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Abstract
When heat source exists underground, the distribution of ground temperature 1s
given by the equation:
T=f{x72

where T is ground temperature, while », ¥ and z represent coordinates of arbitrary
positions under the ground. Then, the writer derived theoretically the ground tem-
perature for the function of #, y and z; and calculated the temperature in the case
that depth 2z was equal to 1 m.

1. Introduction

It is a useful method for investigation of hot spring to seek the distribu-
tion of ground temperature at 1 m depth.2 The distribution of the ground
temperature for a special heat source under the ground was given by OxamoTo®
and Yunara®) But the estimation of heat source (hot spring) by the aid of
the distribution of the ground temperature has been dealt with almost always
qualitatively until the present, and the values themsevles of the ground tem-
perature are not used for the estimation of the size, shape and temperature
of the heat source.

Then, the writer wants to make quantitative use of the values themsevles
of the ground temperature for the estimation and to derive the distribution
of the ground temperature at 1m depth for special heat sources.

In this paper, the writer considers the following three cases. The 1st case
is about the model where the heat source (hot water) extends in parallel with
the ground surface at a certain depth and the hot water flows out ground surface
through a fissure which connects perpendicularly with the heat source. The 2nd
case is when a fissure crosses obliquely to the ground surface. - The 3rd case
concerns a model where the heat source (hot water) is the same as in the 1st
and 2nd cases, and a pipe stands vertically to the heat source. The 3rd case
is useful to seek the influence of ascending hot water in the vertical pipe upon
the ground temperature near the pipe. "
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2. Distribution of ground temperature at 1 m depth where hot
water flows out the ground surface through a vertical fissure

In hot springs, there are many mechanisms of hot water discharge, but
many hot springs flow out through fissures. Then the writer derives the
distribution of the ground temperature at 1m depth for certain discharge rates
and heat sources of various temperatures and depths.

2.1. Distribution of ground temperature in a case without any fissure

When the heat source (hot water) which is parallel to the ground surface
spreads infinitely and there is no fissure, distribution of ground temperature
is derived as a function of depth only from the ground surface.

Fig. 2-1. A schematic map of the model.

The above model is illustrated in Fig. 2-1 where z-axis is taken in
perpendicularly -downward direction from the ground surface, A is ground
surface, B is heat source (hot water), D is depth of the heat source. Now, let
T, be the ground temperature at depth z from the ground surface and let T, be
considered a steady temperature. T, is a function of z only, the differential
equation for 77 is

i |
Ty g (2-1)

dz?

In this paper, zero of temperature is taken as atmospheric temperature.
Boundary conditions are

art,
dz

=AT, at z=0 2-2)

h
where A= —
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T=T, at z=2D ' (2-3)
where % is thermal conductivity of the ground, % is the constant of Newton's
colling, and T is the temperature of the heat source.

From (2-1), (2-2) and (2-3), the solution is given by

T }
Ty = 1map (14M) (2-4)

Accordingly, the ground temperature is given by the linear equation of z.

2.2, Differential equation and boundary conditions in the case where
there is a fissure

The model is illustrated in Fig. 2-2 where A, B, D and z are the same
as in Fig. 2-1, Cis a fissure which is perpendicular to A and B, y-axis is an
intersectingline of the fissure wall and the ground surface, x-axis is perpendicular

Fig. 2-2. A schematic map of the model.

to the wall. The fissure extends infinitely in positive and negative directions of
y-axis. Because the fissure is perpendicular to the ground surface and the heat
source, the distribution of the ground temperature is symmetrical to the fissure.
Therefore the writer derives the distribution in the positive range of .

Now, let T be the ground temperature of any point of (x,y,2) and let T be
-considered a steady temperature. Then, T is indubitably not dependent
on y, and the differential equation for 7 is '

2 2
T T _ .5

ot T o2 -

Boundary conditions are -

T=7T7T, ~at x = oo (2-6) .
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T=0 at x=0' (2-7)
T=T, at 2=2D (2-8)
oT . ' .
57 = AT at z2=10 2-9)

where 0 is temperature of the hot water in the fissure.
2.3. Solution
It follows from (2-5), (2-6) and (2-8) that

T =3 A, P sin P, (D—2) + T,
s=1
— SV A, e P sin P, (D—2) + 1+nz 2-10
ZAs et sin Py (D—2) = qi5p (1eM) (2-10)
where A; and P, are unknown constants.
From (2-10)
Thrmo = f} A, eP¥sin Py D + _ T (2-11)
s—1 1-+AD
and
oT o P AT,
(a7>2=0 =~ X A Poe P cos PD (2-12)

By use of (2-11) and (2-12}, (2-9) becomes

X AT © . T
— 3 AP, ¢ Ps* cos P,D + 1—|—7\0D —A‘(.ElAse—Psxsm'PsD“"ﬁD”)

s=1

3 A, P (P, cos Py D4\ sin Py D) = 0

s=1

When x is ﬁnlte because 4; is not equal to 0, the formula in () of the
above equation is equal to 0.

