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FREENESS FOR MULTIARRANGEMENTS OF HYPERPLANES
OVER ARBITRARY FIELDS

MICHELE TORIELLI

ABSTRACT. In this paper, we study the class of free multiarrangements
of hyperplanes. Specifically, we investigate the relations between free-
ness over a field of finite characteristic and freeness over Q.

Keywords: Hyperplane arrangements, Multiarrangements of hyperplanes,
Freeness, Modular approach, Logarithmic derivations.

2010 MSC: 32S22, 52C35.

1. INTRODUCTION

Let V be a vector space of dimension l over a field K. Fix a system of
coordinates (x1, . . . , xl) of V ∗. We denote by S = S(V ∗) = K[x1, . . . , xl]
the symmetric algebra. A hyperplane arrangement A = {H1, . . . , Hn} is a
finite collection of hyperplanes in V .

The theory of freeness of hyperplane arrangements is a key notion which
connects arrangement theory with algebraic geometry and combinatorics.
By definition, an arrangement is free if and only if its module of logarith-
mic derivations is a free module. A lot it is known about free arrangements,
however there is still some mystery around the notion of freeness. The
notion of freeness was introduced by Saito in [11] for the case of hypersur-
faces in the analytic category. The special case of hyperplane arrangements
was first studied by Terao in [13], where he showed that we can pass from
analytic to algebraic considerations. In [17], Ziegler extended this theory to
the class of multiarrangements of hyperplanes, i.e. arrangements in which
each hyperplane has a non-negative integer multiplicity. In addition, Ziegler
related the notions of free arrangements and free multiarrangements. Since
their introduction, free (multi)arrangements have been intensively studied
in connection with the famous Terao’s conjecture. See for example [15],
[1], [4], [12], [16], [2], [9] and [10].
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The purpose of this paper is to extend the work of [8] in order to study
the connections between freeness of multiarrangements over a field of char-
acteristic zero and over a finite field, and to describe in which cases the two
situations are related and how.

2. PRELIMINARES ON HYPERPLANE ARRANGEMENTS

In this section, we recall the terminology, the basic notations and some
fundamental results related to multiarrangements of hyperplanes.

Let K be a field. A finite set of affine hyperplanes A = {H1, . . . , Hn}
in Kl is called a hyperplane arrangement. For each hyperplane Hi we
fix a defining polynomial αi ∈ S = K[x1, . . . , xl] such that Hi = α−1i (0),
and let Q(A) =

∏n
i=1 αi. An arrangement A is called central if each Hi

contains the origin of Kl. In this case, each polynomial αi ∈ S is linear
homogeneous, and hence Q(A) is homogeneous of degree n. In this paper,
we will only consider central arrangements.

Definition 2.1. A multiarrangement of hyperplanes is a pair (A,m) of a
central arrangement A with a map m : A −→ Z≥0, called the multiplicity.
We also put Q(A,m) =

∏n
i=1 α

m(Hi)
i and |m| =

∑n
i=1m(Hi).

The theory of multiarrangements is a generalization of the one of arrange-
ments. In fact, an arrangement A can be identified with (A,1) a multiar-
rangement with constant multiplicity m ≡ 1, which is sometimes called a
simple arrangement.

We denote by DerKl = {
∑l

i=1 fi∂xi | fi ∈ S} the S-module of polyno-
mial vector fields on Kl (or S-derivations). Let δ =

∑l
i=1 fi∂xi ∈ DerKl .

Then δ is said to be homogeneous of polynomial degree d if f1, . . . , fl
are homogeneous polynomials of degree d in S. In this case, we write
pdeg(δ) = d.

Definition 2.2. Let (A,m) be a multiarrangement in Kl. Define the module
of vector fields logarithmic tangent to A with multiplicity m (or logarith-
mic vector fields) by

D(A,m) = {δ ∈ DerKl | δ(αi) ∈ 〈αm(Hi)
i 〉,∀i}.

The moduleD(A,m) is obviously a graded S-module and plays a central
role in the theory of free multiarrangements of hyperplanes. In general, in
contrast to the case of simple arrangements, D(A,m) does not coincide
with {δ ∈ DerKl | δ(Q(A)) ∈ 〈Q(A,m)〉}.
Definition 2.3. A multiarrangement (A,m) in Kl is said to be free with
exponents (e1, . . . , el) if and only if D(A,m) is a free S-module and there
exists a basis δ1, . . . , δl ∈ D(A,m) such that pdeg(δi) = ei, or equivalently
D(A,m) ∼=

⊕l
i=1 S(−ei).
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As described in [17], since D(A,m) is a reflexive S-module, then any
multiarrangement in K2 is free.

