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Abstract 18 

Competition between Kuril harbor seals (Phoca vitulina stejnegeri) and salmon set-net fishing industries has become a 19 

serious problem with the recent increase in the number of seals in Erimo, Hokkaido, Japan. We aimed to understand the 20 

detailed dietary structure of Kuril harbor seals focusing on intraspecific differences and verify whether “problem seals” 21 

who habitually use salmon set-nets could be characterized by intrinsic factors such as sex and maturity. We estimated the 22 

diet of Kuril harbor seals in two fishing seasons using DNA barcoding diet analysis on colon contents and verified 23 

intraspecific differences in their diet. In spring, their diets showed different tendencies between maturity stage; each adult 24 

seal fed on different prey items, suggesting that they avoid the intra-species competition over food during the breeding 25 

season. Additionally, it was implied that some adult females habitually stole from salmon set-nets. Our dietary analysis 26 

showed dietary changes of Kuril harbor seals with different tendencies depending on maturity or sex, suggesting that 27 

problem individuals who habitually use set-nets can be characterized by intrinsic factors. This detailed dietary information 28 

can offer an accurate assessment of seal predation effects on fishing targets and the selective management of Kuril harbor 29 

seals, especially in mitigating seal–commercial fishery conflicts.  30 

 31 

Keywords: mitochondrial COI, NGS, food habit, seal-fishery conflict 32 
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Introduction 34 

Competition between pinnipeds and coastal fisheries occurs in various places worldwide (e.g. Yodzis 1998; Lance et al. 35 

2012). Fishing grounds in shallow areas could be easy foraging sites for pinnipeds who can learn to steal fish from fishing 36 

gear such as set-nets, gillnets, and longlines. In coastal areas where pinnipeds reside throughout the year, such conflicts 37 

cause more serious problems, as is the case in Hokkaido, Japan. 38 

Kuril harbor seals (Phoca vitulina stejnegeri) are the only year-round resident pinniped in Japan. They are distributed 39 

on the eastern coastline of Hokkaido, Japan (Shaughnessy and Fay 2009; Kobayashi et al. 2014), and Cape Erimo is their 40 

largest haul-out site (Fig. 1). They show a high level of philopatry and use the same rocky shore throughout the year. The 41 

competition between the seals and coastal fisheries has recently become a serious problem due to the increase in seal 42 

numbers in Erimo. The most part of damage to the fishery is damage to catches of salmon set net such as biting off the 43 

head, abdomen and other parts of the salmon (Fig. 2), which results in economic loss as the damaged catch becomes 44 

worthless as a commodity. Salmon set-net fishing operates twice a year in spring (May to early July) and fall (September 45 

to early November) in Erimo. Although depredation by seals is observed in both seasons, the scale of the fishery and the 46 

damage are greater in the fall. The economic impact of seal depredation on salmon in set-net fishing is especially prominent 47 

(Hokkaido Government 2015). Previous study has suggested that most seals do not tamper with fishing gear; generally, 48 

individual “problem seals” cause most of the damage to salmon set-net fishing (Masubuchi et al. 2017). However, it is 49 

challenging to verify this hypothesis and characterize these individuals because the available information on their diets has 50 

been limited.  51 

Diet estimations on Kuril harbor seals in this area have mainly been conducted through stomach content analysis (the 52 
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Ministry of Environment, Japan 2017). However, this analytical method is likely to yield inaccurate results because prey 53 

species identification from undigested hard parts (e.g., fish otoliths or bones and cephalopod beaks) is highly biased due 54 

to rapid and differential prey digestion (Bowen 2000). Salmon otoliths are smaller and easier to digest than otoliths of other 55 

fish; therefore, few of them remain in the stomach as undigested substances (Jobling and Breiby 1986; Boyle et al. 1990). 56 

Additionally, Kuril harbor seals do not swallow salmon whole, but they bite parts of the salmon body (Fig. 2). Therefore, 57 

in most cases, salmon otoliths are rarely ingested by seals even if seals eat salmon. Previous studies note that salmonids 58 

were rarely detected as undigested substances even though the stomach samples were collected from seals caught by salmon 59 

set-nets as bycatch (the Ministry of Environment, Japan 2017). 60 

In order to deal with this problem, we used DNA barcoding analysis to accurately identify prey organisms. DNA 61 

barcoding (Herbert and Gregory, 2005) is a powerful tool to analyze the community structure of a sample containing 62 

various intermingled organisms (e.g. Deagle et al., 2009; Tollit et al., 2009). Organisms are identified on the basis of short 63 

base sequences in particular gene regions, called the “DNA barcode,” reflecting differences between species. With this 64 

technique, researchers can detect and identify prey organisms with high accuracy via amplicon sequencing on prey-derived 65 