Pocos P, D +Asin Py D=0

P, -

tan P, D =~ x

P.D ' - .
=T ND (219
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Putting _
ps = Py D ’ (2-14)
(2-13) becomes 4

tan p, =— )(fls) 4 (2-15)

And from (2-14) P; is given by
M ‘ —
P, =-5 (2-16)

where ug are the roots of (2-15).
By substituting (2-16) into (2-10), T becomes

o _ks
T=13 A, e D " sin £ (D~z)+T_z;£D’(l+)\,z) (2-17)

Therefore, it follows from (2-7) and (2-17) that

0= 5 A,sin b (D=2 + [ Lopy (1 +12) (2-18)

s=1

Fig. 2-3 indicates a prism which is perpendicular to the heat source. The
height, the length (of y-direction) and the width of the prism are respectively
D, 1cm and the same as the fissure. Fig. 2-4 indicates an infinitesimal

. Fig. 2-3 A prism in the fissure. Fig. 2-4. An infinitesimal prism.

prism of which the height is 8z, while the width and length are the same as in
Fig. 2-3. ¢, that is temperature of ascending hot water in the fissure, is
considered as function of z only, and is given by (2-18). Fall in the tem-
perature is due to heat conduction to rock around the fissure. Heat conduc-
tion of z-direction is negligible, bécause %" d6/dz is very small compared with the
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heat conduction to the rock, where &' is the thermal conductivity of the hot

water.

Then, the followmg differential equation is derived from income and out go

of heat in the infiniteismal prism.

dae oT
—ql)c—crz—SZZZk(-a—x“>x=08z

(2-19)

where ¢ is the discharge rate of hot water through the prism, p and c are
respectively the density and the specific heat of the hot water, and k% is the

thermal conductivity of the rock around the fissure.

From (2-19)
a6 s aT
2 = K (37>x=o

where

2k
gec

K =
- From (2-17)
aT b Ms N\ . V/J’s
<8x >x=0 g (D )sin-p (D~—2)
Using (2-21), (2-20) becomes

B _xgalh

>sm -5~ (D—2z)

Accordingly, it follows from (2-22) that

=K E} A, cos gs (D—2) + const .
s=1

and the boundary condition for 4 is
6=T, at z=2D

Therefore

const. =Ty — K 3 A,

s=1

Thus
0=T,—K ¥ A, lfcos—'us—(D—z)}
0 s=1 ) D

(2-20)

(2-21)

(2-22)

(2-23)

A in equation (2-10) is sought by the following method. Values of ¢



Distribution of Ground Temperature at 1m Depth influenced by Various-Heat Sources 41l

given by (2-18) or (2-23) ought to be equal respectively. Then, suppose
that @ is nearly equal to 7, in (2-23), and substituting T, into ¢ of (2-18), A
in right side of (2-18) is sought. The writer defines this 4, as 4,,. Next,
substituting 4, into 4, in (2-23), @ is sought. And again, substituting the
result into (2-18), One derives A4, of the right side in (2-18). This 4, is defined
as Ag,. Similarly, A, is defined as the value of 4, which is obtained by repeat-
ing the preceding process # times over. The larger # is taken, the nearer A,
gets to the true value of 4,. But, when accurate temperature is not needed,
#n may be a few times. The matter will be made clear below. -

The following is a discussion on the determination of A;. First, let (2-23)
be considered approximately as the following equation:

0 =T, (2-24)
By use of (2-24), (2-18) becomes '
T _‘ f A.si s D __TL_ 1 A 5
0= & A8 (D=2)+ 1ap (L +22) (2-25)
Therefore
& .M AT .
s§1 Agsin =35 (D—2) = m"D— (D—2) (2-26)

When u; are the roots of (2-15), the following definite integral is obtained:

ID Hom s

sin £2- (D—2) sin 2= (D—2) @z = 0 form+s  (2-27) -
0
= —~€~ -C, form = s '(2-28)
where
. C.— s — SIN g COS g
s B
and
D AN(D—z) . pn - COS fy
L Tap S p (D—Fde=—D —m (2-29)

Tlllen,,, multiplying both sides of (2-26) by sing(D—z) /D, and integrating
each term from 0 to D, one gets from (2-27), (2-28) and (2-29): K

COS ps

D
Ay Co== DT,

S
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Therefore
2T, COS s
A=l = % (2-30)
Substituting (2-30) into (2-28), one gets
o 2T, COS fy Pom
0 =T, + Kmé]] Cr ' {1 — COs 75 (D—z)} (2—31)
accordingly, it follows from (2-18) and (2-81) that
© 2T, 0 COS fim . Hm
T0+sz=1‘ Cm ) Mm {1 T cos D (D—Z)}
i . M To
= 3 Assin - (D— 57 (L+A
s§1 sin 5~ (D—2) + TEBYIRL z)
Therefore
had s s A To ®, COS by
ZAssinp (0=2) =y p P=AR2TR & o,
¢ Iom
x {1 cos 5 (D — 1)} (2-32)

Further the following definite 'integral is obtained for u, which satisfies
(2-15).

ID{I— cos ’g’ (D—z)} sin -%S— (D—2) dz
0

1—cos p; s Hm .‘ .
= D[ e — M_,usz—/ﬁmz _{1— (cos s COS poy, e SIN p, SIn p,,,)}]
for m % s (2-33).
1—cos p 1—cos 2 <
=D[——F ———] for m = s (2-34)

In the same way as in (2-26), multiplying both sides of (2-32) by
sinp(D—2)[D, then integrating each term from 0 to D, one learns from (2-
27), (2-28), (2-29), (2-33) and (2-34) that
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D COS pu, ©  COS oy
As——z— Cs=—DT0 1o +2DT0Km§1 Cm o
1—cos p, s Pom . .
X l:_ Hs ] o :u‘sz_,u'mz {1 o (COS s €OS fhm + —/;s_ sl ”’:s s /"‘,n)}]
Therefore
2T, cos u 4T, K = cosp
A=A, —— =75 s 0 o
2 Cs s + Cs me=1 Cm Hom
1—¢0s s, W P . . ‘
x [ i — it {1~ (cos fa €OS s+ . Sin pgsin um)}J
(2-35)
Putting
©  COS fm
B =
¢ m§1 Con om
1—cos u; g P . :
% [ Ty - { 1— (cos j; COS frm + o sin pe sin pm)}]
(2-35) becomes .
2T Cos p 4T, K _,
R R IR

