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On the Distribution of Ground Temperature at I m Depth 
influenced by Various Heat Sources 

Akira SUGAWA 

(Received Oct. 1, 1962) 

Abstract 

When heat source exists underground, the distribution of ground temperature IS 

given by the equation: 

T = f(x,y, z) 
where T is ground temperature, while x, y and z represent coordinates of arbitrary 
positions under the ground. Then, the writer derived theoretically the ground tem­
perature.for the function of x, y and z; and calculated the temperature in the case 
that depth z was equal to 1 m. 

1. Introduction 

It is a useful method for investigation of hot spring to seek the distribu­
tion of ground temperature at 1 m depth.1)2) The distribution of the ground 
temperature for a special heat source under the ground was given by OKAMOT03 ) 

and YUHARA.4) But the estimation of heat source (hot spring) by the aid of 
the distribution of the ground temperature has been dealt with almost always 
qualitatively until the present, and the values themsevles of the ground tem­

perature are not used for the estimation of the size, shape and temperature 

of the heat source. 

Then, the writer wants to make quantitative use of the values themsev]es 
of the ground temperature for 'the estimation and to derive the distribution 

of the ground temperature at 1 m depth for special heat sources. 
In this paper, the writer considers the following three cases. The 1st case 

is about the model where the heat source (hot water) extends in parallel with 
the ground surface at a certain depth and the hot water flows out ground surface 
through a fissure which connects perpendicularly with the heat source. The 2nd 
case is when a fissure crosses obliquely to the ground surface. The 3rd case 

concerns a model where the heat source (hot water) is the same as in the 1st 

and 2nd cases, and a pipe stands vertically to the heat source. the 3rd case 

is useful to seek the influence of ascending hot water in the vertical- pipe upon 
the ground temperature near the pipe. 
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2. Distribution of ground temperature at 1 m depth where hot 
water flows out the ground surface through a vertical fissure 

In hot springs, there are many mechanisms of hot water discharge, but 
many hot springs flow out through fissures. Then the writer derives the 
distribution of the ground temperature at 1m depth for certain discharge rates 
and heat sources of various temperatures and depths. 

2.1. Distribution of ground temperature in a case without any fissure 

When the heat source (hot water) which is parallel to the ground surface 
spreads infinitely and there is no fissure, distribution of ground temperature 
is derived as a function of depth only fr~m the ground surface. 

o 

Fig. 2-1. A schematic map of the model. 

The above model is illustrated in Fig. 2-1 where z-aXIS IS taken in 
perpendicularly ·downward direction from the ground surface, A is ground 
surface, B is heat source (hot water), D is depth of the heat source. Now, let 
Tl be the ground temperature at depth z from the ground surface and let Tl be 
considered a steady temperature. Tl is a function of z only, the differential 
equation for Tl is 

d2Tl = 0 
dz2 (2-1) 

In this paper, zero of temperature is taken as atmospheric temperature. 
Boundary conditions are 

at z = 0 (2-2) 

where 
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at z=D (2-3) 

where k is thermal conductivity of the ground, h is the constant of Newton's 
colling, and To is the temperature of the heat source. 

From (2-1), (2-2) and (2-3), the solution is given by 

Accordingly, the ground temperature is given by the linear equation of z. 

2.2. Differential equation and boundary conditions in the case where 
there is a fissure 

The model is illustrated in Fig. 2-2 where A, B, D and z are the same 
as in Fig. 2-1, C is a fissure which is perpendicular to A and B, y-axis is an 
intersecting line of the fissure wall and the ground surface, x-axis is perpendicular 

y 

; z' 

o ".;-. 
C :' >:':, 

Fig. 2-2. A schematic map of the model. 

to the wall. The fissure extends infinitely in positive and negative directions of 
y-axis. Because the fissure is perpendicular to the ground surface and the heat 
source, the distribution of the ground temperature is symmetrical to the fissure. 
Therefore the writer derives the distribution in the positive range of x. 

Now, let T be the ground temperature of any point of (x,y,z) and let T be 
considered a steady temperature. Then, T is indubitably not dependent 
on y, and the differential equation for T is 

(2-5) 

Boundary conditions are 

at x = 00 (2-6) 
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T=fJ at x=o 

T= To at z = D 

~~ =AT at z=o 

where f} is temperature of the hot water in the fissure. 

2.3. Solution 

It follows from (2-5), (2-6) and (2-8) that 

T = ~ As rPsx sin Ps (D-z) + Tl 
s~1 

= I: As e-Psx sin P" (D -- z) + 
s~l 

To ) 
1+;\,0 (I+Az 

where As and P s are unknown constants. 
From (2-10) 

T ~ A -P x . P D To 
Z~O = S~1 s e 'sm s + TI-x'D 

and 

By use of (2-11) and (2-12), (2-9) becomes 

~ AP -Px PD ATO - ... (.~ A -Px . ·PD - /:::1 sse s cos s + 1 +X,D - /\, {;:1 s e s sm s + 

I: As e-Psx (Ps cos P s D+A sin P s D) = 0 
s~1 

(2-7) 

(2-8) 

(2-9) 

(2-10) 

(2-11) 

(2-12) 

To ) 
1 +X,D 

When x is finite, because As is not equal to 0, the formula in ( ) of the 
above equation is equal to O. 

P s cos P s D + X, sin P s D = 0 

. p. 
tanPsD=--t-

(2-13) 
'I' 
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Putting 

!1-s = P s D 

(2-13) becomes 

t !1-s . an!1-s =- AD 

And from (2-14) P. is given by 

where !1-$ are the roots of (2-15). 
By substituting (2-16) into (2-10), T becomes 

ex> -~x!1- To 
T = 1: As e . D sin-$ (D-z) + l+A,D (1 + A,z) 

s=l D 

Therefore, it follows from (2-7) and (2-17) that 

ex> A . !1-s (D) To (1 ~) 
() = 1: ssm D -z + l+}o..D + f\,Z 

s=l 

(2-14) 

(2-15) 

(2-16) 

(2-17) 

(2-18) 

Fig. 2-3 indicates a prism which is perpendicular to the heat source. The 
height, the length (of y-direction) and the width of the prism are respectively 
D, 1 em and the same as the fissure. Fig. 2--4 indicates an infinitesimal 

F'g. 2-3 A prism in the fissure. 

l
r

q 

x 

.... &z 

8 (Z) .•• . 

'. Z 

Fig. 2-4. An infinitesimal prism. 

prism of which the height is oz, while the width and length are the same as in 
Fig. 2-3. (), that is temperature of ascending hot water in the fissure, is 
considered as function of z only, and is given by (2-18). Fall. in the tem­
perature is due to heat conduction to rock around the fissure. Heat conduc­
tion of z-direction is negligible, because k'd{)/dz is very small compared with the 
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heat conduction to the rock, where k' is the thermal conductivity of the hot 
water. 

Then, the following differential equation is derived from income and out go 
of heat in the infiniteismal prism. 

dO ( aT) -qpc-d oz=2k ~ oz z ~ %-0 
(2-19) 

where q is the discharge rate of hot water through the prism, p and care 
respectively the density and the specific heat of the hot water, and k is the 
thermal conductivity of the rock around the fissure. 

