the combined effects of NO and hydrocarbons, the CH ₄ concentration was fixed at 5000 ppmC, and the hydrocarbon species were
238 239 240 241 242	 less residual gas was remained in the combustion chamber. The CO, NO, and hydrocarbons were introduced on a one-by-one basis to examine their impact on the ignition. To examine the combined effects of NO and hydrocarbons, the CH₄ concentration was fixed at 5000 ppmC, and the hydrocarbon species were changed while increasing the concentrations up to 5000 ppmC. These conditions were
 238 239 240 241 242 243 	 less residual gas was remained in the combustion chamber. The CO, NO, and hydrocarbons were introduced on a one-by-one basis to examine their impact on the ignition. To examine the combined effects of NO and hydrocarbons, the CH4 concentration was fixed at 5000 ppmC, and the hydrocarbon species were changed while increasing the concentrations up to 5000 ppmC. These conditions were determined referring to Fig.3, increasing the concentrations to achieve extreme conditions.
 238 239 240 241 242 243 244 	less residual gas was remained in the combustion chamber. The CO, NO, and hydrocarbons were introduced on a one-by-one basis to examine their impact on the ignition. To examine the combined effects of NO and hydrocarbons, the CH ₄ concentration was fixed at 5000 ppmC, and the hydrocarbon species were changed while increasing the concentrations up to 5000 ppmC. These conditions were determined referring to Fig.3, increasing the concentrations to achieve extreme conditions. The intake air temperature <i>T</i> _{in} was maintained at 125°C, with other conditions the same

3.2.2 Effects of Nitrogen Oxide and Hydrocarbon Addition on Ignition

Figure 7 shows the ignition delays τ_{ign} with the different intake CO concentrations.

248	The CO concentration had a very small impact on the ignition delay. Figure 8 shows the
249	ignition delays τ_{ign} with the various intake hydrocarbon species and concentrations. There
250	is no significant change in the ignition delays with the addition of the hydrocarbons.
251	Figure 9 shows the ignition delays τ_{ign} with the different intake NO concentrations.
252	The increase in NO decreased the ignition delays, suggesting that NO entrained into the
253	spray enhanced the ignition. The NO concentrations here are rather higher than those
254	under actual EGR conditions, and it is notable that the ignition delay decreases with lower
255	NO concentrations at the higher intake gas temperatures T_{in} (see Fig.4).
256	The profiles of the in-cylinder pressure and heat release rate $dQ/d\theta$ are shown in Fig.10.
257	Similar to Fig.5, there was a small heat release due to the LTOR between the SOI and the
258	main combustion which was promoted with the increase in NO.
259	Figure 11 shows the effects of the hydrocarbon species on the ignition delays τ_{ign} .
260	Compared to the case with only NO, the ignition delays τ_{ign} were decreased with the
261	additions of the other hydrocarbons. This result indicates that the NO and hydrocarbons
262	of the in-cylinder gas reacted and yielded intermediate products that enhance the ignition
263	of the diesel spray. The impact of the C ₂ H ₄ and C ₃ H ₆ additions were equivalent and the
264	strongest, followed by those of the C3H8 addition. The addition of CH4 also decreased the
265	ignition delay but to a smaller degree. The results here were reproducible, and similar

tendencies were obtained under the other intake air temperature conditions tested here.

3.2.3 Chemical Kinetic Analysis of the Effects of Nitrogen Oxide and Hydrocarbon

268 Additions

269The ignition enhancement effects of NO and hydrocarbon addition were analyzed with chemical kinetic calculations. The software used was CHEMKIN-PRO selecting the 270single-zone IC HCCI Engine model which predicts chemical reactions during a 271272compression and expansion stroke [26]. These calculations were carried out to simulate 273the chemical reaction of the in-cylinder gas without fuel injections, focusing on the 274concentration of the OH radical which is known to be the key species in the development of ignition. The development of the reaction model of hydrocarbons and nitrogen oxide 275species is in progress [30, 31], but the authors chosen the model proposed by Anderlohr 276277et al. [20] since the good agreements on the validations with the experiments in an HCCI engine where the pressure and temperature conditions are relevant to the present study, 278and the model has been widely utilized in the recent research of internal combustion 279engines [32, 33]. 280

The calculation conditions are equivalent to the engine tests in section 3.2, except for the initial temperature which was adjusted to the calculated temperature close to the TDC (Top dead center) for the engine tests. The concentrations of NO and CH₄ were fixed at

284 100 ppm and 5000 ppmC. The hydrocarbon species of CH_4 , C_2H_4 , C_3H_6 , and C_3H_8 were 285 added to the NO and CH_4 mixture on a one-by-one basis while maintain the 286 concentrations of 5000 ppmC. Note that no gas oil component was fed in the calculation 287 to examine the ignition promotion effects of the NO and hydrocarbon addition.