DNA in predator feces. Prior to this study, Hui et al. (2017) showed that DNA barcoding techniques are more accurate than 66 

hard parts techniques in detecting salmonids in fecal samples. Therefore, we reassessed the diet of Kuril harbor seals using 67 

DNA barcoding analysis. 68 

We also verified intraspecific differences in the diet of the Kuril harbor seals. Some researchers indicated that harbor 69 

seal food habits varied depending on age and sex (e.g. Lewis et al. 2006; Beck et al. 2007). Such variation in diet could be 70 

due to foraging ability, prey preference, or both (Smith and Metcalfe 1997; Bundy et al. 2000). Differences in energy 71 
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demands based on sexual body size dimorphism or breeding costs might also influence prey preference (Beck et al. 2003; 72 

Breed et al. 2006). If such intraspecific differences in food habits occur in Kuril harbor seals in Erimo, we might be able 73 

to characterize the sex and maturity of the specific individuals damaging the salmon set-nets. Therefore, we compared their 74 

diet with intrinsic factors (e.g., sex and maturity) in each fishing season. 75 

 76 

Materials and methods 77 

Field sampling 78 

We collected dietary samples from Kuril harbor seals that were caught by the salmon set-nets as bycatch during the 79 

spring (late May to early July) and fall (late August to early November) fishing seasons in 2014–2017 in Erimo, Hokkaido, 80 

Japan. We also collected samples from seals caught by seal trap nets in the spring of 2017 under the Erimo Area Kuril 81 

Harbor Seal Specified Rare Wildlife Management Plan (Ministry of Environment, Japan 2018). In order to trap seals, we 82 

used salmon set-net with grid nets at the entrance of a bag net. These grids are 20 cm on a side, allowing salmon to pass 83 

through, but not seals. However, in one place, one square is 60 cm or 80 cm long, and a funnel-shaped net is attached so 84 

that if a seal enters it, it cannot get out (Ministry of Environment, Japan 2017). Bodyweight was measured, and sex was 85 

recorded. Age was determined based on a count of cementum growth layers (Mansfield and Fisher, 1960) of the seals’ 86 

upper right canine teeth after sectioning 10–16 μm and staining by Delafield's hematoxylin (Kobayashi et al. unpublished). 87 

Kuril harbor seals undergo secondary growth at age 4–5 years, and almost all individuals start breeding at age 5 (Suzuki 88 

and Yamashita 1986). Thus, we classified their maturity into three levels: pups (age 0), juveniles (age 1–4), and adults (age 89 

≥ 5). 90 
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Samples for dietary analysis were collected as the contents of approximately 15 cm of the colon, which was removed 91 

from the anal side of each harbor seal (hereafter called “feces”). The colon samples were collected from dead seals within 92 

12 hours of death and kept in a freezer (−20°C) until they were used for analysis. Feces were taken from the colon sample 93 

and mixed well; then 0.15–0.43 g soft feces component (i.e., without the undigested hard parts) was used for DNA 94 

barcoding diet analysis.  95 

 96 

DNA barcoding diet analysis 97 

DNA extraction from feces was conducted using the QIAamp DNA Stool Mini Kit (QIAGEN Inc.). All steps followed 98 

the “Isolation of DNA from Stool for Human DNA Analysis” protocol recommended by the manufacturer (QIAamp DNA 99 

Stool Handbook, June 2012) with slight modification (i.e., the amount of Buffer AE for DNA elution at the last step was 100 

set to 100 µL). The concentration of each extracted DNA sample was measured and adjusted to 10 ng/µL (hereafter, these 101 

samples are called “template DNA”).  102 

Mitochondrial COI was chosen as the barcoding region for prey species identification (Hebert et al. 2003), because Kuril 103 

harbor seals are thought to prey on various animals such as fish, cephalopods, and crustaceans. We prepared an amplicon 104 

library for next-generation sequencing using the two-step tailed PCR method. In step 1, amplification of the target region 105 

was performed with a combination of the forward primer ml intF (5′-ACA CTC TTT CCC TAC ACG ACG CTC TTC 106 