From (2-19) 

where 

~ __ K('OT) 
dz - 'ox x-o 

K=~ qpc 

From (2-17) 

(~~ )..=0=- 00 A ( fts ". fts ) L: s n)SIn n (D-z 
s-I 

Using (2-21), (2-20) becomes 

dO 00 A ( fts ). fts ) 
dz =K S~I s D SInn (D-z 

Accordingly, it follows from (2-22) that 

00 fts 
() = K L: As cos D (D-z) + const. 

s=1 

and the boundary condition for () is 

at z=D 
Therefore 

const. = To - K i: As 
$=1 

Thus 

(2-20) 

(2-22) 

(2-23) 

As in equation (2-10) is sought by the following method. Values of () 
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given by (2-18) or (2-23) ought to be equal respectively. Then, suppose 
that () is nearly equal to To in (2-23), and substituting To into () of (2-18), As 
in right side of (2-18) is sought. The writer defines this As as A s1. Next, 
substituting AS1 into As in (2-23), () is sought. And again, substituting the 
result into (2-18), One derives As of the right side in (2-18). This As is defined 
as A S2 ' Similarly, Asn is defined as the value of As which is obtained by repeat­
ing the preceding process n times over. The larger n is taken, the nearer Asn 
gets to the true value of As. But, when accurate temperature is not needed, 
n may be a few times. The matter will be made clear below. 

The following is a discussion on the determination of As_ First, let (2-23) 
be considered approximately as the following equation: 

() ~ To (2-24) 

By use of (2-24), (2-18) becomes 

'To = 1: Assin j; (D-z)+ lI~D (1 + A.z) 
, s=l 

(2-25) 

Therefore 

;. A . Jl-s ( ) . A. To ( ) :'::1 s SIll D D-z = 1 +A.D D-z (2-26) 

When f-Ls are the roots of (2-15), the followirig definite integral is obtained: 

wher~ 

and 

J: sin j; (D-z) sin j; (D-z) dz = 0 

D 
==T-C 

f-Ls - sin f-Ls cos f-Ls 
C s = -'-----'--'---'-'-

Jl-s 

for m =i= S 

for m = S 

JD A, (D-z) '. Jl-s' cos Jl-s 

O 
l+A.D SIllD (D-z) dz =- P f-Ls . 

(2-27) 

(2-28) 

(2-29) 

Then~ multiplying both sides of (2-26) bysinf-Ls(D---:-z)jD, and iritegrating 
each term from 0 to D, one gets from (2-27), (2-28) and (2-29): . 

D 
AS2 Cs =- DTo 

cos f-Ls 
Jl-s 
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Therefore 

cos I1-s 

I1-s 

Substituting (2-30) into (2-23), one gets 

00 2 To cos l1-;n { I1-m } 0= To + K L -- . 1 - cos n (D-z) 
m=l Gm I1-m 

accordingly, it follows from (2-18) and (2-31) that 

00 2 To cos I1-m { I1-m } 
To+K L ----C-. 1 - cos -D (D-z) 

m=l. m I1-m 

00 • I1-s To 
= S~l As sm n (D-z) + 1. +AD (1 +:\z) 

Therefore 

£; As sin ';; (D-z) = 1~~D (D-z)+ 2ToK f 
s=1 m=l 

( I1-m } X p- cosj) (D - z) 

(2-30) 

(2-31) 

(2-32) 

Further the following definite integral is obtained for 11-$ which satisfies 

(2-15). 

JD { I1-m )}. I1-s ( d o 1- cos D (D-z sm D D-z) z 

=D[ l-cosl1-s _ 211-s q { ( I1-m )}] .. 1- cos I1-s cos I1-m + ~s sin 11-$ sin I1-m 
I1-s I1-s -l1-m r 

for m =F S (2-33) 

= D [ I-cos'l1-s _ I-cos 2 I1-s ] 
I1-s . 4 for m = S (2-34) 

In the same way as in (2-26), multiplying both sides of (2-32) by 

sinl1-s(D-z)jD, then integrating each term from 0 to D, one learns from (2-
27), (2-28), (2-29), (2-33) and (2-34) that 
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x [ I-cos fLs 
fLs 

Therefore 

A 
2To cos fLs 4ToK 

s=As2 =---C;-' fLs + Cs 

cos fLm 

Cm fLm 

1: 
m=1 

x [ I-cos fLs 
fLs 

-fL-sn2~-s-fL-mn-2 {1- (cos fLs cos fLm+ :: sin fLs sin fLm)}] 

(2-35) 
Putting 

00 

B's = 2: 
m=! 

x [ I-cos fLs 
fLs 

Us r 1- (cos fLs cos ftm + fLm sin fLs sin fLm)} ] 
fLs2- fLm2 l fLs 

(2-35) becomes 

(2-36) 

Substituting (2-36) into (2-23), (2-23) becomes 

00 { 2To COSfLm 4ToK 1t fLm } {)=To-K 1: --C-' +---:~-'Bm' l-cos-D (D-z) 
m=1 m fLm Cm 

(2-37) 

Accordingly, it follows from (2-18) and (2-37) that 

00 { 2 cos fLm 4K } { fLm } X 1: C ' -C-Bm' l-cosD(D-z) 
m=1 m fLm m 

(2-38) 

In the same way as (2-26) and (2-32), As in (2-38) is obtained immediately, 
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[
I-cos fl-s fl-s {. fl- }] 

X - 2 2 l-(cOSfl-sCOSfl-m+ II~S sinfl-ssinfl-m) 
fL.. fl-s -fl-m r 

(2-39) 

From the numerical calculation of the 2nd term of the right side in 
(2-39), it is known that the 2nd term is very small in comparison with the 1st 

term: Then, AS3 is given approximately by 

Hence, from (2-39) and (2-40), AS2 may be used for As. 

Thus 

cos fl-s 

fl-s 

2 To cos fl-s 4 To K 00 cos fl-m - ----------- +. ~ 
- - fL,-sin fLs cos fLs fLs-sln fLs cos fL. m=l fLm- sin fLm cos fl-m 

Now, putting 

00. cos fl-m 
Bs = ~ --~. :------

. m~l fl-m- S1n fl-m cos fl-m 

(2-42) becomes 

=2 . T A (
-cos fl-s+ 2 K Bs ) 

s fl-s -:- Slll fl-s cos fl-o 0 

Substituting (2-44) into (2-10), one gets 

(2-40) 

(2-41) 

(2-42) 

(2-43) 

(2-44) 

T=2To :I: (-COS'!'s+2KBs )e- ~xsin fl-Ds (D-z)+ I T~D (1+X,z) 
s=1 fl-s - SIll fl-s cos fl-s .+ 

(2-45) 
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where Bs is expressed by (2-43), and the formula in [ J of (2-43) for m=s 
• is given by 

I - cos2 fl's 
I - cos fl's - 4 -

Let T d - l be the ground temperature at I m depth. From (2-45) T d - l is 
given by 

00 ( --,-cos fl's+2 K B, ) - ';; x. fLs I +x, 
T d- l = 2 To S~l fl's - sin fl's cos fl's e sm D (D-I) + 1 +w To 

(2-46) 

The ratio of T d- l to To is obtained immediately from (2-46). 