Example 2.4. Consider the multiarrangement (A,m) in R2 withQ(A,m) =
x2y2(x − y). Then (A,m) is free with exponents (2, 3). In fact, D(A,m)
is free and it is generated by

δ1 = x2
∂

∂x
+ y2

∂

∂y
,

δ2 = (x− y)y2
∂

∂y
.

Remark 2.5. Consider δ1, . . . , δl ∈ D(A,m), then det(δi(xj))i,j is divisi-
ble by Q(A,m).

In [11], after introducing the notion of freeness, Saito described one of
the most famous characterizations of freeness, see also [17]. Saito’s crite-
rion checks if (A,m) is free or not by looking at the determinant of the
coefficient matrix of δ1, . . . , δl ∈ D(A,m). Notice that the original state-
ment is for characteristic zero. However, as noted in [14], this statement
holds true for any characteristic.

Theorem 2.6 (Saito’s criterion). Let (A,m) be a multiarrangement in Kl

and δ1, . . . , δl homogeneous elements of D(A,m). Then the following facts
are equivalent

(1) D(A,m) is free with basis δ1, . . . , δl, i.e. D(A,m) = S · δ1⊕· · ·⊕
S · δl.

(2) det(δi(xj))i,j = cQ(A,m), where c ∈ K \ {0}.
(3) δ1, . . . , δl are linearly independent over S and

∑l
i=1 pdeg(δi) =

|m|.

Directly from Saito’s criterion, we obtain that if (A,m) is a free multiar-
rangement in Kl with exponents (e1, . . . , el), then deg(Q(A,m)) = |m| =∑l

i=1 ei.
Notice that in contrast to the theory of simple arrangements, see [5], the

exponents of a free multiarrangement are not combinatorial in general, as
shown in the following example.

Example 2.7 ([17]). Consider the multiarrangement (A,m) in R2 with
defining polynomial Q(A,m) = x3y3(x − y)(x + y). Then (A,m) is
free with exponents (3, 5). However, if we consider the multiarrangement
(A′,m) in R2 with Q(A′,m) = x3y3(x− y)(x+ 4y), then also (A′,m) is
free but with exponents (4, 4).
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Given a multiarrangement (A,m) in Kl with A = {H1, . . . , Hn}, let
M(A,m) be the S-submodule of the free S-module Sn defined by

M(A,m) = 〈(αm(H1)
1 , 0, . . . , 0), . . . , (0, . . . , 0, αm(Hn)

n )〉.
Consider the n × l matrix A(A) = (∂αi

∂xj
)i,j with coefficients in S. We can

then define the multiplication map of S-modules

ϕ(A,m) : Sl −→ Sn/M(A,m) (1)

defined by (g1, . . . , gl)
t 7→ A(A)(g1, . . . , gl)

t.
With this construction, it is trivial to prove the following

Proposition 2.8. Let (A,m) be a multiarrangement in Kl. Then

D(A,m) ∼= Ker(ϕ(A,m)).

3. FROM CHARACTERISTIC 0 TO CHARACTERISTIC p

Similarly to [8] and [6], from now on we will assume that (A,m) is a
multiarrangement in Ql. After getting rid of the denominators, we can sup-
pose that αi ∈ Z[x1, . . . , xl] for all i = 1, . . . , n, and hence that Q(A,m) =∏n

i=1 α
m(Hi)
i ∈ Z[x1, . . . , xl]. Moreover, we can also assume that there

exists no prime number p that divides any αi.
Let p be a prime number. Consider the image of each αi under the canon-

ical homomorphism πp : Z[x1, . . . , xl] −→ Fp[x1, . . . , xl]. By assumption,
πp(αi) 6= 0 for all i = 1, . . . , n.

Definition 3.1. Let (A,m) be a multiarrangement in Ql. We will call a
prime number p good for (A,m) if πp(αi) 6= πp(αj) for all i 6= j.

Similarly to the case of simple arrangements, described in [8], we have
the following.

Lemma 3.2. There is a finite number of primes p that are not good for
(A,m).

Proof. By definition, p is not good for (A,m) if and only if πp(αi) =
πp(αj) for some i 6= j and this can happens only for a finite number of
primes. �

Let now p be a good prime for (A,m), and consider (Ap,m) the multi-
arrangement in Flp defined by πp(Q(A,m)). By construction, Q(Ap,m) =

πp(Q(A,m)) =
∏n

i=1 πp(αi)
m(Hi) 6= 0 and it has degree |m|.