Substituting (2-36) into (2-23), (2-23) becomes

) 2T, cOS iy 4T, K , Mo
0 = TO—KMEI {— C, . . + C, -B,, }{1—(:057 (D—Z)}
(2-37)
Accordingly, it follows from (2-18) and (2-37) that
©° . AT,
Py} A, sin -5~ (D—z) = —1+T°ﬁ (AD—2)+KT,
® ( 2COS [y 4K _ , Hom
X 3 = B} {1—cos 13- (D-) (2-38)

413

In the same way as (2-26) and (2-32), 4, in (2-38) is obtained immediately.

2T, COS Mg 4T, K . BT,K: = B,/
AS = As3 = C; ' s + Cs ) Bs - Cs m=1 Cm
1—cos g s ' e
X [ s TS {1—(005 s COS Loy, + i SIN. L SIN l"m)}]
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A BIK = By
TeeT O 2 Gy
: 1—cos s, s : Fem . . .
X [ - T {lw(cos fts COS i, + . Sint pissin p,,,)}]

(2-39)
From the numerical calculation of the 2nd term of the right side in

(2-39), it is known that the 2nd term is very small in comparison with the Ist
term. Then, 4, is given approximately by

’ Asa = Asg ’ (2—40)
Hence, from (2-39) and (2-40), 4,, may be used for 4.
Thus
] 2T, COS fig 4T, K _,
As=Agp =— oA + — C B, (241)
_ 27T, cos s 4T, K o COS [y,
T jus—SIN ps COS g fs—SIN 15 COS s o=y fom—SIN fhyy, COS fhy,
: ' ,Ulsz Mo . : .
X [1-cos Ps =22 {1—(cos s COS iy + —#;—sm s SIN pm)}]
(2-42)
Now, putting
oo COS fuy,
C BS‘ - mz=-:1 Mo —SIT Ly, COS Ly,
x [l—cos fs— %—Msz—{lj(cos s COS i+ =2 sin g sin )H
: ¢ 57— ® " s "
‘ (2-43)
(2-42) becomes
. - oS ps+2 K B, 4
A,s =2 ( Jus — SIN fig COS fho ) Ty (Z-44)

Substituting (2-44) into (2-10), one gets

T=2T, .
osgl Ms — SHI s COS fis

—cos us+2K B ks, T, '
wéﬁ) 5" sin 5 (D—2)+ o ap- (14M2)

(2-45)
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_ where B is expressed by (2-43), and the formula in [ ] of (2-43) for m=s
is given by

1 —cos2 us
1 — cos ps — g

Let T4, be the ground temperature at 1 m depth. From (2-45) T4, is
given by '

o [ —cospus+2KBs \ -55x | p 142
Toyy=2T, E,l ( Jos — SIn 12, COS 1o )e D sin-—p5- D—-1+ TivD T,
‘ (2-48)
The ratio of T4, to T, is obtained immediately from (2—46).
y —cos pus+2KBs |\ ~M5x s 1+A
T, 225=1(;L3-Sin,u,sCOSMs)e sinp- (D—D)+15p
(2-47)
T4 14+
=7, TIaD (2-48)
where ,
T o [ —cospus+2KBs\ -Sx . us
T, = 2 E} ( i Sin 72, COS s )e D 7sin 55 (D~1)  (2-49)

The 1st term of (2-48) is the ground temperature of 1m depth which
depends on the ascending hot water in the fissure. However the 2nd term
depends on the heat source which spreads infinitely in parallel with the
ground surface, and. the actual temperature is given by the sum of the above
two temperatures. '

2.4. Results of numerical calculation

The values of T,,/T¢and T',.,/T, are obtained by the employment of
(2-47) and (2-49). The constants used are as follows:

A= —%_ =0.15 m1 7
= 1.7x10~3C:G.S. (thermal conductivity of tuff) &

p=1glcc. -
¢=1calfg-°C
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100 ¢ D*100m

A .
; o] 120 160 200m
80 , 120 160 200m * ]

0 =300

T » —
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. 100 .
100 D:500 prso0
.80
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Fig. 2-5. Examples of T;,/T, curves Fig. 2-6. Examples of T,/_,/T, curves
for x. ’ for x.
g=1c.c./sec g=1lc.c./sec

Rl e P
;=102 : ;=102
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g=1, 101, 10-2 c.c./sec
D = 100, 300, 500, 1,000, 2,000 m

Figs. 2-5 and 2-6 indicate the relation between T[Ty, T74-1/T, and .
In Figs. 2-5, when discharge rate is more than 10— c.c./sec, T 4—y/T, decreases
suddenly in proporition as x increase, and regardless of the depth of the
heat source values of T,.,/T, are equal to 0.10 at x=50 m. In Fig. 2-6, values
of T';—4/T, for the various depths of the heat source are 0~0.03 at ¥=200m.
Then, regardless of the depth of the heat source it becomes clear that the ascend-
ing hot water in the fissure almost does not affect the ground temperature of
1m depth at a distance of 200 m from the fissure.