T d- l =2 I: ( -cos~s+2KBs )e- ';;~ sin~(D-I)+ I+x' 
To s=l fl's - sm fl's cos fl's D 1+x'D 

(2-47) 

(2-48) 

where 

(2-49) 

The 1st term of (2-48) is the ground temperature of 1m depth which 
depends on the ascending hot water in the fissure. However the 2nd term 
depends on the heat source which spreads infinitely in parallel with the 
ground surface, and the actual temperature is given by the sum of the above 
two temperatures. 

2.4. Results oj numerical calc~tlation 

The values of Td=l!To and T'd-l!To are obtained by the employment of 
(2-47) and (2-49). The constants used are as follows: 

h 
X, = k = O.15m-l 7) 

k = 1.7xlO-3 CG.S. (thermal conductivity of tuff) 8) 

p = 1 g!c.c .. 

c = 1 cal/g. 0(; 
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Fig. 2-5. Examples of Td_1/T. curves Fig. 2-6. Examples of T/~l/To curves 
for x. for x. 

q=lc.c,/sec q= lc.c./sec 

• =10-1 • =10-1 

=10-' =10-2 
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q = 1, 10-1, 10-2 c.c./sec 

D = 100, 300, 500, 1,000, 2,000 m 

Figs. 2-5 and 2-6 indicate the relation between Td~I/To' T'd~I/To and x. 
In Figs. 2-5, when discharge rate is more than 10-1 c.c./sec, Td~I/To decreases 
suddenly in proporition as x increase, and regardless of the depth of the 
heat source values of Td~I/To are equal to 0.10 at x=50 m. In Fig. 2-6, values 
of T'd~I/To for the various depths of the heat source are 0",0.03 at x=200m. 
Then, regardless of the depth of the heat source it becomes clear that the ascend­
ing hot water in the fissure almost does not affect the ground temperature of 
1 m depth at a distance of 200 m from the fissure. 

2.5 . . Determination of the temperature and the depth of the heat source 
according to the distribution of the ground temperature at 1m depth 

When the discharge rate is more than 1O-1 c.c./sec, from Section 2:3., Td=I/To 
is constant and its value is equal to 0.10 at x=50m regardless of the depth of 

the heat source. Then, let (Td~J)x=50 be the ground temperature of 1 m depth 
at x=50m. (Td~l)x~50/To is give by 

(2-50) 

Therefore 

(2-51) 

It follows that the temperature of the heat source is ten times as large 
as the ground temperature of 1 m depth at x=50m. 

Next, let 00 be the temperature of the hot water at z=O. 00 is nearly 
equal to the temperature of the hot water at z= 1 m. 

Therefore, Oo/To is given by 

(2-52) 

where (Td~l)x=O is the temperature of the hot water at z=1 m. 
Then, using the relation of (2-52), one may obtain the relation between 

Oo/To and D for various discharge rates as shown in' Fig. 2-7. If the value 
of Oo/To (=a) and discharge rate q is measured, Da corresponding to a and q is 
obtained as in Fig. 2-7. But, the above method is applicable in case the 
discharge rate is more than lO-l c.c./sec. 
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Fig. 2-7. Relation between eo/To andD. 

3. Distribution of the ground temperature at 1 m depth in case hot 
water flows out the ground surface through an oblique fissure 

The cases where a fissure crosses obliquely with the ground surface are 
more common than cases in which it is perpendicular to the ground surface. 
The following is a discussion about the distribution of the ground temperature 
at 1m depth in case the fissure is oblique. 

3.1. Distribution of the ground temperature in case there is no fissure 

In the same way as in Chapter 2 above, let Tl be the ground temperature 
for the model in which there is no fissure and the heat source spreads in­
finitely in parallel with the ground surface at depth D. Aand B are respectively 
the ground surface and the heat source (hot water), and X-, x' -, z- and z' -axes 
are selected as in Fig. 3-1. In Fig. 3-1 z'- axis is perpendicular to the 

1\ 
z' 

o . 
1i 

Fig. 3-1. A schematic map of the model. 

ground surface, z-axis and the ground surface cross at an angle a, x-and x'-axes 
are perpendicular to z-axis, and exist on the plane in which z- and z' -axes are 
included. 
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Substituting z' for z in (2-4), the equation becomes 

(3-1) 

Now, expressing z' by (x;z) or (x', z) 

z' = z sin a - x cos a (3--2) 
or 

z' = z sin a + x' cos a (3--3) 

If (3--2) or (3-3) is substituted into (3-1), TI becomes 

'TI (x, z) = I'{XD {1+X(zsin a-x cos a)} (3-4) 

or 

(3--5) 

3.2. Approximation of the model 

The writer proposes next to deal with the model shown as Fig. 3-2 in 
which the heat source of temperature To spreads infinitely in parallel with 
the ground surface at depth D and the fissure C is not perpendicular to the 
ground surface. But it is difficult to deal with such a model as the above; then 
the writer uses the following simple model in place of the above. 

Model I in Fig. 3-3 is taken to be the same as Fig. 3-2. Now let the 

Fig. 3--2. A schematic map of \:)' 
the model. 

~.x 
~ ..... ', ,'" 

T • .. 

I 

o T, era, 
"'. T," 

o ". . 
L __ '" -0 ..... 

To 

II lIT 

';.' . Fig:.'3-3. Division of the model. 

~ ... ,-----

ground temperature for -model L be T, and let the ground temperature for 
model II or IiI only be respe'ctively TI and T 2"; From (2-48), Tis given by 
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(3-6) 

Next, in Fig. 3-4, the isothermal line of temperature 0 in model III is para 
Hel to the ground surface and not perpendicualr to the fissure, while in mode IV 
it is not parallel to the ground surface and perpendicular to the fissure. But 
the other boundary conditions of the two models are the same. It is easy to 
deal with model IV. Therefore the writer substitutes model IV for model 
III. The propriety of the substitution is explained in below Section 3.6. Now, 
let the ground temperature for model IV be T 2• In Fig. 3-5, T is considered 

[I o 

, 
T, X·a .. , o ". r. 

'. ,,-0 

T. 

1V I II 

Fig. 3-4. Assumption of the model. Fig. 3-5. Division of the model. 

nearly equal to the sum of Tl and T 2 . Equation (3-6) becomes 

T "'" Tl + T2 

3.3. Differential equation and boundary conditions for model IV 

TV 

(3-7) 

In (3-7), Tl is obtained by (3-4) or (3-5). Therefore, if Tz is desired, 
T is obtained by means of (3-7). Then, in this section the writer gives the 
differential equation and boundary conditions for T 2• Now, in Fig. 3-6, 
let the ground temperatures III the right and left sides of the fissure be 

n 

o 
F·g. 3-6. Space coordinates under consideration. 

respectively T2 and T2'. Similarly, in model I of Fig. 3-5, let the ground 
temperatures to the right and left sides of tll.e fissure be respectively T and 
T'. Then T and T' are given by • 
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T = Tl + T2 

T' =T1 + T 2' 

(3-8) 

(3-9) 

Fig. 3-6 shows a cross section perpendicular to the ground surface and 
the fissure; X-, x' - and z-axes are taken as Fig. 3-6, where z-axis is a line in­
tersecting the wall of the fissure; x- and x' -axes are perpendicular to z-axis. 
When y-axis is taken as in Fig. 3-2, T2 and T 2' are independent of y, and the 
differential equation and boundary conditions for T2 are 

oT2 -"T an -I\, 2 

at x = 00 

at x =.0 

at z = D' (= DJsin a) 

at z = x cot a 

(3-10) 

(3-11) 

(3-12) 

(3-13) 

(3-14) 

where n takes the downwards normal direction to the ground surface as in 
Fig. 3-6, and the relation between n and (x, z) is given by 

(3-15) 

The equation for T 2" is the same as (3-10); the boundary condition 
corresponding (3-14) becomes 

at z =- x' cot a (3-16) 

and the other boundary conditions are the same as (3-11) , (3-12) and (3-13). 

