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Sound Waves in a Layer over a Half 

Space Absolutely Rigid 

Kyozi TAZIME 

(Received Sept. 25, 1959) 

Abstract 

Dispersive RAYLEIGH waves in a layer over a half space absolutely rigid were 
investigated pretty thoroughly by GIESElJ. 

He ignored M(2)-type of the waves, assuming that this type had much smaller 
amplitude than that of ~(1)-type. However the present paper suggests that his 
assumption had no theoretical foundation. 

Moreover he did not refer to any higher order of M-waves. Indeed he treated 
media having POISSON'S ratios larger than 0.25, but the character of M-waves was 
obscure at the limit when POISSON'S ratio arrived at 0.50. 

lt is the main purpose of the present paper to clear up the last defect just men­
tioned. 

lt must be noted that notations and expressions in this paper will follow those 
employed and obtained in the previous paper by the present author2). 

1. Superficial waves in a liquid layer 

Taking space-coordinates as shown in Fig. 1 and assuming a line source 
at z=E, displacement-potential of superficial waves can be written as 

[<p](l)~Mo=- 27t~(~ --~) sini)E sini)z, 
i)2H U c 

air 
,..--TT--·---------,» X 

H 

z 

layer 
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rigid 

Fig. 1. Space-coordinates under consideration. 

(1.1) 
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being the same expression as that obtained in the case of a plate3 ). 

In (1.1) the characteristic equation is given by 

M(l) = 0 that is cos ii H = 0 

or iiH=(21+I)n/2, ([=0,1,2, .... ). 

2. Dispersive RAYLEIGH waves in a solid layer 

(1.2) 

(1.3) 

In a solid layer, as well known, M(l) and M(2)-waves must exist. The 

displacement-potential of them can be expressed, by means of a method similar 
to that used in a solid plate, as follows. 

(i) c~vp>vs; IX = ii, fJ = ~. 

[¢lM~o =- ~H ( b - +) [cos ii (z-E) ((I-AA') sin iiH cos ~ H 

+ (1 +AA')cosiiHsin~H} + sinii(z+E) (-(A-A')cOSiiH cos~H 
+(A+A') sin iiH sin ~H} +cos ii (z+E) ((A-A') sin iiH cos ~H 

+ (A +A') cos iiH sin ~H}]/N, 

[..p.1M~o=i ii~R-(b -+)[B((1+A')cOSii(E-H)cos~(z-H) (2.1) 

-(I-A') sin ii (E-H) sin ~ (z-H) }+B' \(1+A) cos "E cos ~z 

-(I-A) sin iiE sin ~z}]/N, 
N = {(I-AA') + (n,,) (1 +AA')} sin iiH cos ~H + {(1 +AA') 

+ (nii) (I-AA')} cos iiH sin ~H, 

in which the characteristic equation is given by 

M = 0 that is sin2 t (ii + B) H -AA' sin2 t (ii-~) H = t (I-AA' -BC) . 

(2.2) 

A' in (2.1) and (2.2) means PP-reflecting coefficient as to displacement 

-potential on the lower boundary in a superficial layer. 
Letting rigidity of the layer tend to zero, A must approach to -1 and B 

to zero, as already mentioned in the case of a plate. On the other hand, A' 
will approach to I at the same time, whichever value phase-velocity may have, 
as illustrated in Fig. 2. B' as well as C' will approach to zero again, being 

B'2=(ii/~) (I-A'2). In this case, [..p.JM~o in (2.1) must be zero and (2.2) will 
be reduced to 

{(tan "H/2-I) (tan ~H/2+ I)} ((tan "H/2+ 1) (tan ~H/2-I)} = 0, (2.3) 

that is 

iiH = (21+ 1) 7(/2 or ~H = (2 m+ 1) 7(/2, (2.4) 
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Fig. 2. PP-reflecting coefficient on the lower boundary in a: layer. 

where I and m represent positive integers, indicating orders of these curves. 