Figure 12 shows the profiles of the temperature and the OH radical, for the mixture of 288CH₄ (5000 ppmC) and C₂H₄ (5000 ppmC). In this calculation, no high temperature 289oxidation reaction took place due to the very lean mixture, and the impact on the chemical 290reactions on the temperature rise was limited in analogy with the experiments shown in 291292the above sections. With the addition of NO, the OH concentration became 500 times that without the addition of NO at the TDC as can be seen in this figure. The effects of the gas 293294composition on the OH concentrations are compared in Fig.13, where four different hydrocarbons at 5000 ppmC are mixed with CH4 (5000 ppmC) and NO (100 ppm). The 295highest OH concentration was achieved with the mixture of C₃H₆, followed by that of 296C₂H₄. The OH concentrations of C₃H₈ and CH₄ were lower than those of C₃H₆ and C₂H₄. 297The order of the OH concentrations was analogous with that of the ignition delay 298measured in the engine tests, except for the opposite trend between C₃H₈ and CH₄. 299300 To develop an understanding of the chemical reactions that predominantly produced the OH radical, the rate of production was analyzed. Figure 14 shows the major rates of 301

302	production with respect to the OH radical at the TDC. Regardless of the hydrocarbon
303	species, the OH production was governed with the R1 reaction. The OH production via
304	the R1 reaction was highest with the addition of C_3H_6 , followed by that of C_2H_4 . The rates
305	of OH production of C_3H_8 and CH_4 were lower than those of C_3H_6 and C_2H_4 . Note that
306	the range of the horizontal axis in C ₃ H ₆ is larger than that in the others. At the TDC, the
307	HONO dissociation in R3 as well as the CH ₃ OO dissociation was pronounced. The OH
308	radical was predominantly consumed by the reactions with CH4 and the other added
309	hydrocarbons. From this result, it may be summarized that the R1 reaction is most
310	important in the OH production.

The rate of production was analyzed with respect to HO₂. The major rates of HO₂ 311production are shown in Fig.15. Note that the range of the horizontal axis in C₃H₆ is larger 312313than that in the others. The reactions relating to the HO₂ production with C₃H₈ and CH₄ were similar, except for the fact that the intermediate product C₃H₆OOH of C₃H₈ leads to 314the higher rate of production than CH4. With C3H6 and C2H4, the reaction between the 315formyl radical CHO and oxygen O₂ has the highest rate of production. The primary attack 316 on C₂H₄ is by addition of the O radical, and the primary products of this reaction are CH₃ 317318and CHO radicals [34]. With respect to C₃H₆, it has been suggested that the O addition is the dominant decay route through an intermediate complex, and the primary products of 319

320	this reaction are C ₂ H ₅ and CHO radicals [34]. Thus, it may be suggested that the CHO
321	radical production with C_3H_6 and C_2H_4 promotes the HO ₂ production, although C_2H_5 and
322	C ₂ H ₄ OOH also have non-negligible impacts on the rate of the HO ₂ production.
323	
324	4. Conclusions
325	To investigate the effects of EGR gas composition on the ignition delays in low
326	temperature diesel combustion, the ignition delays were measured in a single-cylinder
327	engine while introducing hydrocarbons and nitrogen oxides. The conclusions may be
328	summarized as follows:
329	1. The ignition delay of the diesel combustion is decreased with introduced nitrogen
330	oxide (NO) present in the intake, and its effect is more pronounced with higher intake
331	temperatures.
332	2. The ignition promotion effects with nitrogen dioxide (NO ₂) are more pronounced than
333	those with NO.
334	3. Introducing carbon monoxide (CO) and hydrocarbons (CH4, C2H4, C3H6 and C3H8)
335	in the intake has little effect on the ignition delay.
336	4. Compared to feeding only NO, simultaneous feeding of NO and hydrocarbons
337	achieves a shorter ignition delay of the diesel combustion. The hydrocarbons