2.5. " Determination of the tempevature and the depth of the heat source
according to the distribution of the ground temperature at Tm depth

When the discharge rate is more than 10—c.c./sec, from Section 2.3., Tyu/T,
is constant and its value is equal to 0.10 at x¥=50m regardless of the depth of
the heat source. Then, let (T;-).—5 be the ground temperature of 1 m depth
at x=50m. (T4=y).—56/7 is give by :

(Td=1) *=50

7.7 =010 _ (2-50)

Therefore
Ty =10 (T4=1) x50 (2-51)

"It follows that the temperature of the heat source is ten times as large
as the ground temperature of 1 m depth at x=50m.
Next, let 6, be the temperature of the hot water at 2=0. 6, is nearly
equal to the temperature of the hot water at z=1m.
Therefore, 8,/T, is given by

Oy, (T
T, = T,

(2-52)

where (T'y=;). is the temperature of the hot water at z=1 m.

Then, using the relation of (2-52), one may obtain the relation between
0o/Ty and D for various discharge rates as shown in 'Fig. 2-7. If the value
of 6y/T, (==a) and discharge rate ¢ is measured, D, corresponding to & and g is
obtained as in Fig. 2-7. But, the above method is applicable in case the
discharge rate is more than 10-tc.c./sec.
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100

0 L L )
100 - 1000 1500 2000m

D

Fig. 2-7. Relation between 6,/Ty and -D.

3. Distribution of the ground temperature at 1 m depth in case hot
water flows out the ground surface through an oblique fissure

The cases where a fissure crosses obliquely with the ground surface are
more common than cases in which it is perpendicular to the ground surface.
The following is a discussion about the distribution of the ground temperature
at 1m depth in case the fissure is oblique.

3.1.  Distribution of the ground temperature in case there is no fissure

In the same way as in Chapter 2 above, let T, be the ground temperature
for the model in which there is no fissure and the heat source spreads in-
finitely in parallel with the ground surfaceatdepth D. Aand B arerespectively
the ground surface and the heat source (hot water), and x—, x'—, 7— and z’-axes
are selected as in Fig. 3-1. In Fig. 3-1 z'- axis is perpendicular to the

.

. ¥
Fig. 3-1. A schematic map of the model.

ground surface, z-axis and the ground surface cross at an angle a, x-and x’-axes
are perpendicular to z-axis, and exist on the plane in which z- and z’-axes are
included. a - T



Distribution of Ground Temperatuve at 1 m Depth influenced by Vavious Heat Sources 419

Substituting 2’ for z in (2-4), the equation becomes

T,

Toap: (1 7) (3-1)

T, =

Now, expressing 2’ by (x;z) or (%', 2)

z' =zsin @ — % cos a (3-2)
or
z' = zsin a + %' cos a - (3-8)
If (3-2) or (3-3) is substituted into (3-1), 7; becomes
Ty, 2) = 0 (14 (e 34
1 (% 2) = 13D {1+X (2 sin a—x cos a)} (34)
or .
Ty (%, 2) ~ Lo 1+X (zsin ’ : 3-5)
1 (¥, 2) = 13 { a+x' cos a) (

3.2.  Approximation of the model

The writer proposes next to deal with the model shown as Fig. 3-2 in
which the heat source of temperature T, spreads infinitely in parallel with
the ground surface at depth D and the fissure G is not perpendicular to the
ground surface. But it is difficult to deal with such a model as the above; then
the writer uses the following simple model in place of the above.

Model I in Fig. 3-3 is taken to be the same as Fig. 3-2. Now let the

/Y

Y

Fig. 3-2.- A schematic map of > " : ..+ Fig:8-8. Division of the model.
‘the model.

ground temperature for ‘model I: be T, and let the ground temperature for
model II or IIT only be respectively T; and T;".  From (2-48), T is given by
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T=T,+Ty (3-6)

Next, in Fig. 3-4, the isothermal line of temperature 0 in model 111 is para
llel to the ground surface and not perpendicualr to the fissure, while in mode IV
it is not parallel to the ground surface and perpendicular to the fissure. But
the other boundary conditions of the two models are the same. It is easy to
deal with model IV. Therefore the writer substitutes model IV for model
III. The propriety of the substitution is explained in below Section 3.6. Now,
let the ground temperature for model IV be T,. In Fig. 3-5, T is considered

Fig. 3-4. Assumption of the model. Fig. “3—5. Division of the model.
nearly equal to the sum of 7, and T, Equation (3-6) becomes
T=T,+T, (3-7)

3.3. Differential equation and boundary conditions for wmodel IV

In (3-7), T, is obtained by (3-4) or (3-5). Therefore, if T, is desired,
T is obtained by means of (3-7). Then, in this section the writer gives the
differential equation and boundary conditions for T,. Now, in Fig. 3-6,
let the ground temperatures in the right and left sides of the fissure be

00 7%

F'g. 3-6. Space coordinates under consideration.

respectively T, and T,. Similarly, in model I of Fig. 3-5, let the ground
temperatures to the right and left sides of the fissure be respectively T and
T'. Then T and T are given by )
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I'=T+Ty 3-9)
Fig. 3-6 shows a cross section perpendicular to the ground surface and
the fissure; x-, ¥'- and z-axes are taken as Fig. 3-6, where z-axis is a line in-
tersecting the wall of thé fissure; x- and x’-axes are perpendicular to z-axis..