3.4. Solution 

It follows from (3-10), (3-11) and (3-13) that 

T2 = £; A~ e-Ps" sin Ps (D' -z) (3-17) 
s=1 

where As and P s are unknown constants. 
By use of (3-17),' (3-15) becomes 
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o T2 ~ A P -P x • P (D' ) ~- = £...; sse s SIn s - Z COS a 
un 5=1 

- :E As P s e-Psx cos P s (D' -z) sin a 
s=1 . 

= 1: As P 5 e-Psx {sin P 5 (D' - z) cos a - cos P s (D' - z) sin a} 
5=1 

(3-18) 

Accordingly, (oTjon).=xcotlX becomes 

( ~T2) = 1: A,Pse-Psx rcos asinP5 D'.(I- xcota ) 
un z=xcot IX 5=1 1 D' 

. p. D' (1 x cot a \} - sm a cos s ... --yy-'-) (3-19) 

and from (3-17) 

(T2)z=xcotlX ;= :E Ase-PsxsinPsD'· (1- x~~a) 
5=1 

(3-20) 

Substituting (3-19) and (3-20) into (3-14), ont gets 

S~1 As e-Psx {Ps cos a sin Ps D' . (1- x ~~ a ) -Ps sin a cos P s D' 

(1 xcota \ ". P D' (1 x cot a )1_ 0 X - D' ) - "" sm s • - D' J - (3-21) 

When x is finite, because As is not equal to 0, the formula in {} of (3-21) 
is equal to o. 

Then 

(3-22) 

When the ground temperature of the distant place from the fissure does 
not have to be known, ratio of (x cot .a) to D' is very small. Accordingly, 
(x cot a)jD' takes a very small value in comparison with 1. 

Then, (3-22) transforms into 

(Ps cos a-A.) sin P s D' - Ps sin a cos P s D' = 0 (3-23) 
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Therefore 

Putting 

(3-24) becomes 

Pssin a 
tanRs D' = P

s 
cos a - :\ 

-PsD'sin a 
PsD' cos a - :\D' 

f-l-s = PsD' 

f-l-ssin a 
tan f-l-s = f-l-s cos a - :\ D' 

Then, from (3-25) P s is expressed by 

P f-l-s 
s =--yy 

where f-l-s are the roots of (3-26). 
Substituting (3-27) into (3-17), one gets 

00 - ~; x • JLs I 

T2 = 1: Ase sm 75' (D -z) 
s~1 

Therefore 

(3-24) 

(3-25) 

(3-26) 

(3-27) 

(3-28) 

To . . - 00 - ~'" • f-l-s 
1+:\D {1+A.(zsma-xcosa)} + s~IAse D sm D' (D'-z) 

(3-29) 

and from (3~12) and (3-29), fI is given by 

fI = 1 :w (1 +A.Z sin a) + I: As sin ~~ (D' -z) 
s=1 

(3-30) 

T' and T 2' are also obtained by the same method as above, namely (3-
10), (3-11), (3-12), (3-13) and (3-15) are also satisfactory for T 2'. 

Therefore, one gets 

T 2' = ~ As' e-P;x' sin Ps' (D'-z) 
s=1 

(3-31) 
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where As' and Ps' are unknown constants. 
From (3-31) 

f: As' Ps' e-Ps'x'sinPs' (D'-z) (3-32) 
s~l 

aT I r.o " 
~ =- :E As' Ps' e-Ps" cosPs' (D'-z) 
·uz s~l 

(3-33) 

Accordingly, it follows from (3-16), (3-31), (3-32) and (3-33) that 

El A.' e-P
;" {Ps' cos a sin Ps' D' . (1 + x' ';;,t a ) - Ps'sin a cos Ps' D' 

X (1+ x' cot a ) ( D' - X sin Ps'D'· 1 + x' cot a 
D' )} = 0 

(3-34) 

When x' is finite, in the same way as (3-21), equation (3-34) becomes 

(P , ) . P' D' (1 x' cot a ) s cos a - A. SIn s • + D' 

P ' . P , D' (1 x' cot a ) ~ 0 - s SIn a cos s • + D' (3-35), 

For x' whose (x' cot a)jD' is very small in comparison with 1,(3-35) becomes 

(Ps' cos'a-X) sin Ps' D' - Ps' sin acosPs' D' =,0 
Therefore 

Putting' 

(3-37) becomes 

Ps'sin a tan Ps' D' = ~"---------'----o-­Ps' cos a - X 

Ps' D' sin a 
Ps' D' cos a - XD' 

fJ-s' = Ps'D' 

fJ-s'sin a ' 
tan fJ-s' = -fJ-'s'-c-os-a-----::-X'D""'.-

(3-36) 

(3-37) 

(3-38) 

(3-39) 

Comparing with (3-26) and (3-39), the following relation is obtained. 
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Therefore 

Ps' D' = PsD' 

Ps' = Ps 

Substituting (3-41) into (3-31), one gets 

Therefore 

T' = Tl +T2' 

(3-41) 

(S:-42) 

To 00 --.!'£x'. f1>s (D' ) 
I+AD {1+:\,(zsin a+ x' cos a)} + S~l As'e D' SIn D' -z 

(3-43) 

From (3-12) and (3-43), 0 is given by 

o = 1: -x.n (1 + :\, z sin a) + S~l As' sin -~~ (D' -z) (3-44) 

(S:-30) and (3-44) are the equations which express 0, therefore the 
right sides of (3-30) and (3-44) are respectively equal, and the Isttefms are 
also equal. Then, the 2nd terms must be equal respectively. 

Hence 

As' = As (3-45) 

By use of (3-45), (3-43) becomes 

. T 00 fJ.s , • f1>s (D' ) 
T'= l+ZD {I+:\(zsina+x'cosa)} + s~IAse-7YX SIn D' -z 

(3-46) 

Fig. 3-7 represents a prism which takes in a fissure; the length is 1 em, the 
width is equal to the width of the fissure, the height is D'. Fig. 3-8 shows 
an infinitesimal part of the above prism, the height being oz, the width and 
length the same as in Fig. 3-7. 