Theorem 3.3. If (A,m) is a free multiarrangement in Ql with exponents
(e1, . . . , el), then (Ap,m) is a free multiarrangement in Flp with exponents
(e1, . . . , el), for all good primes except possibly a finite number of them.
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Proof. Let ∆ = {δ1, . . . , δl} be a basis of D(A,m) with pdeg(δi) = ei for
all i = 1, . . . , l. By getting rid of the denominators, we can assume that
every polynomial that appears in each δ ∈ ∆ is in Z[x1, . . . , xl]. Hence
we can consider δ̄1, . . . , δ̄l ∈ DerFl

p
the image of δ1, . . . , δl. We can assume

that p - δ for all δ ∈ ∆, and hence δ̄ 6= 0 for all δ ∈ ∆. This implies that
pdeg(δ̄i) = pdeg(δi) = ei for all i = 1, . . . , l.

Fix one j = 1, . . . , n. Then by the definition ofD(A,m), for each δ ∈ ∆

there exists hj ∈ Z[x1, . . . , xl] such that δ(αj) = hjα
m(Hj)
j . If we apply πp

to this expression we obtain that δ̄(πp(αj)) = πp(δ(αj)) = πp(hjα
m(Hj)
j ) =

πp(hj)πp(αj)
m(Hj). Since this holds for all αj , then δ̄ ∈ D(Ap,m).

By Theorem 2.6, since in each δ ∈ ∆ every polynomial that appears has
only integer coefficients, there exists c ∈ Z \ {0} such that det(δi(xj))i,j =
cQ(A,m). If we apply πp to the previous equality we get that det(δ̄i(xj))i,j =
πp(det(δi(xj))i,j) = πp(cQ(A,m)) = πp(c)Q(Ap,m). Hence if p does not
divide c, we have that πp(c) ∈ Fp \ {0} and hence again by Theorem 2.6,
we have that δ̄1, . . . , δ̄l are a basis of D(Ap,m). This proves that (Ap,m)
is free with exponents (e1, . . . , el). �

By Lemma 3.2, the number of non-good primes is finite. Hence we have
the following.

Corollary 3.4. Let (A,m) be a multiarrangement in Ql and p a large prime
number. If (A,m) is free in Ql with exponents (e1, . . . , el), then (Ap,m) is
free in Flp with exponents (e1, . . . , el).

If we consider the second multiarrangement of Example 2.7 over a dif-
ferent field, we have the following.

Example 3.5. Consider the multiarrangement (A′,m) of Example 2.7 with
K = Q. All prime numbers p 6= 2 are good for (A′,m). A direct com-
putation shows that (A′,m) is free with exponents (4, 4). However, if we
consider ((A′)3,m) as a multiarrangement in F2

3, then it is still free but its
exponents are (3, 5). This is because if we can consider the matrix(

x4 13xy3 − 12y4

x3y −3xy3 + 4y4

)
as the coefficient matrix of a basis of D(A′,m), its determinant is equal to
−3Q(A′,m). A direct computation shows that if we take another basis of
D(A′,m) with only integer coefficients, then the determinant of the coeffi-
cient matrix is equal to cQ(A′,m) with c ∈ 3Z \ {0}. This is why over F3

the exponents of (A′,m) change.

The following is an example of a free multiarrangements in Ql that is not
free in Flp, for some good prime p.
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Example 3.6. Consider the multiarrangement (A,m) in Q3 with defining
polynomial Q(A,m) = x2y2z2(x− y)2(x− z)2(y − z)2. In this situation,
all prime numbers are good for (A,m), and (A,m) is free with exponents
(4, 4, 4). However, if we consider (A2,m) as a multiarrangement in F3

2,
then (A2,m) is free with exponents (2, 4, 6). On the other hand, if we con-
sider (A3,m) as a multiarrangement in F3

3, then (A3,m) is not free. This
is because the determinant of a coefficient matrix of a basis of D(A,m) is
equal to cQ(A,m) with c ∈ 18Z\{0}. In particular, if we consider p 6= 2, 3
a prime number and (Ap,m) as a multiarrangement in F3

p, then (Ap,m) is
free with exponents (4, 4, 4).

4. FROM CHARACTERISTIC p TO CHARACTERISTIC 0

As in Section 3, we will assume that (A,m) is a multiarrangement in
Ql, that αi ∈ Z[x1, . . . , xl] for all i = 1, . . . , n, and that there exists no
prime number p that divides any αi. Moreover, let S = Q[x1, . . . , xl],
SZ = Z[x1, . . . , xl] and Sp = Fp[x1, . . . , xl].