When y-axis is taken as in Fig. 3-2, T, and T, are independent of v, and the
differential equation and boundary conditions for T, are

2T, o7,

T,=0  at x=oo o (3-11)
T,~6 at x—0 (3-12)
Ty,=0 at z =D’ (= D/sin a) (3-13)
8811;2 =AT, at z =zxcota (3-14)

where # takes the downwards normal direction to the ground surface as in
Fig. 3-6, and the relation between # and (x, 2) is given by

'8811;2 - 881;2 cos a + 8812‘2 sin a  (3-15)

The equation for T,” is the same as (3-10); the boundary condition
corresponding (3-14) becomes

Qéznz— =AT, at z=—2x"cota (3-16)

and the other boundary conditions are the same as (3-11), (3-12) and (3-13).

3.4. Solution
It follows from (3-10), (3-11) and (3-13) that

— 3 A, e P sin Py (D' —7) (3-17)
s=1 . R

where ‘As and P; are unknown constants.
By use of (3-17), (3-15) becomes
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%]’}:LL = § A PyeFs* sin P (D'—z)cos a

s=1

3 A, PP cos Py (D'—2) sin a
) :

+

— 5 A PP {sin P, (D"— z) cos a — cos P (D' z) sin a}
s=1
(3-18)
Accordingly, (87 /on)s=xcot« becomes
oT ad _ . , t
( 8%2 )z=xcow.—_ z A, P, e Ps* {cos asin Py D -<1— ch, ¢ >
—sinacos D'« (1- 25 )} | (3-19)
and from (3-17)
- & pu , t
(Tsmsosts = X A:se P sin P, D' - (1— 25 ) (3-20)
Substituting (3-19) and (3-20) into (3-14), ont gets
E A e Ps* {Ps cos asin Py D’ - (1— ad (BJ,C ¢ ) —P,sin a cos Py D’
s=1 .
x (1= ZGH) —nsin P07 - (1- EHEE ) 0 (3-21)

When x is finite, because 4, is not equal to 0, the formula in {} of (3-21)

is equal to 0.
Then

(P, cot a—A) sin P, D’ .<1— rgte )——PssinacosPsD’ -(1— xeot a ):o

(8-22)
When the ground temperature of the distant place from the fissure does
not have to be known, ratio of (¥ cot @) to D’ is very small. Accordingly,

(x cot a)/D’ takes a very small value in comparison with 1.
Then, (3-22) transforms into '

(P;cos a—\) sin P, D’ — Pgsinacos PsD' =0 (3-23)
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Therefore
. , Psin a
tan B D' = "p s g —n
Ps D'sin a
= P,D'cosa—AD’ (3-24)
Putting ' ,
ps = Py D’ (3-25)
(3-24) becomes
HsSin a
tan p; = pscos a — A D’ : (3-26)
Then, from (3-25) P; is expressed by
P=-1 (3-27)
where p; are the roots of (3-26).
Substituting (3-27) into (3-17), one gets
s *—D’fo . Hs ’
T,= ;}1 Ase sin —pyr (D'-—2) (3-28)
Therefore
T=T,+T,
T() ) . ' ‘S Ao #” s Ms ,
_—_W{l-l-k(zsma—xcosa)}%-;gl sé sin -557- (D' —2)
(3-29)
and from (3-12) and (3-29), ¢ is-given by
= 7, 14\ zsin 3 Agsin 25 (D 3-30)
= Tp (I+rzs a)+s=lsnD,(—z) ( )

T*'and T, are also obtained by the same method as above, namely (3-
10), (8-11), (3-12), (3-13) and (8-15) are also satisfactory for T,'.
Therefore, one gets :

Ty = £ A e sin P (D' (831

s=1
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where 4, and P, are unknown constants.

From (3-31)
N _88];; L io: Asl Ps, 6—-Ps'x'sin Ps’ (D’_z) (3—32)
s=1
s=1

Accordingly, it follows from (3-16), (3-31), (3-32) and (3-33) that

f)]A;’ e~ P’ {Ps’ cos asin P/ D’ - (1 + —x—gl,ti> — P, sin acos P’ D’
X (1+ —j%a—> —Asin P/ D’ - <1+ —x%tiﬂ =0
(3-34)
When «’ is finite, in the same way as (3-21), equation (3-34) becomes
(Py cos a — A)sin P/ D' - (1+ x—‘jf“—)
— Py'sin acos P/ D" - <1+ _x_;)oj:_a_) =0 (3-35)

For x’ whose (x’ cot a)/D’ is very small in comparison with 1, (3-35) becomes

(P cos-a—2) sin Py D' — Psin acos P/ D' =0 (3-36)
Therefore :
g P, sin a
tan P/D' = pricsa—w
P/ D’sin a
P/ D'cosa —nD’ (3-37)
Putting | ’
us =P/ D’ (3-38)
(8-37) becomes :
tan pug = ——t o (3-39)

ws' cosa— AD’

Comparing with (3-26) and (3—39),(the following relation is obtained.
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7

fs = [hs
Therefore
' Py D' = P;D’
Ps’ = Ps
—— /“S
= 7y

Substituting (8-41) into (3-31), one gets
Hs o, -

’ bl [ s ’ .
T, :s‘i::) Al e D smﬁ(p —2)

Therefore
T =T,+T,

TO : ’ - vt ' _l‘;x
=-1iap (1+A(zsina+ « cos )} +s§1 Ale D

(3-41)

(3-42)

. Ms ,
sin - (D'—2z)

(3-43)
From (3-12) and (3-43), ¢ is given by
0= Lo (1 yazsing) + 3 A sin (D' ). (344
= 1+w . [2) = s L D/ )4 .