The former of (2.4) coincide with (1.3) and one sees that [¢JM 0 in (2.1) will 
coincide with that in (1.1). 

On the other hand, when the latter of (2.4) is satisfied, [..Jr JM ~O in (2.1) must 

be zero. 
Thus letting rigidity of the layer tend to zero, branches corresponding to 

(tan aH/2-1) (tan aH/2+1)=O alone can survive, otherwise amplitudes of 
displacement-potentiaJs become zero. The surviving two branches coincide 

respectively with the branches of the even and odd orders of superficial waves 

in a liquid layer. 

(ii) vp ~c ~ Vs ; rx = -i 6:, f3 = ~ . 

[¢]M-o= ~ ~ (b - +) [cosh 6: (z-E){ e&H sin (~H -0-0 ) 

+e-"l sin (~H +0+0) }-( e·(z+E-li) sin (~H - 0-0 ) 

+e-·(z+E-H) sin (~H +0-0') }]/N, 

[-rlM~o= i -~ ~ ( b -+)( 2 ~6: ) [(sin 20)1/2{ e,,(E-H) sin (~ (z-H) -0) (2.5) 

_e-&(E-H) sin (~ (z-H) +O')} -I- (sin 2 0'F/2 r e·E sin (~z- 0) 

_e-· E sin (~z-l-o) }]/N , 
N = e·li sin (~H-o-o')-I-C-·H sin (~H +0+0') 

+ (M 6:) {e· li cos (~H -o-O')-e-&H cos (~H -1-0 -I-o')} , 
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in which the characteristic equation is given by 

M = 0 that is 

{e· HI2 cos t (~H _0_0')_e-· HI2 cos t (~H -1-0 -I-O I
)} 

. {e· Hl2 sin t (~H -0-0 ) -I-e-· HI2 sin t (~H +0 +O l

)} 

= sin (0+0 ' ) ± [sin2 (0+o')-sin2 (0-0 ' ) p/2. (2.6) 

0' in (2.5) and (2.6) means phase-lag of displacement-potential at PP 

-reflection on the lower boundary of the layer. Letting rigidity of the layer 
tend to zero, 0 must approach to zero, as already mentioned in the case of a 
plate. On the other hand, 0' will approach to n/2 for all values of phase 
-velocity between vp and Vs as illustrated in Fig. 3. In this case, [V-]M;() in 

(2.5) must be zero and (2.6) will be reduced to 

cosh &: H cos ~ H = O. (2.7) 

Because cosh &:H cannot be zero, cos ~H must always be zero. Owing to 

1.5 

1.0 

0.5 

0.0 '--_--L. __ "'--_--'. __ -LL_--'-L......l_L.J...1_L-~_--'-__ _'__ _ __' 

0.0 0.1 02 03 0.4 0.5 0.6 0.7 08 0.9 

------7 C/Vp 

Fig. 3. Phase-lag at PP-reflection on the lower boundary. 
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this result, one sees that [¢]M=o in (2.5) also becomes zero. No wave, therefore, 

can survive in the present case. 

(iii) vp>vs?:,c; rt.=-i&, f3=-i~. 

[¢lM=o =-i ~c; ( b -+ ) [cosh & (z-E){ (I-AA ) sinh &H cosh SH 

+ (1 +AA ') cosh &H sinh BH} - sinh & (z+E) 
. {(A -A ') cosh &H cosh ~H + (A +A ') sinh &H sinh BH} 

+ cosh & (z+E) {(A-A') sinh &H cosh B H 
+ (A +A ) cosh &H sinh ~H}]/N, 

[~lM=o=-i ~~ ( b -+ )[B{ (1+A ) cosh & (E-H) cosh ~ (z-H) 

+ (I-A') sinh & (E-H) sinh ~ (z-H) }+B' {(1+A) cosh &E 
. cosh BZ+ (I-A) sinh &E sinh BZ }]/N , 

N =-i [{ (I-AA ')+ (S/&)(I+AA ')} sinh &H cosh Sll 
+ {(1+AA )+ (S/&) (I-AA ') cosh &H sinhBH, 

in which the characteristic equation is given by 

0.0. 0..1 0.2 03 0.,4 0..5 0.6 0.7 0.8 

Fig. 4. PP-reflecting coefficient on the lower boundary. 