As the writer states in Chapter 2, 0 that is temperature of ascending 
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y 

Fig. 3-7 A prism in the fissure. . Fig. 3-8. An infinitesimal prism. 

hot water in the fissure, is considered as a function of z only, and fall in 0 

is due to heat conduction to rock around the fissure. Then, the following 
differential equation is derived from income and outgo of heat in the in­
finitesimal prism. 

d 0 {( aT) ( aT') } - q p c d z () z = k ox x=o + ox' x' =0 0 Z 

where q, p, C and k are the same as in (2-19). 
From (3-29) and (3-46), one gets 

( aT)' A. To 00 A fts . fts , ax x=o =- 1+:\.D cos a - S~l S D' SIll 75' (D -z) 

( aT' ) ,\. To ~ A fts • fts (D' ) 
~ = 1+"D cos a - S~=l s D' SIn D' -z uX . x'.=.o I~ 

Substituting (3-48) and (3-49) into (3-47), the latter becomes 

Taking. 

(3-50) becomes 

K=~ qpc 

dO K ~ A fts • fts (D' ) dz = . ~ s I5' SIll D' -z 
s=l 

Accordingly, it follows from (3-52) that 

(3-47) 

(3-48) 

(3-49) 

(3-50) 

(3-51) 

(3-52) 
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00 fLs 
(} = K 2: As cos D' (D' -z) + canst. 

s=1 

(3-53) 

Boundary condition for (} is 

(} = To at z=D' 

Therefore, canst. in (3-53) is given by 

00 

canst . = To - K I: As 
s=1 

Thus 

00 { fLs 1 (J = To -- K I; As 1 -cos D' (D'- z) 
s=1 

(3-54) 

As contained in the formulae of T and T' can be found by the method 
used in Section 2.3. Let Asn be As obtained by the process of repeated 
substitution for n times. 

First, let (3-54) be considered approximately as the following equation. 

{} = To 

It follows from (3--30) and (3-55) that 

To = 1 Jw (1 +AZ sin a) + s~lAs sin ~~ (D'-z) 

Therefore 

00 fLs .AD T A To sin a 
S~1 AssinD' (D' -z) = l+X,D 0- l+AD z 

(3-55) 

(3--56) 

When the depth of the heat source D is very great, because D' is equal to 
Dj(sin a), D' has a still larger. Therefore, forfLs in which s is not very large, 
(3-26) becomes 

tan fLs ~ -
fLs sin a 

AD' (3--57) 

When (3-57) is satisfied, the following definite integrals are obtained. 

J:' sin ~": (D'- z) sin ~s, (D' - z) d z = ~' Cs for m = s (3"':58) 

for m =l= s (3-59) 
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J
D' D' (1 - cos /-Ls) 
o sin ~~ (D' - z) d z = fLs 

D' fL D'2 ( J z sin D~ (D' - z) dz =.-- 1-
o fL., 

where 

sin fLs ) 

/1,s 

fLs - sin /'/'s cos fLs 
C.s. = -'-------'--

fLs 

(3-60) 

(3-61) 

Multiplying both sides of (3-56) by sinfLs(D' -z)/D', then integrating each' 
term from 0 to D', it follows from (3-58), (3--59), (3-60) and (3-61) that 

D' CA _ A.oDTo D'(l-COSfLs) _ A.oTosina, D'2(1_ sin /.Ls ) 

2 's - 1 + A.o D 'fL. 1 +:\. D fLs fLs 

Because D is equal to (D' sin a), the above equation becomes 

D' D' A.oDTo ( sin/./,s ') 
-;r Cs As =.Ii:' 1 +A.oD ---;;;- - cos fL' 

Therefore 

. ') A.o D To ( sin /.Ls .) 
As = ASI = C

s 
'Ii:' l+A.oD /./,s - cOSfLs 

sin fLs 

fLs 
- cos fLs ) 

(3-62) 

(3-63) 

Substituting (3-63) into As of (3-54), () is obtained. Again, substituting 
the result into (3-30), one gets 

00 { fLm 1 To - K m~1 AmI 1- cos-Yf' (D'-z)S 

Therefore 

~ A . fLs (D' .) :\.D T 
~ ssm -1).-' -z = 1 +:\.ll 0 
s=1 

:\. To sin a 00 { fLm 1 
- l+:\.D z-K:E AmI I-cos D' (D'-z) 

m=1 
(3-64) 
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The sum of the 1st and 2nd terms of the right side in (3-64) is equal to 
the right side of (3-56). Accordingly, from (3-62), the following definite in­
tegral is obtained: 

(3-65) 

Multiplying both sides of (3-64) by sinfts{D' -z)jD', then integrating 
each term from 0 to D', it follows from (2-33), (2-34), (3-58), (3-59) and 
(3-65) that . 

[ 
1 ~ cos fts fts!- ftm2 { ( ft )1] 

X ft' - fts 1- cos fts cos ftm + ft7 sin fts sin ftm 

(3-66) 

Therefore 

X [ I-cos fts 

fts 
2~S 2 \ 1- (cos ft. cos ftm + ftm sin fts sin ft m)}] 

fts ftm 1 fts . 

2K 00 

~ AS! - '---.~--~ L: Am! 
fts - Slll fts cos fts m=! 

X [(I-COS fts) - Ps':::m2 {1- (cos fts cos ftm + ~: sin fts sin ft~) }] 

(3-67) 

From (2-34), the value of formula in [ ] of (3-67) for m=s becomes 

1 - cos 2 fts 
1 - cos fts - - -4-------'-'-

Let the 2nd term of (3-67) be -A's!. Then, (3-67) becomes 

(3-68) 

As a result of substituting (3-68) into (3-54) , fJ is expressed by 

(3-69) 
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It follows from (3-30) and (3-69) that 

, = 1 :~D (1 + A.Z sin a) + S~1 As sin 7J~ (D' - z) 

Therefore 

~ A ' fLs (D' ) A.D T A. To sin a 
{;;:1 s SIll -J5' - z = 1 + A. D 0 - 1 + A. D Z 

-K n~1 AnI {I- Co~ ~~ (D'-z)} -K n~l A'nIl 1- cos '/): (D'-'z)} 

(3-70) 

Because the sum of the initial three terms in (3-70) is equal to the right 
side of (3-64), the following definite integral is obtained from (3--66), 

J:'[To - 1 :~D (l+A.z sin a) -K n~l And 1- cos ~~ (D'-Z)}] 

X sin-{)~ (D' - z) d z = ~' Cs AS2 (3--71) 

Again, multiplying both sides of (3--70) by sinfLs(D' -z) /D', then integrat­
ing each term from 0 to D', it follows from (2-33), (2-34), (3-58), (3--59) 
and (3--71) that 

x [ I~cos fLs 
fLs 

Therefore 

fLs2~ fL,,2 { 1- (cos fLs cos fLn + :: sin fLs sin fLn) 1 ] 
(3-72) 

'[ I-cos fLs fLs { fLn}] X . - fL 2_ 2 1. - (cos fL. cos fLn + -.- sin fLs sin fLn). 
~ s ~ - . ~ 

2K 
-__ """ A"2 - , . -fLs - SIll fL. C0S fLI . 
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(3-73) 

From the result of numerical calculation, it follows that the 2nd term of 
the right side in (3-73) is very small in comparison with the 1st term. Then, 
(3-73) becomes 

(3-74) 

Hence, AS2 may be used for As from (3-73) and (3-74) as As in Section 2.3. 
Now, putting 

2A,D ( sinfLs ) 
Bs= 1+A,D fLs'- cos fL. (3-75) 

(3-63) becomes 

As! = J!sTo 
fL. - sm fLs cos fLs 

(3-76) 

From (3-67) and (3-76), As becomes 

. BsTo 2K 00 

As "'" AS2 ,= . - --~.~---- L: 
fLs - sm fLs cos fLs fLs - sm fLs cos fLs m=! 