338	producing more hydroperoxyl radicals (HO ₂) tend to decrease the ignition delay as
339	they enhance the $NO + HO_2 = NO_2 + OH$ reaction.
340	
341	Small amounts of NO _x are recirculated under EGR conditions, and the effects on the
342	ignition are notable with the recirculated hydrocarbons at higher intake temperatures.
343	

344 **References**

- [1] Kamimoto, T. and Bae, M.-H., High Combustion Temperature for the Reduction of
 Particulate in Diesel Engines, SAE Technical Paper, No.880423 (1988)
- [2] Akihama, K., Takatori, Y., Inagaki, K., Sasaki, S. and Dean, A. M., Mechanism of the
 Smokeless Rich Diesel Combustion by Reducing Temperature, SAE Technical Paper,
 No.2001-01-0655 (2001)
- [3] Ogawa, H., Li, T. and Miyamoto, N., Characteristics of Low Temperature and Low
 Oxygen Diesel Combustion with Ultra-high Exhaust Gas Recirculation, Int. J. Engine
 Research, Vol.8, Issue 4, pp.365-378 (2007)
- [4] Kook, S., Bae, C., Miles, P. C., Choi, D. and Pickett, L. M., The Influence of Charge
 Dilution and Injection Timing on Low-Temperature Diesel Combustion and
 Emissions, SAE Technical Paper No.2005-01-3837 (2005)
- [5] Li, T., Suzuki, M. and Ogawa, H., Characteristics of Smokeless Low Temperature
 Diesel Combustion in Various Fuel-Air Mixing and Expansion of Operating Load
 Range, SAE Technical Paper No.2009-01-1449 (2009)
- [6] Kimura, S., Ogawa, H., Matsui, Y. and Enomoto, Y., An Experimental Analysis of
 Low-Temperature and Premixed Combustion for Simultaneous Reduction of NO_x and
 Particulate Emissions in Direct Injection Diesel Engines, Int. J. Engine Research,
 Vol.3, Issue 4, pp.249-259 (2002)
- [7] Ming, J., Gingrich, E., Wang, H., Li, Y., Ghandhi, J. B. and Reitz, R. D., Effect of
 Combustion Regime on In-cylinder Heat Transfer in Internal Combustion Engines,

- 365 Int. J. Engine Research, Vol.17, Issue 3, pp.331-346 (2015)
- [8] Li, T., Moriwaki, R. and Ogawa, H., Dependence of Premixed Low-temperature
 Diesel Combustion on Fuel Ignitability and Volatility, Int. J. Engine Research, Vol.13,
 Issue 1, pp.14-27 (2012)
- [9] Zheng, Z., Yue, L., Liu, H., Zhu, Y., Zhong, X. and Yao, M., Effect of Two-stage
 Injection on Combustion and Emissions under High EGR Rate on a Diesel Engine by
- 371 Fueling Blends of Diesel/Gasoline, Diesel/n-Butanol, Diesel/Gasoline/n-Butanol and
- 372Pure Diesel, Energy Conversion and Management, Vol.90, pp.1-11 (2015)
- [10] Liu, H., Ma, S., Zhang, Z., Zheng, Z. and Yao, M., Study of the Control Strategies
 on Soot Reduction under Early-injection Conditions on a Diesel Engine, Fuel, Vol.139,
 pp.472-481 (2015)
- [11] Shi, H., An, Y. and Johansson, B., Study of Fuel Octane Sensitivity Effects on
 Gasoline Partially Premixed Combustion Using Optical Diagnostics, SAE Technical
 Paper, No.2019-24-0025 (2019)
- [12] Andree, A. and Pachernegg, S. J., Ignition Conditions in Diesel Engines, SAE
 Technical Paper No.690253 (1969)
- [13] Ladommatos, N., Abdelhalim, S., Zhao, H. and Hu, Z., Effects of EGR on Heat
 Release in Diesel Combustion, SAE Technical Paper No.980184 (1998)
- [14] Rieß, S., Vogel, T. and Wensing, M., Influence of Exhaust Gas Recirculation on
 Ignition and Combustion of Diesel Fuel under Engine Conditions Investigated by
 Chemical Luminescence, 13th Triennial International Conference on Liquid
 Atomization and Spray Systems, Tainan (2015)
- [15] Ogawa, H., Morita, A., Futagami, K. and Shibata, G., Ignition Delays in Diesel
 Combustion and Intake Gas Conditions, Int. J. Engine Research, Vol.19, Issue 8,
 pp.805-812 (2018)
- [16] Kawabata, Y., Sakonji, T. and Amano, T., The Effect of NO_x on Knock in Spark Ignition Engines, SAE Technical Paper No.1999-01-0572 (1999)
- [17] Sjöberg, M., Dec, J. E. and Hwang, W., Thermodynamic and Chemical Effects of
 EGR and Its Constituents on HCCI Autoignition, SAE Technical Paper No.2007-01 0207 (2007)
- [18] Kawasaki, K., Kubo, S., Yamane, K. and Kondo, C., The Effect of the Induction of
 Nitrogen Oxides on Natural Gas HCCI Combustion, SAE Technical Paper No.2014 01-2697 (2014)
- [19] Hori, M., Matsunaga, N., Marinov, N., Pitz, W. and Westbrook, C., An Experimental
 and Kinetic Calculation of the Promotion Effect of Hydrocarbons on the NO-NO2
- 400 Conversion in a Flow Reactor, Twenty-Seventh Symposium on Combustion, pp.389-