CGA TCT GGW ACW GGW TGA ACW GTW TAY CCY CC-3′) (Leray et al. 2013) and the reverse primer HCOm (5′-107 

GTG ACT GGA GTT CAG ACG TGT GCT CTT CCG ATC TTA HAC TTC NGG GTG KCC RAA RAA TCA-3′) which 108 

was modified from the universal primer HCO 2198 for the COI region (Folmer et al. 1994). Using these primer sets, 360 bp 109 
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in latter half of the region amplified by the universal primers for COI region was amplified. Blocking primer (5′-TAT CCT 110 

CCC CTA GCT GGG AAC CTG GCT CAT GCA GGA-3′) was also used to suppress the amplification of host-derived 111 

DNA. The 20-µL first PCR amplification reaction contained 1 ng of template DNA, 0.05 U of ExTaq polymerase (TaKaRa 112 

Bio Inc.), 1 × PCR buffer, 0.2 mM dNTP, 0.5 µM of each COI primer, and 4.0 µM of blocking primer. The thermal cycling 113 

conditions were as follows: an initial denaturation of 94°C for 2 min followed by 35 cycles of 96°C for 30 s, 67°C for 15 s, 114 

52°C for 30 s, and 72°C for 30 s, and a final cycle of 72°C for 5 min. The first PCR products were examined by 2% agarose 115 

gel electrophoresis. After the amplification was confirmed, we measured the amount of the first PCR products and purified 116 

it by adding the same amount of AMpure XP (Beckman Coulter, Inc.). The first PCR products were purified using the same 117 

amount of AMPure XP (Beckman Coulter, Inc.). In step 2, the 20-µL second PCR amplification reaction contained 1 ng of 118 

the purified first PCR products, 0.05 U of ExTaq polymerase (TaKaRa Bio Inc.), 1 × PCR buffer, 0.2 mM dNTP, and 119 

1.0 µM of each tailed primer (second forward primer: 5′-AAT GAT ACG GCG ACC ACC GAG ATC TAC AC- Index2 -120 

ACA CTC TTT CCC TAC ACG ACG-3′ and second reverse primer: 5′-CAA GCA GAA GAC GGC ATA CGA GAT- 121 

Index1 –GTG ACT GGA GTT CAG ACG TGT G-3′). The thermal cycling conditions were as follows: an initial 122 

denaturation of 94°C for 2 min followed by 12 cycles of 94°C for 30 s, 60°C for 30 s, and 72°C for 30 s, and a final cycle 123 

of 72°C for 5 min. The second PCR products were examined by 2% agarose gel electrophoresis. After the amplification 124 

was confirmed, we measured the amount of the second PCR products and purified it by adding the same amount of AMpure 125 

XP (Beckman Coulter, Inc.). We measured the amplicon library concentration and checked the quality using the Fragment 126 

Analyzer system (Advanced Analytical Technologies Inc.).  127 

The DNA samples were paired-end sequenced (2 × 250 bp) on a MiSeq platform (Illumina, Inc.) at the the 128 
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Bioengineering Lab. Co., Ltd., Kanagawa, Japan. Quality filtering of the reads was performed using fastq_barcode_splitter 129 

in the FASTX-Toolkit version 0.0.14 (http://hannonlab.cshl.edu/fastx_toolkit/). The reads in which the beginning of the 130 

sequence exactly matched the used primer sequences were selected, and the used primer sequences were trimmed from the 131 

reads. After that, the sequences with quality values less than 20 or with lengths of less than 40 bases were discarded using 132 

sickle tools version 1.33 (Joshi and Fass, 2011; http://gensoft.pasteur.fr/docs/sickle/1.33). The paired-end merge script 133 

FLASH version 1.2.11 (Magoč and Salzberg, 2011; http://gensoft.pasteur.fr/docs/FLASH/1.2.11) was used to merge the 134 

sequences that passed the quality filtering. The merging conditions were: merged fragment length 320 bases, read fragment 135 

length 230 bases, and minimum overlap length 10 bases. The sequences were assigned to operational taxonomic units 136 

(OTUs) using the commands fastx_uniques, sortbysize, cluster_otus, and usearch_global in the USEARCH version 137 

8.1.1861 (Edgar, 2010; http://www.drive5.com/usearch/manual8.1/) under the condition of 97 sequence homology, and a 138 

BLAST search for each OTU sequence was performed against the full NCBI nucleotide (nt) database for prey species 139 

identification. 140 

The obtained OTU with BLASTN E-value > 1e-20 or Identity <90% were treated as errors following Deagle et al. (2013), 141 