(3-77) 

Next, putting' 

X [1-COS fLS- fLs2'::m2 {1-(COSfLsCOSfL",+ :7 sinfLSsinfLm)}J' 

(3-78) 

(3-77) becomes 

As = J!.To 
fLs - sm fLs cos fLs fLs"- sin fLs cos fLs 

_ ( Bs- Es )T 
- fLs - sin fLs cos fLs 0 

(3-79) 



432. A. SUGAWA 

Thus, using (3-79), equations (3-29) and (3-46) become 

T I+X (zsin a - x cos a) 
To = I+XD 

~ ( Bs-Es' ) - ~.; x . fLs (D' ) + L..... • e SIll D' - Z 
s=1 fLs-SIllfLsCOSfLs 

(3-80) 

T' I + X (z sin a + x' cos a) 
To = I+XD 

~ ( Bs-Es ) - ;;; x' . fL' (D' ) + L..... • e SIll --, - Z 
s=1 /Js-smfLscosfLs D 

(3-81) 

Let X- and X'-axes be taken along the ground surface as in Fig. 3-9. 

Fig. 3-9. Space coordinates under consideration. 

Let coordinates of the points of I m depth at X and X' be respectively (x, z) 
and (x', z). Then, (x, z) and (x', z) are given by 

(3-82) 

.(3-83) 

Now, let the ground temperatures of 1m depth at X and X' be respectively 

Td~l and T~~~l' Td~l/To and T'd~l/To' obtained by substituting (3-82) and 
(~83) into (3-80) and (3-81) respectively, are 

Td~l I+X co ( Bs - Es .) -.!:!,(xsinDl-cosDl) _._=_._-+ I: . e D 
To I +AD, s=1 fLs - sm fLs cos fLs 

x sin ~~ {D' - (X~os a+sin a)} (3-84) 

and 
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!,d~l _ ~~ + I: ( B~ - Es )e"- ~~ (X'sina>+cosa» 

To - 1 +A.D s=I JLs - SIll ILs cos fLs 

X sin ~~ {D' + (X' cos a-sin a)} (3-S5) 

3.5. Results of numerical calculation 

Fig. 3-10 indicates an example of numerical calculation in the case when 
the depth of the heat source D is 2,000 m. In the figure, the axis of ordinate 
takes for convenience Td~l/To only and a symbol of T'd~ljTo is omitted. The 
constants used for the calculation are as follows: 

k = 1.7 X 10-3 C.G.S. (thermal conductivity of tuff) 

A = 0.15m-1 

p = 1 gjc. c. 

c = 1 caljg· °C 

a = 60°, 70°, SOO, 90° 

q = 0.1, 1.0 c. c. jsec 

Let the ground temperatures of 1 m depth at X = 1 m and X =Xm be 
(Td~l)X~l and (Td~l)X~X respectively. A ratio of the two temperatures M is 
given by 

M= 
(Td~l)X~X 
(Td~l)X~l 

(T d~ljTolx~x 
(T d~ljT olx ~1 (3-S6) 

where (Td~ljTolx~x is the value of Td~llTo at X=Xm, and is given by (3-S4) 
or (3-S5). Fig. 3-11 indicates the relation between M and (X, X'). 

Because To can not be actually measured, Td~ljTo also can not be measured. 

On the other hand, (Td~llx~x and (Td~llx~l can be measured, accordingly M can 
be measured. Then, the relation between M and (X, X') may be used more 
tha~ the relation between Td~ljTo and (X, X). 

From Figs. 3-10 and 3-11, it: is clear that the larger a becomes, tlie 
larger -d(Td~ljTo)jdX and -dMjdXbecome at the range of X. Reversely the 
larger a becomes; the smaller -d(Td~lITo)ldX' and -dMjdX' become at the 

range o{X\ L,ei M X~100 be the valu~ of M at X = 100m. " " In both cases of q= 
1 c.c./sec and q=c=O~lc.c.!sec, MX~lOO and a are the linear relation as shown in 
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Fig. 3-12. The relation is the case at D=2,OOO m, it is not found whether 
the relation will hold or not at other depths. But it is an interesting relation . 

. 60 

.40 

Mx=,oo 

.20 

a 6'='o-----::7:'::o-a-8~0:----='90. 

F'g. 3-12. Relation between M X- 100 and a. 

3.6. Propriety of the above approximate model 

In this se'ction, the writer discusses the propriety of the approximation 
which in Fig. 3-4 model III is approximated by model IV. 

First, let the left side of the fissure be considered. If one employs x'_, 

Z-, L-axes, origin of L-axis and AB as in Fig. 3-13, in model III the temperature 

A- -

Fig. 3-13. Space coordinates under consideration. 

on L-axis is 0 and in model IV the temperature on AB is also O. Accord­
ingly, if the temperature on L-axis for model IV is nearly equal to 0 in the 
left side of the fissure, it may be proper for model IV to be used in place of 
model.III. 

In Fig. 3-13, a coordinate of any point on L-axis (x', z) is expressed by L, 
D' and a, and the relations are as follows: 

x' = Lsin a } (3-87) 
z = D' - Leos a 

Now; let the ground temperature at the point (x', z)expressed in (3-87) 
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be (T2')L-L. (T2')L-L/To is obtained by substituting (3-87) into the 2nd term in 
(3-81), and it follows that 

(T2'h-L 00 ( Bs - Es ) -- ~Lsin'" . (L cos a ) 
T = L: . e D' • SIll D' /-Ls o s_1/-Ls-SIll/-LsCOS/-Ls 

(3-88) 

Table 3-1 indicates the values of (T'2)L-L/To for q=l.Oc.c./sec. In the 
table, (T2'h-L/To reaches its maximum at a=60°, L=l,OOO m, while there is 

~15m11O 12015011001500180011,00011,20012,000 

60° 0.00 0.00 0.00 0.01 : 0.02 0.08 0.09 0.10 0.09 0.06 

70 0.00 0.00 0.00 0.01 0.02 0.05 0.06 0.06 ·0.06 0.03 

80 0.00 0.00 0.00 0.00 0.01 0.02 0.03 0.03 0.03 0.01 

very small value for other a and L. Therefore, in the left side, it is ascertain­
ed that the above approximation is nearly correct. 

Aboutthe right side of the fissure. becauseL-a.xis continues downside of AB 

line, the temperature on L-axis in the case when the temperature on AB is 
euqal to 0 can not be obtained. In this case, the writer seeks first the value 

of the ground temperature near AB for the model as in Fig. 3-14 (II) in which 
tRe fissure is perpendicular to the heat source and D is 2,000 m. 