(2.8) 
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M= 0 that is 

sinh2 t (& +~) H _AAJ sinh2 t (&-~) H = t (Be' +AA' -1) = l2. (2.9) 

A' in (2.8) and (2.9) means again PP-reflecting coefficient on the lower 

boundary of the layer. 
Letting rigidity of the layer tend to zero, A must be confined to -1, as 

already mentioned in the case of a plate. On the other hand, A' is to be 
confined also to -1, as illustrated in Fig. 4. Because Band B' are again zero 
in this case, ['Ijr ]M=o in (2.8) must be zero and (2.9) will be reduced to 

cosh (&H/2) sinh (~H/2) sinh (&H/2) cosh (~H/2) = O. (2.10) 

As cosh (&H/2) sinh (&H/2) cosh (~H/2) cannot be zero, sinh (8H/2) must 
be zero, with the result that [¢]M~O in (2.8) is also zero. 

It has been recognized in this section that dispersive RAYLEIGH waves in 
a solid layer should be reduced to superficial waves in a liquid layer at the 

limit when rigidity is taken as zero. In the following section, processes of 

transition will be investigated. 

3. Numerical calculations of the dispersion-curves 
for various POISSON's ratios 

At the limit when POISSON'S ratio arrives at 0.50, A' in Fig. 2 must 
coincide with 1 and A with -1 for any value of c/vp. 

Turning attention to A' and A for general POISSON's ratio, one sees that 
A' will always approach again to 1 and A to -1 if c/vp";;p1. 

Considering the above two circumstances with Fig. 2, it may be expected 
that the nearer 0" approaches to 0.50, the wider becomes the range satisfying 
(2.3). 

If c /vp = 1, one sees A' =A = -1 for any value of 0", with the result that 
the right hand side of (2.2) becomes zero, because BC' =0 in this case. 
Namely one has 

sin &.H sin ~H = 0 , 

being the same as the relation in the case of a plate. 
If c/vs=l, one sees again A'=A=-1 for any value of 0". Thus one has 

sinh &H sin ~H = 0 . 

Because sinh &H cannot be zero in this case, dispersion-curves must always 
approach to sin ~H =0 near C=Vs • 

As one has seen by now, for any value of 0", 
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cos &.H = 0 and cos PH = 0 (3.1) 

might be the bases with respect to dispersion-curves of RAYLEIGH waves in a 

layer resting on a half space absolutely rigid, if cjvp> 1. On the other hand, 

.., ~ 0 
\I II II h 
-' E 

10 
..... E 

7 M~)I 
5 j 

i 
3 i 
2 i 

/ 
~ / 
u 

i 
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0.5 
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0.2 

0.1 

N= 0 
II • II • ..... E ..... E 

10 

7 M~ ! 
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3 I 
2 j 

~ / 
U .---./ 

1 
1.0 

0.7 

0.5 

0.3 

0.2 

0.1 '--L-l-LLL-'-_----'_-'--'--..L--l--'-<--LL __ -L----' 

03 0.50.71.0 2 3 5 7 10 20 30 

----"" TV."IH 

Fig. 5. Chain-lines correspond to iXH =(21+ 1)1t /2, while 
dotted lines to ,BH=(2m+l) 7<;2. a=0.48. 
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sin ~H = 0 (3.2) 
might be the base near C=V s' 