OTUs with a read count < 10 were customarily treated as contamination, and these OTUs were excluded from subset 142 

analysis. Fishes (Actinopterygii), cephalopods (Cephalopoda) and crustaceans (Decapoda) were considered to be seal prey 143 

organisms based on previous knowledge (the Ministry of Environment, Japan 2017; Hui et al. 2017). Data about the prey 144 

species were treated as occurrence data, and it was noted whether the prey organisms were detected (1) or not detected (0) 145 

in the fecal sample.  146 

 147 



9 
 

Statistical analysis 148 

Samples were grouped by season (spring and fall), sex, maturity (pup, juvenile, and adult), seal catch type (bycatch and 149 

capture), and the combination of those categories (season × sex, season × maturity, sex × maturity, sex × catch type, and 150 

maturity × catch type). The percent frequency of occurrence (hereafter referred to as “FO”) of certain prey items was 151 

calculated in the respective diet groups: 152 

 153 

𝐹𝐹𝐹𝐹𝐴𝐴𝐴𝐴 =
𝑛𝑛𝐴𝐴𝐴𝐴
𝑛𝑛𝐴𝐴

 154 

 155 

where nA is the number of samples in which at least one prey species is detected and nAi is the number of samples in 156 

which the prey item i is detected in group A. 157 

The relative FO (hereafter referred to as “RFO”) and the Shannon–Wiener diversity index (hereafter referred to as “H′”) 158 

(Newton-Fisher, 1999) were calculated to assess prey composition in the respective diet groups: 159 

 160 

𝑅𝑅𝑅𝑅𝑅𝑅𝐴𝐴𝐴𝐴 =
𝑛𝑛𝐴𝐴𝐴𝐴
∑ 𝑛𝑛𝐴𝐴𝐴𝐴𝑠𝑠
𝑖𝑖

 161 

𝐻𝐻′𝐴𝐴 = �−�𝑅𝑅𝑅𝑅𝑅𝑅𝐴𝐴𝐴𝐴 ∙ log𝑅𝑅𝑅𝑅𝑅𝑅𝐴𝐴𝐴𝐴

𝑠𝑠

𝑖𝑖

� 162 

 163 

where s is the total number of prey items in group A. Higher values of H′ indicate the increased number of prey species 164 

and the prey’s homogeneity coefficient. 165 

To verify which factors (“season,” “sex,” “maturity,” and “catch type”) affect the seals’ diet structure, the prey 166 
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composition of each group were compared using permutational multivariate ANOVA (PERMANOVA) based on Horn’s 167 

dissimilarity index (1-CH) (Anderson 2001; Doi and Okamura 2011). The Horn index (hereafter referred to as “CH”), which 168 

indicates the similarities of prey composition between groups, was calculated following Krebs (1999): 169 

 170 

𝐶𝐶𝐻𝐻 =
2∑ 𝑅𝑅𝑅𝑅𝑅𝑅𝐴𝐴𝐴𝐴 ∙ 𝑅𝑅𝑅𝑅𝑅𝑅𝐵𝐵𝐵𝐵𝑠𝑠

𝑖𝑖

�∑ 𝑅𝑅𝑅𝑅𝑅𝑅𝐴𝐴𝐴𝐴2𝑠𝑠
𝑖𝑖 � + (∑ 𝑅𝑅𝑅𝑅𝑅𝑅𝐵𝐵𝐵𝐵2𝑠𝑠

𝑖𝑖 )
 171 

 172 

This statistical analysis was conducted using the “adonis” function in the vegan package (Okasen et al. 2017) in R 173 

ver.3.3.3 (R Core Team, 2017). 174 

Additionally, the Jaccard similarity coefficient (hereafter referred to as “J′”) (Jaccard 1908) was calculated as an indicator 175 

of inter-individual overlap of preys: 176 

 177 

𝐽𝐽′(𝑥𝑥,𝑦𝑦) =
𝑆𝑆𝑥𝑥𝑥𝑥

𝑆𝑆𝑥𝑥 + 𝑆𝑆𝑦𝑦 − 𝑆𝑆𝑥𝑥𝑥𝑥
 178 

 179 

where Sx and Sy are the total numbers of prey species detected from seal x and seal y, respectively. Sxy is the number of 180 

prey commonly detected in both seals. 181 

 182 

Results  183 

Prey items 184 
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Sixty-eight fecal samples were collected in our study (Table 1). Seven samples of the total 68 samples were not carried 185 

out for sequencing analysis because amplification of the target product was not confirmed. The sequencing of total 61 fecal 186 

samples remained after quality filtering yielded 3,243,915 reads in total and 14,787-124,826 reads per sample. Prey 187 

organisms were detected in 53 fecal samples. The average number of detected prey species per sample was 2.5 ± 0.2 188 