'" .!o .I~ ,O}(9 
200 

z' 

150 .~7 .~7 .0)(6 

B 

z" z' 

\100 
.q,5 .~5 , -- '·9Q rI' al- _ :_ T • 
.02 . 02 .02 SO , , , T. 

" . 30 II 
0 50 100 200m 

I 
Fig. 3-14. I; Values of T2/To for the model II. 

II; A shematic map of the model. 

Now, let x- and z'-axesl?e taken as in Fig. 3-14 (II). When the temperature 
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on x-axis is equal to 0, the ground temperature T2 is expressed by a function 
of x and z', and is given by the 1st term of (2-45). Fig. 3-14 (I) indicates 

the values of T 2/To. If broken line OB and x-axis cross at 30°, OB corre­

sponds to AB of Fig. 3-13 in the case of a=60°. When a is larger than 60°, 

OB gets near to the x-axis, and the ground temperature on OB is smaller than 
that at a=60°. Furthermore, in the case of a=60°, the position of the fissure 
is noton the z'-axis but on the zl.l-axis in Fig. 3-14 (I), and the values of T2/To 
are 'smaller than the case in Fig. 3-14 (I). Accordingly, the aforesaid appro­
ximation may be proper on the right side of the fissure, too. But if a is small, 

the angle between OB and x-axis becomes large, and the ground temperature on 

OB shows a large value. In this case, the approximation is not proper. 

4. Influence of ascending hot water in a pipe upon the ground 
temperature at 1 m depth near an orifice 

The ground temperature near an orifice is affected by ascending hot 
water in a pipe. To eliminate the influence, it is needed to subtract the 
ground temperature dependent upon ascending hot water only from the ground 
temperature measured actually. In this chapter, the writer discusses the in­
fluence. 

Previously OKAMOT010) sought the influence under certain assumptions, 
But the writer obtains the influence by another method without such assump­
tions. 

4.1. D~fferential equation and boundary conditions 

Fig. 4-1 represents, a model in which hot water at depth D spreads 

.... 
° '" ::;::s 

o 

z 

: 8 

'0 

o To " 

Fig. 4-1. A schematic map of the model. 
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infmietly in parallel with the ground surface, and a pipe stands perpendicularly 
on the heat source. Now, let Z-, r-axes and origin of z be taken as shown in 
Fig. 4-1, where z-axis agrees with the center axis of the pipe, and r-axis 
takes the direction of the radius of the pipe. For this model, the ground 
temperature may be considered a steady temperature as in Chapters 2 and 3. 
Then, the differential equation for the ground temperature is given by 

a2T 1 aT 32T 
ar2 + -r-~ + OZ2 = 0 (4-1) 

where T is the ground temperature at an arbitrary place. 
N ext, the boundary conditions are as follows: 

XTo 
T=To- 1+?.D z at y=oo 

T=(j at r=a 

T=To at z=o 

~~ =- XT at z=D 

(4-2) 

(4-3) 

(4-4) 

(4-5) 

where a is radius of the pipe, and (j is the temperature of ascending hot water 
in the pipe. (4-2) is obtained by substituting D-z into z of (2-4). This is true 
because directions of z~axis in Chapters 2 and 4 are inverse and the distance 
between the origins of the two is D.' 

4.2. Solution 

The model of Fig. 4-1 is not so complicated as the model in Chapter 3. 
Accordingly, it is not needful to provide two models as in Chapter 3, and from 
(4-1), (4-2), (4-4) and (4-5), T becomes 

where 

XTo 2 co (fl-s ) . fl-s T = To - Z + -D L: C. As . Ko -D r . sm -D Z 11) 
1+?.D s=1 

Cs = --C-OS"'2'fl--s-

1+ AD 

fl-s 
tanfl-s =- XD 

(4-6) 

(4-7) 

(4-8) 

and Ko(fl-s rJD) is the. modified Bessel· function of the 2.nd kind of 0 order, As 
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is an unknown constant. 
In the same way as in Chapters 2 and 3, the temperature of ascending hot 

water in the pipe is considered a function of z only, and the fall in the tem­
perature is considered due to heat conduction into rock around the pipe. Then, 
the following differential equation is obtained as in Chapters 2 and 3. 

dO' ( aT) 
q pc dz 0 Z = 2 7t a oz k 'Z;Y r-a (4-9) 

where notations of q, p, c and k are the same as those in Chapters 2 and 3. 

From (4~6) and (4-9), one gets 

dO 4 7t a k co f/>s (f/>s). f/>s 
d =- q cD :E CsAsD ' K] --y)a . sm--y)z z p s-1 

(4-10) 

where K 1 (f/>s a/D) is the modified Bessel function of the 2nd kind of the 1st order. 
It follows from (4-10) that 

where 

L co (f/>s) f/>s o = v :E C s As . Kl 7Fa . cos D Z + canst. 
5-1 

L = 47tak 
qpc 

Boundary condition for 0 is 

0= To at Z = 0 

Accordingly, canst. in (4-11) is given by 

L co (f/>s ) canst. = To - D :E Cs As . K1 D a 
,=1 

Substituting (4-12) into (4-11), one gets 

L co . (f/>S ) ( f/>s ) 0= To - D S~1 Cs As . K1 D a .' 1 - cos D z 

And 0; obtained from (4-3) and (4-6), is 

'A,T 0 2 co (fLs ) . /-Ls 
O=To- 1+A.D ,z+j) S~1 CsAs'Ko --y)a ·smj)z 

(4-11) 

(4-12) 

(4-13). 

(4-14) 

From the two equations (4-13) and (4-14), As can be obtained by the 
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method used in Section 2.3 or 3.4 As in the previous chapter, let Asn be A~ 
obtained by repeated substituting process of n times. 

First, let (4-13) be considered appro"ximately as the following equation. 

(4-15) 

Using (4-15), (4-14) becomes 

(4-16) 

Therefore 

(4-17) 

If the relation of (4-8) is satisfied, the following definite integrals are 
obtained. 

J
D. I-'s . I-'m . d D 1 
o SIllifzSIllVZ z=T·Cs for m = s 

=0 for m =F S 

JD . I-'s ( D)2 . 
o Z SIll -ri. Z dz = I-'s (SIll I-'s - I-'s cos I-'s) 

where Cs is the constant given by (4-7). 