In Fig. 5 are shown the curves given by (3.1), that is (2.4). Classification 
of M(l) and M(2) in Fig. 5 follows that in the case of a plate. Odd I and even 
m belong to M(1), on the contrary even I and odd m to M(2). The curves given 

by cos ~H =0 must be shifted to the rightward with increase in er, though the 
curves given by cos iiH =0 need not. In Fig. 5, for an example, the curves 
for 0"=0.48 are exhibited. 
(i) Now 12=l (I-AA'-BC') in (2.2) has been calculated at first and is illus­
trated in Fig. 6. If c jvp';;J> 1, one sees that I is equal to unity for any value of 
er and (2.2) may be resolved into the next two branches: 

O~~.O~--------~1.5--~--------2~.~O----------~2~ 

Fig. 6. The relation between I in (2.2) and c/vp. 

cos(: + f) l;!f +(-AA )1/2 sin ( : - f) l;!f =0 

cos(: + E) l;!f -(-AA')1/2 sin (: - f) l;!f =0 

where classification of"M(1) and M(2) depends o'n the limit when (3.3) will 

coincide with (2.3) in which A =-1 and A' = 1. It will be very easy, as in the 
case of a plate, to obtain dispersion-curves from (3.3). 

If c /vp approaches to 1, I differs from unity and (2.2) cannot be resolved 
into factors. The process of graphical solution for this case, or 

sin (L + ~) I;H =+ {12+ AA ' sin2 (L _ ~) I;H }1/2 (3.4) 
~ l; 2 - ,I; I; 2 
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Li' 

-1.0 O~--'------'-------'--.L--O---'.5"---L-.L---'---L--L-~I.O' 

}H --2 

Fig. 7. An example of graphical solutions for (2.2). 
<7=0.48 and c/vp=1.5. 

IS shown by Fig. 7. Owing to intersection of cos &.H =0 with cos ~H =0, 
systema tic classification of M (1) and M (2) is somewhat disturbed, if c /vp is 
not much larger than unity. This disturbance appears in Fig. 7 between 
M

1
(2) and M

2
(2l. 

(ii) (2.6) may be rewritten by 
sin (~H -0-0') = e-2&H sin (~H +0 +0') ± 2 e-&H (sin 20 sin 20')112 

for clvs <: 11'2 . (3.5) 

An example of graphical solution for (3.5) is exhibited in Fig. 8 where 
Mn (1) and Mn (2) appear in turn regularly, because cos &.H = 0 does not exist 
in the present region and no disturbance can occur. 

~ 5in(~H-o-d') 

~~H 

Fig. 8. An example of graphical solution for (3.5). 
11=0.48 and. c/vp=0.50. 



172 

If c /vp> 1, it cannot be expected to be possible to classify the branch by 
Fig. 7 alone. In order to avoid this difficulty, Fig. 5 and Fig. 8 must be 
compared with Fig. 7. 

(iii) (2.9) may be rewritten by 

sinh (~ + L) fH = {Z2+ AA ' sinh2 (~ _ j ) l;H }1/2 (3.6) 
l; l; 2 ,l; l; 2 

from which Mo(l) alone will be obtained. 

If c becomes smaller than vs' A and A' will decrease to become remarkably 
smaller than -1 at once and [2 in (2.9) will coincide with AA'. In this case 
(3.6) will be reduced to 

sinh ( ~ + ~) l;H == I cosh (.~ _ L) l;H 
\ l; l; 2 l; . l;. 2' 

(3.7) 

As I in (2.9) is illustrated in Fig. 9, graphical solution of (3.7) is very easy. 
Thus the dispersion-curves for 0-=0.48 have been obtained, as shown by 

full lines in Fig. 10 where the other lines correspond respectively to those in 

10.0 

l 

1 
5.0 

0.0 

0.48 OAO 0350.30 025 0·00 

--.C/Vp 
Fig. 9.l in (2.9). 
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Fig. 5. Dispersion-curves for the other POISSON'S ratios are also shown in 
Figs. 11 to 14 in the same manner as those in Fig. 10. 
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"'= 1111 
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I 
as 0.7 LO 2 3 

o 
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~TV,/H 

Fig. 10. Dispersion-curves 

I 
5 7 10 20 30 

for 0=9.48. 
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~TVp/H 

Fig. 11. Dispersion-curves for 0'=0.45. 