(average ± standard error, range: 0–8). We identified 19 fish species, 5 cephalopod species, and 1 crustaceans (Table 2). 189 

The number of prey species with more than 5% FO was 9; these species included the North Pacific giant octopus 190 

(Enteroctopus dofleini, FO = 90.6%), the Japanese common squid (Todarodes pacificus, FO = 47.2%), the Okhotsk atka 191 

mackerel (Pleurogrammus azonus, FO = 37.7%), the chestnut octopus (Octopus conispadiceus, FO = 13.2%), the black 192 

plaice (Pseudopleuronectes obscurus, FO = 13.2%), a small type of shrimp (Crangon spp., FO = 11.3%), the masu salmon 193 

(Oncorhynchus masou, FO = 9.4%), the rock greenling (Hexagrammos lagocephalus, FO = 7.5%), and the Japanese dace 194 

(Tribolodon hakonensis, FO = 5.7%). Salmonids were only detected in six adult seals caught by seal trap nets in spring 195 

2017: five females and one male.  196 

 197 

Seasonal and intraspecific differences in the diet structure 198 

Fourteen species from 10 families and 7 orders were detected in fall (the prey diversity; H′ = 2.16), and 20 species from 199 

10 families and 9 orders were detected in spring (H′ = 2.35). The inter-individual prey overlap (J′) was significantly higher 200 

in spring (J′ = 0.72 ± 0.23 SD ) than in fall (J′ = 0.62 ± 0.18 SD ) (t-test: t784 = −4.34, P < 0.01) (Table 3). 201 

The results of testing each factor’s effects (“season,” “maturity,” “sex,” and “catch type”) on prey composition using 202 

PERMANOVA were shown in Table 4. Prey compositions showed the differences between “season” in the adult group. 203 
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Additionally, it was indicated that the factors caused intraspecific differences in the diet to vary with each season. 204 

In spring, prey composition differed depending on “maturity” and “catch type” but not “sex” (Fig. 3 and Table 4). Prey 205 

diversity was highest in the adult group (H′ = 2.24) and lowest in the pup group (H′ = 1.80). The inter-individual prey 206 

overlap of the adult group (J′ = 0.83 ± 0.20 SD ) was significantly higher than that of the juvenile group 207 

(J′ = 0.64 ± 0.21 SD) and the pup group (J′ = 0.57 ± 0.23 SD) (Tukey test: P < 0.01). The RFO of each prey item showed 208 

similar composition between the pup group and the juvenile group; octopuses, squids, crustaceans, and greenlings 209 

accounted for 80% of their diet. The adult group’s diet showed different tendencies; salmon occurred at a high frequency 210 

(RFO = 21.4%) in addition to the aforementioned prey items (Fig. 5).  211 

In fall, the prey compositions did not differ significantly depending on “sex” and “maturity” (Fig. 4 and Table 4). 212 

Octopuses, squids, greenlings, and flounders accounted for 80% of the fall diet.  213 

 214 

Discussion 215 

Despite the fact that all seals used in our dietary analysis were caught in salmon set-nets, the prey organism with the 216 

highest FO was the North Pacific giant octopus, not Salmonids (Table 2). This result might correspond to the fact that 217 

colon contents reflected the food record from 2.5 to 6 h ago (Markussen 1993). Considering that the average staying time 218 

of the seals in the set-net is 24.1 ± 43.0 min (Masubuchi et al. 2017), the prey organisms detected in the colon contents 219 

were eaten outside the salmon set-net, inside the salmon set-net during the last visit, or inside another salmon set-net. Since 220 

bycatch of octopus in the salmon set-net is very rare, it is likely that most of seals preyed on the North Pacific giant octopus 221 

outside the set-net and then enterd the set-net. 222 
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Seasonal variation in the diet was not shown clearly in this study although it has been suggested in the previous studies 223 