(3-30) and (3-44) are the equations which express 8, therefore the
right sides of (3-30) and (3-44) are respectively equal, and the st tetms are
also equal. Then, the 2nd terms must be equal respectively.

Hence
As, = As
By use of (345), (3-43) becomes

"

Bs

T {1+ (zsina+ #'cos a)} + sé}l Ase D77 gin % (D'—2)

(3-45)

(3-46)

Fig. 3-7 represents a prism which takes in a fissure; the length is 1 cm, the

width is equal to the width of the fissure, the height is D’.

Fig. 3-8 shows

an infinitesimal part of the above prism, the height being 8z, the width and

length the same as in Fig. 3-7.

As the writer states in Chapter 2, ¢ that is temperatqre of ascending
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Fig. 3-7 A prism in the fissure, L . Fig. 3-8. . An infinitesimal prism.
hot water in the fissure, is considered as a function of z only, and fall in 4
is due to heat conduction to rock around the fissure. Then, the following
differential equation is derived from income and outgo of heat in the in-
finitesimal prism.

a6 oT oT’
—gpetl st {(WLG + <_87>x'=0} 5z (3-47)
where g, p, ¢ and & are the same as in (2-19).
From (3-29) and (3-46), one gets
( Sx )x=0 = E1+X(b cos a — s§1 A sin —D—s, (D' —2) (3—48)
3T ATy 2 s : Aoy
(W_)x,éo = —1——}—# cos a — s§1 A _D_s’ sin 'g—sr (D —Z) (3—49)

Substituting (3-48) and (3-49) into (3-47), the latter becomes

gpc oy S A psinf (Ds) (3-50)
Taking.
' 2k
K= _
70 (3-51)
(3-50) becomes
| 40 k34, i sy
dz — 84 4 4sp sy (D'—2) - ( )

Accordingly, it follows‘from (3-52) that



Distribution of Ground Temperature at 1 m Depth influenbed by Various Heal Sources 427

0 =K 3 A cos 5 (D'—2) + const . (3-53)
. os=1

Boundary condition for ¢ is
=T, at z=D
Therefore, const. in (3-53) is given by

const . =Ty — K % A
Thus

6=T,~K X 4,{1 —cos 5 (D'~ z)} (3-54)

A, contained in the formmlae of T and 7’ can be found by the method
used in Section 2.3. Let A, be A, obtained by the process of repeated
substitution for % times. o

First, let (3-54) be considered approximately as the following equation.

0=T, (3-55) .-
It follows from (3-30) and (3-55) that

Ty= T%kﬁ (1+xrzsin a) + é’l A sinv gs, (D’—2)
Therefore
o . , AD AT, sin a
T Assinpr (D' =2 = oxp To— “{iap oz (8-56)

When the depth of the heat source D is very great, because D’ is equal to
D|(sin @), D' has astill larger. Therefore, for u, in which s is not very large,
(3-26) becomes

- ' s SiN a
tan pg = — ;L_)\D_,_ ' (8-57)

When (3-57) is satisfied, the following definite integrals are obtained.
D |

JDISinﬂ—m(D'—z)sinibi(D’—z)dz—~——C f = i. 3-58
) )04 124 = — Cs or m=s (3-58)

=0 for m=+s (3-59)
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D s , D’ (1 — cos js)

Jo sin 5 (D' —2) dz — ——(——TL—-— (3-60)
D ps D/ sin s ' g
Jo 2 sin-—py7 D —2dz= o <1 T > (3-61)

where

fs — SIN 15 COS fhs

C. =
.s_ s

Multiplying both sides of (3-56) by sinu,(D'—z)/D’, then integrating each
term from O to D', it follows from (3-58), (3--59), (3-60) and (3-61) that

D'~y ADT, D’ (1-—cos py) AT,sing D' . sin i
2 GAds=T1m0D s - 1%@*'75( - =)

Because D is equal to (D’ sin a), the above equation becomes

D’ D D To sin s ‘
5 Csds = o 1iAD < o cos m) (3—62)
" Therefore
. 2 ! )LDTO sin s .
ASZ‘ASI—:—C:.I' 1+)\;D ( s —COS[LS>
"2ADT, sin o .
= " (ps — sin pscos pg) (T+ND) ( s T Ccos p,s> (3-63) .

Substituting (3-63) into A, of (3-54), 6 is obtained. Again, substituting
-the result into (3-30), one gets

&, Mm ,
T,—K 3 Am{l —cos-pr (D —z)}

T . ks . s
- 1+7OnD (14X zsin a) + §1As‘sm %—, (D' —2)
Therefore
®© o Ms AD
sgl As sin ‘Djr (D —z) = m’ﬁ TO
AT,sin a ®© fom o,
~ T 2~ K X Am{l—cos 57 (0 - 2)] (3-64)
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The sum of the Ist and 2nd terms of the right side in (3-64) is equal to
the right side of (3-56). Accordingly, from (3-62), the following definite in-
tegral is obtained: '

Dl

D¢ AD AT ysin . M p
J.{ 0 aZ}Sln'_DT(D—Z)dZZ—Z‘_CSA.u_ (3-65)

o T Lo~ 14D
Multiplying both sides of (3-64) by sinp(D’—z)/D’, then integrating
each term from 0 to D’, it follows from (2-33), (2-34), (3-58), (3-59) and
(3-65) that o :