Similarly to the construction of the map (1) at the end of Section 2, by
our assumptions on the αi, we can consider M(A,m) as SZ-submodule of
SnZ , and A(A) as matrix with coefficients in SZ. Hence we can construct the
map of SZ-modules

ϕZ : SlZ −→ SnZ/M(A,m) (2)

defined by (g1, . . . , gl)
t 7→ A(A)(g1, . . . , gl)

t. It is trivial to see that

Lemma 4.1. Let (A,m) be a multiarrangement in Ql. Then

D(A,m) ∼= Ker(ϕZ)⊗Z Q.

For any integer k ≥ 1, the canonical homomorphism πp : SZ −→ Sp
extends naturally to the homomorphism πkp : SkZ −→ Skp . If we assume that
p is a good prime for (A,m), and thatA andAp have the same orders under
the canonical morphism, then πnp (M(A,m)) = M(Ap,m). This implies
that we can construct the following commutative diagram

Ker(ϕZ)

πl
p

��

� � i // SlZ

πl
p

��

ϕZ // SnZ/M(A,m)

πn
p

��
D(Ap,m) �

� ip // Slp
ϕ(Ap,m)

// Snp /M(Ap,m)

(3)

The introduction of the commutative diagram (3) allows us to describe
in which situations the freeness of a multiarrangement over Fp implies the
freeness over Q.



FREENESS FOR MULTIARRANGEMENTS OF HYPERPLANES 7

Theorem 4.2. Let (A,m) be a multiarrangement in Ql. Let p be a good
prime number for (A,m) and assume that the map

πlp : Ker(ϕZ) −→ D(Ap,m)

is surjective. If (Ap,m) is free in Flp with exponents (e1, . . . , el), then
(A,m) is free in Ql with exponents (e1, . . . , el).

Proof. Let δ1, . . . , δl be a basis ofD(Ap,m) such that pdeg(δi) = ei. Since
the map πlp : Ker(ϕZ) −→ D(Ap,m) is surjective, there exist δ̃1, . . . , δ̃l
in Ker(ϕZ) \ {0} such that πlp(δ̃i) = δi. We can assume that each δ̃i is
homogeneous. Clearly pdeg(δ̃i) = ei.

By Lemma 4.1, we can consider δ̃1, . . . , δ̃l as elements of D(A,m). By
Remark 2.5, we have that det(δ̃i(xj)i,j) = hQ(A,m) for some h ∈ SZ ⊆
S. On the other hand, deg(det(δ̃i(xj)i,j)) =

∑l
k=1 pdeg(δ̃k) =

∑l
k=1 ek =

|m| = deg(Q(A,m)). This implies that h ∈ Z ⊆ Q. Suppose that h =

0, then det(δ̃i(xj)i,j) = 0. If we apply the map πp : SZ −→ Sp to this
equality we obtain 0 = πp(det(δ̃i(xj)i,j)) = det(δi(xj)i,j). However this is
impossible, since, by Theorem 2.6, det(δi(xj)i,j) = cQ(Ap,m) for some
c ∈ Fp \ {0}. This implies that det(δ̃i(xj)i,j) = hQ(A,m) for some h ∈
Z \ {0}. If we apply Theorem 2.6 to δ̃1, . . . , δ̃l, we obtain that they form a
basis of D(A,m), and hence thatA is free with exponents (e1, . . . , el). �

In general, it might not be easy to check directly the surjectivity of the
map πlp : Ker(ϕZ) −→ D(Ap,m). However, we can obtain information by
looking at coker(ϕZ).

Proposition 4.3. Let (A,m) be a multiarrangement in Ql and p a good
prime for (A,m). If p is not a zero divisor of coker(ϕZ), then the map
πlp : Ker(ϕZ) −→ D(Ap,m) is surjective.

Proof. Assume to the contrary that there exists δ ∈ D(Ap,m)\πlp(Ker(ϕZ)).
Since the map πlp : SlZ −→ Slp is surjective, there exists δ̃ ∈ SlZ \ Ker(ϕZ)

such that πlp(δ̃) = ip(δ). Since ip(δ) 6= 0, then p does not divide δ̃. By con-
struction, ϕZ(δ̃) 6= 0 and πnp (ϕZ(δ̃)) = ϕ(Ap,m)(ip(δ)) = 0. This implies
that ϕZ(δ̃) = pv, for some non-zero v ∈ SnZ/M(A,m). To conclude we just
need to show that v does not belong to the image of the map ϕZ, and hence
that p is a zero divisor of the cokernel of ϕZ, leading to a contradiction.