(e.g. Hui et al. 2017; Kobayashi unpublished). Our sample size was unbalanced between seasons, and may not be sufficient 224 

to figure out the diets of harbor seals in the fall. As many researchers indicated, harbor seals are generally opportunistic 225 

predators, and their food habits are influenced by the biomass and availability of prey, which changes spatially and 226 

temporally in the ocean (Brown and Pierce 1998; Hall et al. 1998; Andersen et al. 2004). Since such an environmental 227 

situation would be a major factor influencing the diet of Kuril harbor seals, conducting additional studies with larger sample 228 

sizes to get a more accurate perspective of the fall diet is needed. On the other hand, no large population dynamics of 229 

marine organisms affecting seal diets have been reported in the four years between 2014 and 2017, when the samples were 230 

collected, therefore sampling bias between years is not expected to have a significant effect on the results. 231 

Seasonal variation in the diet was significantly shown only in the adult group. The prey compositions of spring differed 232 

depending on “maturity,” and the adult group’s diet was clearly different from that of the pup group and the juvenile group. 233 

Spring, late May to early July, is the breeding season of Kuril harbor seals (Niizuma 1986). During the breeding season, it 234 

is known that harbor seals, especially adults, stay near haul-out sites because they have a lek-type mating system (Boness 235 

et al. 2006; Dietz et al. 2013). Despite their narrow home range, the prey diversity of the adult group was high, and inter-236 

individual prey overlap was low. This result might suggest that adults avoid competition over prey organisms during the 237 

breeding season by consuming different prey items. 238 

In fall, their diet did not differ depending on neither “maturity” nor “sex.” However, this result is likely due to the small 239 

sample size used in this study, so it is premature to conclude that there is no variation in the fall diet. Higher specialization 240 

in the fall diet of females has been reported in Salish Sea harbor seals (Voelker et al. 2020). Differences in diet were likely 241 
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because this species has different foraging strategies between males and females (Thompson et al. 1998; Wilson et al. 242 

2014). Sexual and seasonal differences in harbor seal home range sizes are reported in Kattegat, Denmark (Dietz et al., 243 

2013), and Salish Sea (Peterson et al., 2012). In addition, females are more likely to perform deeper foraging dives because 244 

of their high consumption of demersal fish (Wilson et al. 2014; Schwarz et al. 2018). Although the fall foraging behavior 245 

of adult seals was not investigated in our study field, we propose further dietary analysis and to reveal whether their 246 

foraging strategy differ depending on sex and maturity. 247 

A clear difference in diet between seals caught as bycatch and seals captured intentionally in the seal trap nets was shown. 248 

A noteworthy result is that salmonids were not detected in seals caught as bycatch; they were only detected in individuals 249 

intentionally caught by seal trap nets in spring 2017. It might be difficult for seals to catch free-ranging salmon outside the 250 

set-net because salmon are large and have high swimming capabilities. Therefore, the seals whose colon contents included 251 

salmonids might eat salmon inside the salmon set-net and be captured by seal trap nets afterward. These suggest the 252 

effectiveness of seal trap nets to selectively eliminate “problem seals” who repeatedly enter and leave salmon set-nets and 253 

cause serious damage to the nets. On the other hand, individuals who enter the set-net for the first time or are unfamiliar 254 

with stealing from the nets are caught as bycatch. 255 

Selective wildlife management has been proposed as an effective way to mitigate human-wildlife conflicts (Swan et al. 256 

2017). To reconcile conservation and the mitigation of fishery damage, it is important to aim for the selective removal of 257 

“problem seals” rather than random culling for population adjustment. Some previous studies in other regions have shown 258 

that male seals have higher rates of access to fishing nets or use of salmonids than female seals (e.g. Kauhala et al. 2015, 259 

Schwards et al. 2018), however, our dietary analysis showed a different tendency. Although the number of samples of 260 
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salmon feeders is still insufficient to confirm the characteristics of problem seals, we indicated that some adult females 261 

habitually eat salmon during spring. This result indicates that some adult females may be dependent on the catch of fishing 262 

nets for the energy they need to give birth and breastfeeding, and they are more likely to be involved in the problem than 263 

adult males, at least in spring. This may also suggest that the harbor seals in Cape Erimo are very accustomed to fishing 264 

nets, considering that females are generally more cautions than males.  265 

The identification of problem seals in fall, when fisheries damage is more serious than in spring, remains a future 266 

issue. The samples used for the fall diet analysis might be not sufficiently comprehensive because no fall seal trap 267 

nets were conducted during our study periods. Therefore, it is necessary to increase the sample size including seals 268 

caught by seal trap nets in the fall and re-examine how intrinsic factors affect their feeding habits in the fall. Although 269 

the DNA barcoding dietary analysis on colon contents showed high advantage in detecting the problem seals, this 270 

dietary analytical method is not suitable for quantitative diet analysis. In order to assess the potential impact on prey 271 

and fisheries, it is necessary to verify the extent to which the problem seals were actually dependent on salmonids. 272 