(4-18) 

(4-19) 

(4-20) 

Accordingly, multiplying both sides of (4-17) by sinl-'szjD, then in­
tegrating each term from 0 to D, it follows from (4-18), (4--:-19) and (4-20) that 

Therefore 
(4-21) 

A 
,,"To 

s= As! = 1+A,D 1 . (_ ~s )2 (sin I-'s,- 1-'. cos I-'s) . Ko( jj a) , (4-22) 

By use of the result which is obtai~ed by substituting (4-22)· into (4~13), 
(4-14) becomes 



Distribution of Ground Temperature at 1 m Jjepth influenced by Various Heat 'sources 441 

T )"T 0 2 00 C (fL.). fL< 
= 0- I+AD- z +D ~1 sAs·Ko D a ·SIllDZ (4-23) 

Therefore 

2 ~ C A K (fLS ) . fLs 
D.4...<.s s· 0 n a ·SIlln Z 

s=1 

(4-24) 

Because the 1st term of the right side in (4-24) is equal to the right side 
in (4-17), the following definite integral is obtained from (4-21): 

(4-25) 

Then, when (4-8) is satisfied, the following definite integral is obtained: 

JD ( fLm ). fLs o 1 - cos D Z SIll D Z d Z 

[
I-cos fLs fLs \ fLm }] 

= D fLs - fLs2- fLm2 11- (cos fLs cos fLm + fLs sin fLs sin °fL",) 

= D[ I-cos fLs _ 1 - cos 2 fLs J. 
fLs 4 fLs 

for m =1= s 

fos m = s 

(4-26) 

(4-27) 

In the same way as the case of (4-17), by multiplication of both sides of 
(4-24) by sinfLsz/D, then integrating each term from 0 toD, it follows from 
(4-18), (4-19), (4-25), (4-26) and (4-27) that 

; Cs As . Ko ( ';; a). ~ . ~s 

( 
fLs) L 00 (fLm) [1-COS fLs 

= A S1 • Ko n a - n I: C",A ml • KI D a . D 
m~1 fLs 

(4-28) 

Therefore 
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x [- I-cos fLs _ 2 fL. 2 {1- (COS fL. COS fLm + <ms sin fLs sin fL..,.) l] 
fL. 'fLs - fLm r _ ) 

(4-29) 

From (4-27), the value of formula in [ ] of (4-29) for m=s becomes 

1 - cos fLs 
fLs 

1 - cos 2 fLs 
4 fLs 

Now, let the 2nd term of the right side in (4-29) be -A' 51', AS2 is expressed 

By use of (4-30), (4-13) becomes 

o=To- ~ n~1 Cn (Anl+A'nl) 'Kl(;; a).(I-cos j) z) 

Again, substituting (4-31) into (4-14), one gets 

=To- ?"To z + D2- :E CsAs' Ko( fLDs a),sin DM·-z 
l+AD s=1 

(4-30) 

(4-31) 

(4-32) 

Therefore 

2 co C A (fLs). fLs 
-f) 1: • .' Ko va' sm iT z 

s-I 

?" To L 00 C A K (/-Ln ) ( fLn) =- 1 + A1J z - V n~1 n n1' 1 va' 1 ~ cos V z 

(4-33) 

The sum of the 1st and 2nd terms of the right side in (4-33) is equal to 
the right side of (4~24). Accordingly, the following definite integral is obtained 
from (4-28). 
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(4-34) 

Again, let both sides of (4-33) be multiplied by sinf-i's zjD, then let each 
term from 0 to D be integrated. It follows from (4-18). (4-19), (4-26), (4-
27) and (4-34) that 

(4-35) 
Therefore 

[ 
1-cosf-i's f-i'. { . f-i" }] X 1-(cos f-i's cos f-i'n + lin. sin f-i's sin f-i'n) . f-i's - f-i's2-f-i'n2 r 

(4-36) 

From the result of numerical calculation, the 2nd term of the right side 
in (4-36) is very small in comparison with the 1st term. 

Therefore 

AS3 "'" AS2 (4-37) 

Hence, AS2 may be used for As from (4-36) and (4-37). Thus, A, becomes 

sin f-i'm - f-i'm cos P,m {I-COS f-i's f-i's 
X 2 . - 2 2 

Pm f-i's fL. - f-i'm 

( . pm..)}] X 1 - cos f-i's cos f-i'm- -;;; sm· f-i's sm fLm (4-38) 
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Now, if one puts 

XD [Sin I'"'s-I)'s cos fJ,s 
B--.--~", 

s - l+XD l),s2 

A. SUGAWA 

sin fJ,,,, -I)'m cos fJ,m 

fJ,m2 

i I-cos fJ,s /),s fJ,m )}] X - 2 2 (1- cos fJ,s cos I),m - ---;;-s sin fJ,s sin fJ,m 
fJ,s . fJ,s -fJ,m r 

(4-39) 

(4-38) becomes 

By use of (4-40), (4-6) becomes 

T Xz 00 

y-=1- l+ .... D +2I;Cs Bs o ~ s=1 

K o(1J-r) 
Ko( jj a) 

(4-40) 

. fJ,s 
slllD z (4-41) 

Let Td~l be the ground temperature at 1m depth. From (4-41), Td~l is 
given by 

Ko(-I!lr) 
Td~l I+X D fJ,s 

T-;;- - l+XD + 2 El CsBs ---;-(-fJ,-s~) sin D (D-l) 
KO\D a 

(4-42) 

As remarked in Section 2.3, the 1st term of (4-42) is the ratio between the 
ground temperature at 1m depth and To in the case that there is no pipe and 
the heat source spreads infinitely at depth D. . The 2nd term of (4-42) is 
considered the influence of the ascending hot water upon the ground temperature 
near the orifice. 

Now, let T' d~l be the ground temperature due to the ascending hot 
water only. Then, T' d~l/To is 

T'd=l 00 

----y-- = 2 I; Cs Bs 
o s=1 

Ko( -tT r ) 

Ko( jj a) 
4.3. Results of numerical calculation 

sin ';) (D-l) (4-43) 

Figs. 4-2 and 4-3 indicate the relation between Ti d=l/T~ and r' (=r-a). 
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In this case, Fig. 4-2 holds in the case of constant discharge rate, and Fig. 4-3 
in the case of constant depth of the heat source. The. constants used for the 

calculation are as. follows: 

k = 1.7 X 10-3 e.G.S. (Thermal conductivity of tuff) 

h, = 0.15m-1 

a=5cm 

p = 1 gjc.c. 

c = 1 caljg. °C 

D = 50, 100, 200, 300, 500 m 

q = 0.1, 0.5, 1.0, 2.0, 5.0 Ljsec 

From Figs. 4-2 and 4-3, it becomes clear that the values of T' d~ljTo at 
y' = 1 m are smaller than 0.5 and the values of T' d~ljTo at y' =50 m are included 
in range of 0",0.02 for any discharge rate and depth of the heat source. 
In the case of q2.0.5 Ljsec, the deeper the heat source is, the larger the 
value of T' d~ljTo at y' 2.1 m becomes for the same discharge rate and y'. 
But the values at the distance of more than a certain y' take an equal 
value regardless of depth of the heat source. When the depth of the heat 
source is constant, the greater the discharge rate is, the larger the value of 
T'd~ljTo becomes for the same y'. But the values of T'd-ljTo become equal 
for a discharge rate of more than qo which depends on the depth of the heat 
source as shown in Fig. 4-4 .. 

LIsee 

• • 

• 
• • 

.:or 
1.0 [ 

0~~7.IO~IO~~2~OO~~3~O~0--~40~!o~--Je~om 
o 

Fig. 4-4. Relation between qo and D. 

The values .OfT'd~ljTo at y'=20 mare induded' in a ~ange of 0.01", 
0.04 for various discharge rates and depths of the heat source. Hence, it may 
be considered that the ground temperature of 1 m depth at the distance of 
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r=20 m is hardly affected by the ascending hot water in the pipe, but the 
ground temperature nearer than r' =20 m must be affected by the influence 
of the ascending hot water. 
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