Suppose now that there exists σ ∈ SlZ such that ϕZ(σ) = v. Since p
does not divide δ̃, then δ̃ − pσ 6= 0. Moreover, ϕZ(δ̃ − pσ) = 0, and
hence δ̃ − pσ ∈ Ker(ϕZ). By construction, πlp(δ̃ − pσ) = δ, and hence
δ ∈ πlp(Ker(ϕZ)), but this is impossible. Hence, v does not belong to the
image of the map ϕZ, as claimed. �
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Putting together Theorem 4.2 and Proposition 4.3, we obtain the follow-
ing result.

Theorem 4.4. Let (A,m) be a multiarrangement in Ql. Let p be a good
prime number for (A,m) that is not a zero divisor of coker(ϕZ). If (Ap,m)
is free in Flp with exponents (e1, . . . , el), then (A,m) is free in Ql with
exponents (e1, . . . , el).

In Theorem 4.4, the assumption that the prime p is not a zero divisor in
the cokernel of the map ϕZ is fundamental. In fact we have the following.

Example 4.5. Consider the multiarrangement (A,m) in Q3 with defin-
ing polynomial Q(A,m) = x2y2(x − y)2(x − z)2(y − z)2. (A,m) is
not free and 2 is a zero divisor of in the cokernel of the map ϕZ. In fact,
ϕZ((x2, y2, z2)t) = (2x2, 2y2, 2(x2−xy), 2(x2−xz), 2(y2−yz))t, however
a direct computation shows that (x2, y2, x2 − xy, x2 − xz, y2 − yz)t is not
in the image of ϕZ. On the other hand, the multiarrangement (A2,m) in F3

2

is free with exponents (2, 4, 4).

In general, given M a finitely generated SZ-module, the number of zero
divisor is infinite. However, if we restrict our attention to zero divisors that
are prime numbers, we have the following.

Proposition 4.6. Let M a finitely generated SZ-module. Then the number
of distinct prime numbers that are zero divisors in M is finite.

Proof. By Theorem 14.4 of [3], there exists a ∈ Z \ {0} such that M [a−1]
is a free Z[a−1]-module. This implies that the set of distinct prime numbers
that are zero divisors in M is included in the set of distinct prime numbers
that divide a, that is finite by the unique factorization theorem. �

By applying Proposition 4.6 to the cokernel of the map ϕZ, the number of
prime numbers that are zero divisors in coker(ϕZ) is finite. Hence, putting
together Corollary 3.4 and Theorem 4.2, we have the following.

Corollary 4.7. Let (A,m) be a multiarrangement in Ql and p a large prime
number. (Ap,m) is free in Flp with exponents (e1, . . . , el) if and only if
(A,m) is free in Ql with exponents (e1, . . . , el).

In [8], the authors studied the freeness of simple arrangements and in
Theorem 6.1, they proved the following.

Theorem 4.8 ([8]). Let A = (A,1) be a simple central arrangement in Ql

and J(A)Z the ideal of SZ generated by Q(A) = Q(A,1) and its partial
derivatives. Let p be a good prime number for A that is not a zero divisor
in SZ/J(A)Z. If Ap is free in Flp with exponents (e1, . . . , el), then A is free
in Ql with exponents (e1, . . . , el).
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In the case of simple arrangements, Theorem 4.4 is exactly Theorem 4.8.
In fact we have the following.

Proposition 4.9. Let A = (A,1) be a simple central arrangement in Ql.
Assume that p is a good prime for A. Then p is a zero divisor of SZ/J(A)Z
if and only if p is a zero divisor of coker(ϕZ).

Proof. Consider the map of SZ-modules ψ : SlZ −→ SZ/〈Q(A)〉SZ defined
by (g1, . . . , gl)

t 7→
∑l

i=1 gi∂Q(A)/∂xi. By construction, the image of ψ is
J(A)ZSZ/〈Q(A)〉SZ, and hence coker(ψ) ∼= SZ/J(A)Z.

Since D(A) = D(A,1) = {δ ∈ DerQl | δ(Q(A)) ∈ 〈Q(A)〉}, we have
that Ker(ψ) ∼= Ker(ϕZ). By the first isomorphism theorem for modules,
the image of ψ and ϕZ are isomorphic and hence we have that p is a zero
divisor of SZ/J(A)Z if and only if p is a zero divisor of coker(ϕZ). �
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Roehrle for many helpful discussions and the anonymous referee for the
useful suggestions. During the preparation of this article the author was
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For details on how to perform the computations with (multi)arrangements,
see [7].
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