D, D' o0 ,
g Gds=—5 Cda—K X 4 D

1— cos LIy
x[ COS prs K5 —Hom {1 (cos;Lscosp"mL fom sm,ussmpm>}]

s Hs
. ' (3-66) -
Therefore
: 2K .
A= Asz = Asl - Ts mz_ Aml
1—cos ps - s
[ o — {1— (cos s cos }Lm+ ” sin L s sin ;Lm)}]
. . 2K il
= 4o - Jos — SIN o5 COS fis mZ_—:l Am
s? : Mom . X S
X [(l—cos ts) — A {1— (cos pus COS fim+ . sin pssin [Lm)}]
' (3-67)
From (2-34), the value of formula in [ ] of (3-67) for m=s becomes
1 — cos 2 pg
1 —cospus — — -

Let the 2nd term of (3-67) be —A’;,. Then, (3-67) becomes
A=A +d'q (3-68)
As a result of substltutmg (3-68) into (3-54), ¢ is expressed by

6—T,— K é (Any + A'y) {1 — cos b (D’ = z)§ - (3-69)
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It follows from (3-30) and (3-69) that

Ms

Ty~ K

n

, Bon o,
(A + A') 11— cos - (D" — z)}

~

— I.JF{D;(I%—Xzsina)%— S§1Assin%57 (D" —2)

Therefore

® . Bs ‘, __ AD AT, sin o
ZAsn T 0= =15p To- —1ixD

—K 3 A {1 —cosJy (D'—2)} —K ¥ A'u{1 = cos (07 |

A (8-70)
Because the sum of the initial three terms in (3-70) is equal to the right
side of (3-64), the following definite integral is obtained from (3-66).

1Ty ey tinzsing) K T A, 1 0s - (D' —5)]
o |To— Tiap o) =K 3 4,31 - cos

X sin i (D —2) dz = 5 C, Ay

(8-71)
‘Again, multiplying both sides of (3-70) by sinsu(D’—2)/D’, then integraf—

ing each term from 0 to D, it follows from (2-33), (2-34), (3-58), (3-59)
and (8-71) that

—g_ CsAs = DT CSASZ - Knoé] A’"l D’

1—cos s Ls . ‘
X [ s T aE g {1* (cos s COS fly, - == SIN fug SiN p,n)ﬂ

(3-72)
Therefore ' ,

‘ 9K =
As:AS:s:Asz_ ”‘CTS“EEIA nl

T— 3% {1.— (cbsuscosu +—}isinp sin ,un)}
Hs* . o™ by - " Ms s .

4 2K
SR pg — sin g COs pg -

x‘[ 1—cos ps s
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[LS2 . . 227 .
5 {1— (cos 45 COS 2, + o, Sin pssin ,u,n)}]
S

1—cospus ———5—3—
ng[ e = T —

(3-73)

From the result of numerical calculation, it follows that the 2nd term of
the right side in (3-73) is very small in comparison with the Ist term. Then,
(8-73) becomes : :

Asa = Asz (3—74)

Hence, A,;, may be used for 4, from (3-73) and (3-74) as 4, in Section 2.3.
Now, putting

. 2AD sin pg o
Bs = W ( s .— Cos /’“s) (3—75)
(3-63) becomes
Ay = BT, (3-76)

fs — SIN f15 COS fug

From (3-67) and (3-76), A, becomes

A= A5 = : .BST" . _ .2K = : .BmTo
e s — SIN Jig COS ju fis — SILL 5 COS b5 =) fim—SIN [y COS [,
s? Pom . .
X [1—— COS fts = g g {1— (cOs 45 COS p + . Sin pgsin ,u,,,)}]
(3-77)
Next, putting
E,=2K 3, Bn
o2 fm—SIN w1, COS fi
. 11s2 o _ ,
X [1— COS Hs =g T {1— (cos 15 €0S i + . Sin pesin ,um)}J
(3-78)
(83-77) becomes ,
4, — BT, B EsT,
fs — SINL fus COS fbs s SIN fig COS fh
~ (=St ) To (579
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Thus, using (3-79), equations (3-29) and (3-46) become

T 1+7\(zéina—xcosa)
T, — 1+\D

ks Bs”Es. \ _"_L'f—x . M ’
* 2 (s )¢ 7 S (0 - (3-50)

I" 14 (zsina -+ % cos a)
Ty ~— 1+AD

3 B;—E; - ﬂf”' s M ’
o (m)e P sin g5 (D' — %) (3-81)

Let X- and X'-axes be taken aléng the ground surface as in Fig. 3-9.

x' o X

s _\ii‘- )

. Taet Tans

z

Fig. 3-9. Space coordinates under consideration.

Let coordinates of the points of 1 m depth at X and X’ be respectively (x, 2)
and (x', z). Then, (¥, 2) and (x', z) are given by

’

w = Xsina—cos a :
' . (3-82)
. z =Xcosa+ sing
and o
2" =X'sin a + cos a
. (3-83)
2=—X'cos a + sin a

Now, let the ground temperatures of 1m depth at X and X' be respectively
T4y and T'y,. Tyu/Ty and T',.,/T,, obtained by substituting (3-82) and
(383) into (3-80) and (3-81) respectively, are

Td=1 1+ o B, — Es __#i,(xsindacosw) o
T, T 1D + s§1 ( fs — SIN f45 COS Hs' > ?
X sin % [D" — (X cos a+sin a)} | (3-84)

and
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T'd=1 1+2 ol B, — E; -—_EST(X’sinw+cosw)
T, — 1+AD oy ( s — SIN gug COS fs >g

X sin % {D" + (X' cos a—sin a)} (3-85)