For this purpose, a more detailed understanding of foraging ecology at the individual level is required through 273 

behavioral analysis, fatty acid analysis, and stable isotope analysis.  274 

Recommendations for future management are to minimize random culling based on bycatch as much as possible and to 275 

base it on the characterization and selective removal of problem individuals. Researches should be conducted to determine 276 

how effective it is to eliminate the problem individuals from the population. The high dietary diversity and low inter-277 

individual overlap of adult seals in the spring indicate that adults may avoid food competition in the spring. Therefore, it 278 

should also be examined whether this is related to dependence on fishing nets, and studied whether the eliminate of problem 279 



16 
 

individuals results in their niches being quickly occupied by other individuals. Taking measures to mitigate the feeding 280 

damage based on such scientific grounds will be important not only in Erimo, but also in all conflicts between pinnipeds 281 

and coastal fisheries worldwide.   282 
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Tables 436 

Table 1 Sampling result. P = pup, J = juvenile, A = adult. The figures in parentheses indicate the number of samples in 

which the target region was not amplified or no prey was detected. *Total 25 samples from spring 2017 were collected 

from seals caught by seal trap nets, and all other samples from 2014 to 2016 were collected from seals caught as 

bycatch. 

  
Male Female 

 

  
P J A P J A Total 

2014 Spring 
     

1 1 

2015 Spring 7 6 
 

7 5 1 26 

 
Fall 1 3 5 

 
2 

 
11 

2016 Fall 
 

2 2 1 
  

5 

2017 Spring* 
 

3 (3) 5 (4) 1 (1) 2 (2) 14 (5) 25 (15) 

 
Spring total 7 9 (3) 5 (4) 8 (1) 7 (2) 16 (5) 52 (15) 

 
Fall total 1 5 7 1 2 

 
16 

Total 8 11 (3) 12 (4) 9 (1) 9 (2) 16 (5) 68 (15) 
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Table 2. List of fishes, cephalopods, and crustaceans detected from feces using DNA metabarcoding analysis and 

classification of each taxonomic group. Species in bold-faced type had FO > 5% and were considered the dominant prey 

of the harbor seal population in Erimo. 

Class Order Family Group name Species Spring Fall FO 

Cephalopoda Octopoda Octopodidae Octopuses Enteroctopus dofleini + + 90.6 

Octopus conispadiceus + + 13.2 

Teuthida Enoploteuthidae Squids Watasenia scintillans - + 3.8 

Loliginidae Heterololigo bleekeri - + 1.9 

Ommastrephidae Todarodes pacificus + + 47.2 

Malacostraca Decapoda - Crustaceans - + + 9.4 

Crangonidae Crangon sp. + + 11.3 

Actinopteri Perciformes Hexagrammidae Greenlings Hexagrammos lagocephalus - + 7.5 

Pleurogrammus azonus + + 37.7 

Cottidae Sculpins Enophrys lucasi + - 1.9 

Gymnocanthus galeatus + - 1.9 

Hemilepidotus papilio + - 1.9 

Myoxocephalus polyacanthocephalus + - 1.9 

Triglops nybelini + - 3.8 

Liparididae Snailfishes Liparis bathyarcticus - + 3.8 

Trichodontidae Sandfishes Arctoscopus japonicus + - 1.9 

Pleuronectiformes Pleuronectidae Flounders Cleisthenes pinetorum + - 3.8 

Pseudopleuronectes herzensteini - + 1.9 

Pseudopleuronectes obscurus + + 13.2 

Salmoniformes Salmonidae Salmons Oncorhynchus keta + - 1.9 

Oncorhynchus masou + - 9.4 

Oncorhynchus tshawytscha + - 1.9 

Cypriniformes Cyprinidae Corps Tribolodon hakonensis + - 5.7 

Gadiformes Gadidae Cods Eleginus gracilis - + 1.9 

Uranoscopiformes Ammodytidae Sand lances Ammodytes hexapterus + - 3.8 

Clupeiformes Clupeidae Herrings Sardinops melanostictus - + 1.9 
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Table 3 Number of samples (N), the number of samples in which at least one prey species was detected (n), the total 

number of detected prey species (s), the Shannon–Wiener index (H′), and the average Jaccard similarity index (J′) ± SD 

in each group. 
 