4. Conclusions 

(1) If c /vp~l, the dispersion-curves always coincide with anyone of the 
curves given by (2.4), whatever value iT may, have. 

(2) If C /Vp,?> 1 , periods of the former and of the latter equation in (2.4) 
should coincide with each other under the next condition, 

(4.1) 
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Fig. 12. Dispersion-curves for ,,=0.35. 

Because odd orders of m must correspond to even orders of I, the lowest 
order of m satisfying (4.1) is 1 for 1=0, resulting in vp/vs=3.0" or <T=0.44. 

If <T <0.44, no curve indicated by m exists to the right of the curve 
indicated by 1=0 with which M o(2) always coincides in this case. 

If <T>0.44, on the other hand, some curves indicated by m appear to the 
right of 1=0. The nearer <T approaches to 0.50, the larger becomes the number 

of m-curves to the right of 1=0. 
(3) On dotted lines in Fig. 10 to 14 amplitudes of displacement-potentials 

are zero, though the dispersion-curvesrnay be calCulated. 



Fig. 13. Dispersion-curves for a=O.2S. 

(4) It may be expected, on the other hand, that on chain-lines amplitudes 
will be large. Indeed amplitudes on full lines differ from zerQ, but the 
maximum amplitude must be attained on chain-lines at 

TvplH =,4/(2l+ 1) , . (4.2) 

(5) It has been found to be wrong, if 0'>0.44 for M,,(2) and if 0'>0.22 for 

Mn(l), to say that the lower the order of dispersive RAYLEIGH waves is, the 
larger may become the amplitude of the wave. This situation is completely 
different from the case of LOVE waves and of sound waves, consisting 
re~pectively of either S or P-waves alone. 

(6) (4.2) means "quarter wave-length law". It was a wonder that such 
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Fig. 14. Dispersion-curves for <7=0.00 . 

7 10 

. a law as (4.2) had been often experienced4) for dispersive RAYLEIGH waves in 
field-experiments, in spite of the existence of P-wave as well as of S-wave in 
the layer. But it has been understood in the present paper that among many 
branches of dispersive RAYLEIGH waves a few of them must correspond to 
cos rxH =0 and others to cos ~H =0. Amplitudes of the latter ones cannot be 

. so large that the law contp.ining vp alone will become important. It must be 
also noticed that the order of dispersive RAYLEIGH waves cannot be determined 
from the observed "wave-length law". 

(7) Picking out Mo(1), Mom and the curve for l=O alone from Figs. 10 to 
14, one will obtqin Fig. 15. In this figure Mom and Mo(2) diverge from the 

curve for l=O when (T approaches to 0.50. Thus it should not be expected 
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that two curves, for solid and for liquid waves, will coincide with each other 
at the limit of 0"=0.50. The process of transition from solid to liquid cannot 
be understood by Fig. 15. 

10 

7 

5 

3 

2 

1·0 

07 

05 

0.3 

0.481=======::::':"_-- Q2 

0.3 

-Tv,./H 

Fig. 15. Comparison of dispersion-curves for the zeroth 
order of M-waves to the curve for the zeroth 
order of liquid waves. 

... 
~ 

I 

According to the present investigation, one ~ees, the process is very com­
plicated. When 0" approaches to 0.50, the zeroth order of liquid waves is 
constructed approximately of many higher orders Mn (2)-waves and the first 

; order of liquid waves is approximately constructed of many higher orders 'of 
Mn(l)-waves and so on. 

5. Remarks 

. If attention is confined in the region of TvpjH~1 and cjvp=1 in Fig.S, 
a similar lattice to MINDLIN's5) may be formed. The dispersion-curve in this 
region takes also "terrace-like structure" named by MINDLIN III the case of a 

. plate. 
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