401 396 (1998)

- [20] Anderlohr, J. M., Bounaceur, R., Cruz, A. P. D. and Battin-Leclerc, F., Modeling of
 Autoignition and NO Sensitization for the Oxidation of IC Engine Surrogate Fuels,
 Combustion and Flame, 156, pp.505-521 (2009)
- [21] Kobashi, Y., Yuze, S., Ogawa, H., Shibata, G., Kato, S., Nishijima, Y., Kondo, W.,
 Morishima, S., Kawakita, S., Fujino, T. and Ito, T., Auto-ignition Characteristics of
 Gasoline Sprays with Two-stage Injection in CI Engines, COMODIA 2017 (2017)
- 408 [22] Iida, N., Nakamura, M. and Ohashi, H., Study of Diesel Spray Combustion in an
 409 Ambient Gas Containing Hydrocarbon Using a Rapid Compression Machine, SAE
 410 Technical Paper No.970899 (1997)
- [23] Nitta, Y., Niki, Y., Hirata, K. and Yamasaki, Y., Effects of the Combustion
 Characteristics of Diesel Engine by the Intake of Exhaust Gas from Gas Engine,
 Journal of the JIME, Vol.53, No.3, pp.119-124 (2018)
- 414 [24] Asai, G., Tokuoka, Y., Bayer, T., Ishiguro, S., Shibata, G., Ogawa, H., Kobashi, Y.
 415 and Watanabe, Y., A Study of a Lean Homogeneous Combustion Engine System with
 416 a Fuel Reformer Cylinder, SAE Technical Paper No.2019-01-2177 (2019)
- 417 [25] Asai, G., A Study of Gas-Diesel Dual Fuel Combustion for Higher Thermal
 418 Efficiency and Lower Emissions, YANMAR Technical Review, (2019)
- 419 <u>https://www.yanmar.com/br/technology/technical_review/2019/1001_6.html</u>
- 420 [26] CHEMKIN 15151, ANSYS Reaction Design: San Diego (2016)
- 421 [27] Atkinson, R., Baulch, D. L., Cox, R. A., Crowley, J. N., Hampson, R. F., Hynes, R.
- 422 G., Jenkin, M. E., Rossi, M. J. and Troe, J., Evaluated Kinetic and Photochemical
- Data for Atmospheric Chemistry: Volume I Gas Phase Reactions of Ox, HOx, NOx
 and Sox Species, Atoms. Chem. Phys., 4, pp.1461-1738 (2004)
- 425 [28] Liu, H., Cui, Y., Chen, B., Kyritsis, D. C., Tang, Q., Feng, L., Wang, Y., Li, Z., Geng,
- C. and Yao, M., Effects of Flame Temperature on PAHs and Soot Evolution in
 Partially Premixed and Diffusion Flames of a Diesel Surrogate, Energy & Fuels,
 Vol.33, pp.11821-11829 (2019)
- [29] Geng, C., Liu, H., Cui, Y., Yang, Z., Fang, X., Feng, L. and Yao, M., Study on Singlefuel Reactivity Controlled Compression Ignition Combustion through Low
 Temperature Referming Combustion and Flame Vol 100, pp 429, 440 (2010)
- 431Temperature Reforming, Combustion and Flame, Vol.199, pp.429-440 (2019)
- [30] Gokulakrishnan, P., Fuller, C. C., Klassen, M. S., Joklik, R. G., Kochar, Y. N., Vaden,
 S. N., Lieuwen, T. C. and Seitzman, J. M., Experiments and Modeling of Propane
 Combustion with Validation, Combustion and Flame, Vol.161, Issue 8, pp.2038-2053
 (2014)
- 436 [31] Gokulakrishnan, P., Fuller, C. C. and Klassen, M. S., Experimental and Modeling