Spring 
 

Fall 
 

Total 

Group N n s H' J' ± SD 
 

N n s H' J' ± SD 
 

N n s H' J' ± SD 

Pup 15 14 10 1.80 0.57 ± 0.23 
 

2 2 11 2.35 n/a 
   

17 16 16 2.18 0.61 ± 0.23 

Juvenile 16 11 11 1.99 0..64 ± 0.21 
 

7 7 8 1.83 0.63 ± 0.17 
 

23 18 14 2.11 0.63 ± 0.20 

Adult 21 12 12 2.24 0.83 ± 0.20 
 

7 7 7 1.68 0.55 ± 0.21 
 

28 19 15 2.26 0.76 ± 0.23 

Male 21 14 10 1.79 0.57 ± 0.22 
 

13 13 12 2.05 0.62 ± 0.17 
 

34 27 15 2.04 0.60 ± 0.20 

Female 31 23 18 2.41 0.77 ± 0.22 
 

3 3 9 2.09 0.77 ± 0.11 
 

34 26 23 2.55 0.77 ± 0.21 

Bycatch 27 27 13 1.93 0.58 ± 0.24  16 16 14 2.16 0.62 ± 0.18  43 43 20 2.18 0.60 ± 0.21 

Capture 25 10 12 2.56 0.84 ± 0.22  n/a n/a n/a n/a n/a    25 10 12 2.56 0.84 ± 0.22 

Total 52 37 19 2.28 0.70 ± 0.24 
 

16 16 14 2.16 0.62 ± 0.18 
 

68 53 26 2.39 0.68 ± 0.23 
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Table 4 Results of PERMANOVA. The prey compositions were compared between “season”, “sex”, “maturity”, and 

“catch type,” based on Horn’s dissimilarity index. Bold numbers indicate a significant difference (P < 0.05). 

df = degree of freedom, SS = sum of squares, MS = mean of squares, F = F statistics, P = P-value. 

 Source df SS MS F R2 P 
 Season 1 0.453 0.453 1.778 0.034 0.063 
 Sex 1 0.395 0.395 1.544 0.029 0.129 
 Maturity 2 0.794 0.397 1.571 0.059 0.059 

Spring       

 Sex 1 0.337 0.337 1.240 0.034 0.290 
 Maturity 2 1.143 0.572 2.232 0.116 0.008 

 Catch type 1 1.440 1.440 5.994 0.146 0.001 

Fall       

 Sex 1 0.079 0.079 0.362 0.025 0.931 
 Maturity 2 0.505 0.252 1.249 0.161 0.256 

Male       

 Season 1 0.242 0.242 1.235 0.047 0.287 
 Maturity 2 0.281 0.140 0.692 0.054 0.760 

 Catch type 1 0.315 0.315 1.631 0.061 0.061 

Female       

 Season 1 0.231 0.231 0.725 0.029 0.714 
 Maturity 2 1.011 0.506 1.691 0.128 0.026 

 Catch type 1 1.170 1.170 4.180 0.148 0.001 

Pup       

 Season 1 0.402 0.402 2.000 0.125 0.015 
 Sex 1 0.114 0.114 0.514 0.035 0.815 

Juvenile       

 Season 1 0.220 0.220 1.010 0.059 0.446 
 Sex 1 0.216 0.216 0.987 0.058 0..457 

Adult       

 Season 1 0.684 0.684 2.313 0.120 0.020 
 Sex 1 0.563 0.563 1.860 0.099 0.062 

 Catch type 1 1.178 1.178 4.417 0.206 0.001 
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Figure 441 

 442 

 443 

Fig. 1 Map of Cape Erimo, Hokkaido, Japan. The rocky shore area (shaded in grey) is a Kuril harbor seal haul-out site; 444 

cross marks indicate salmon set-net locations  445 
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 446 

Fig. 2 Photo of a chum salmon (Oncorhynchus keta) that was caught by the set-net and bitten by Kuril harbor seals  447 
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 448 

Fig. 3 The percent frequency of occurrence (FO) of fish, cephalopods, and crustaceans in spring  449 
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 450 

Fig. 4 The percent frequency of occurrence (FO) of fish, cephalopods, and crustaceans in fall  451 
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 452 

Fig. 5 The relative frequency of occurrence (RFO) of each prey item 453 