- 437 Study of C₁-C₃ Hydrocarbon Ignition in the Presence of Nitric Oxide, J. Eng. Gas
 438 Turbines Power, Vol.140, Issue 4, pp.041509-1-041509-9 (2018)
 439 [32] Zheng, Z. and Lv, Z., A New Skeletal Chemical Kinetic Model of Gasoline Surrogate
 440 Fuel with Nitric Oxide in HCCI Combustion, Applied Energy, Vol.147, pp.59-66
 441 (2015)
- [33] Naruke, M., Yoshida, S., Wachi, Y., Tanaka, K. and Konno, M., The Effect of EGR
 on Ignition Characteristics of Gasoline Under Lean Burn Conditions, 11th Asia-
- 444 Pacific Conference on Combustion (2017)
- 445 [34] Glassman, I., Combustion Third Edition, Academic Press (1996)

Table 1 Specifications of the test engine

- $\mathbf{2}$

Type of engine	4TNV98T (Yanmar)
Bore x stroke [mm]	98 x 110
Displacement volume [cm ³]	830
Compression ratio [-]	17.6
Type of injector	G4S (DENSO)
Nozzle hole diameter [mm]	0.125
Included spray angle [°]	155
Number of nozzles	8

 $\mathbf{5}$

CO	CO ₂	NO	NO ₂	N ₂ O
H ₂ O	NH ₃	SO ₂	НСНО	CH₃CHO
CH₃OH	C ₃ H ₆ O	MTBE	НСООН	CH ₄
C_2H_4	C_2H_6	C ₃ H ₆	1,3-C ₄ H ₆	iso-C ₄ H ₈
C ₆ H ₆	C ₇ H ₈			

Table 3 Experimental conditions

 $\mathbf{7}$

Engine rotation speed [rpm]	1000
IMEP [MPa]	0.25
Intake air	Naturally aspirated
Intake air temperature, <i>T</i> in [°C]	100, 125, 150
Injection pressure [MPa]	86
Injection quantity [mm ³ /cycle]	20
Intake oxygen concentration [%]	7
Intake NO _x concentration [ppm]	0 - 1200

Table 4 Fractions of NO and NO₂ in the intake gas, measured with the FTIR spectrometer

 $16\\17$

<i>T</i> _{in} = 100°C		<i>T</i> _{in} = 7	125°C	<i>T</i> _{in} = 150°C		
NO	NO ₂	NO	NO ₂	NO	NO ₂	
[ppm]	[ppm]	[ppm]	[ppm]	[ppm]	[ppm]	
110	120	50	60	0	0	
230	180	110	120	0	15	
320	260	180	130	60	70	
410	350	230	170	-	-	

Table 5 Intake gas composition as the experimental variable

	O ₂	2 N ₂	СО	NO	CH ₄	C_2H_4	C ₃ H ₆	C ₃ H ₈
	[%]		[%]	[ppm]	[ppmC]	[ppmC]	[ppmC]	[ppmC]
СО			0-4	-	-	-	-	-
NO				0 - 470	-	-	-	-
NO+CH ₄	11	balance		0 – 200	10000	-	-	-
NO+C ₂ H ₄		-	0 – 200	5000	5000	-	-	
NO+C ₃ H ₆					5000	-	5000	-
NO+C ₃ H ₈					5000	-	-	5000

 $\mathbf{27}$