3.5.  Results of numerical calculation

. Fig. 3-10 indicates an example of numerical calculation in the case when
the depth of the heat source D is 2,000 m. In the figure, the axis of ordinate
takes for convenience T'4y/T, only and a symbol of T”,,/T, is omitted. The
constants used for the calculation are as follows:

k=17 x 10-3 C.G.S. (thermal conductivity of tuff)

A =0.15m~!
p=1glc.c.
¢ = 1cal/g-°C

a=60°, 70°, 80°, 90°
g=0.1, 1.0c.c. [sec

Let the ground temperatures of 1 m depth at X=1m and X=Xm be
(Tamy)x— and (Tyy)x-x respectively. A ratio of the two temperatures- M is
given by

Taca)x
M=

(T[T o) x-x
=TT (3-89
where (T4eq/To)x-x is the value of Tu—y/Ty at X=Xm, and is given by (3-84)
or (3-85). TFig. 3-11 indicates the relation between M and (X, X').

Because T, can not be actually measured, T, /T also can not be measured.
On the other hand, (I'4=y)x-x and (T4-) x-, can be measured, accordingly M can
be measured. Then, the relation between M and (X, X') may be used more
than the relation between T,-/T, and (X, X').

From Figs. 3-10 and 3-11, it is clear that the larger a becomes, the
larger —d(T4=1/T)/@X and —dM|dX become at the range of X. Reversely the
larger a becomes, the smaller —d(Tuy/Ty)/dX' and —dM[dX’ become at ' the
range of X'. Let Mx. be the value of M at X=100m. In both cases of g=
1 c.c./éec and g=0.1c.c./sec, Mx-yqo and a are the linear relation as shown in
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— i ]
20 . 11 20 40 60 80 100m

80r as70°

100 m

— nn L L L - J

1 L L L i — J

Fig.3-10. Examples of T /T, curves
: for X and X'.
; g=1.0c.c/sec
L ] ; =01

Examples of M curves
for X and X',

; ¢g=1.0c.c./sec
e ; =01 )
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Fig. 3-12. The relation is thé'case at D=2,000 m, it is not found whether
the relation will hold or not at other depths. But it is an interesting relation.

60K
40

MX:IOO
20

) o —

L
60 70 4, 80 90°

Fég. 3-12. Relation between M, 4 and a.

3.6. - Propriety of the above approximate model

In this section, the writer discusses the propriety of the approximation
which in Fig. 3-4 model 111 is approximated by model IV,

First, let the left side of the fissure be considered. If one employs x'-,
z-, L-axes, origin of L-axis and AB as in Fig.3-13, in model III the temperature

Fig. 3-13. Space coordinates under consideration.

on L-axis is 0 and in model IV the temperature on 4B is also 0. Accord-

ingly, if the temperature on L-axis for model IV is nearly equal to 0 in the

left side of the fissure, it may be proper for model IV to be used in place of
model IIL

In Fig. 3-13, a coordinate of any point on L-axis (%, 2) is expressed by L,

D’ and g, and the relations are as follows:

%’ =Lsina
: } (3-87)

2=D" —Lcosa

- Now, let the ground temperature at the point (#’, z) expressed in (3-87)
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be (Ty)r-1. (T'y)r-1/Ty is obtained by substituting (3-87) into the 2nd term in
(3-81), and it follows that

(Tzl)L=L s BS—ES -—%sl—Lsinm . Lcosa
Ty _=s§1< s — SIN 15 COS fu >e 'Sm< D ”‘)
(3-88)
Table 3-1 indicates the values of (I7p)7-1/T, for g=1.0c.c./sec. In the
table, (T,)1-1/T, reaches its maximum at a=60°, L==1,000 m, while there is

Table 3-1. Values of (Ty") ;=;/T, for g=1.0c.c./sec.

Nsm 10120 50

800 (1,000 1,200|2,000

100 ’ 500

T
!

60° 0.00 | 0.00 | 0.00 | 0.01 | 0.02 | 0.08 | 0.09 | 0.10 | 0.09 | 0.06
70 0.00 { 0.00 | 0.00 | 0.01 | 0.02 | 0.05 | 0.06 | 0.06 | 0.06 | 0.03
80 0.00 | 0.00 | 0.00 | 0.00 | 0.01 { 0.02 | 0.03 { 0.03 | 0.03 | 0.01

very small value for other a and L. Therefore, in the left side, it is ascertain-
ed that the above approximation is nearly correct.

About the right side of the fissure, because L-axis continues downside of AB
line, the temperature on L-axis in the case when the temperature on AB is
euqgal to 0 can not be obtained. In this case, the writer seeks first the value
of the ground temperature near AB for the model as in Fig. 3-14 (II) in which
the fissure is perpendicular to the heat source and D is 2,000 m.

m
wo. M08 e
150 | o7 o A 8
" 4 -
z . e
.
\ 100 L 85 05 -7
.
-
-
so | 02 .02 oz
~
. .
.
“ - 3
/3 30! 1 — H
0 50 100 200m

Fig. 3-14. I; Values of T,/T, for the model IL.
II; A shematic map of the model.

. Now, let x- and z’-axes.be taken as in Fig. 3-14 (II). When the temperature
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on x-axis is equal to 0, the.ground temperature T, is expressed by a function
of x and 2, and is given by the 1st term of (2-45). Fig. 3-14 (I} indicates
the values of T,/T,. If broken line OB and x-axis cross at 30°, OB corre-
sponds to AB of Fig. 3-13 in the case of a=60°. When o is larger than 60°,
OB gets near to the x-axis, and the ground temperature on OB is smaller than
that at a=60°. Furthermore, in the case of a=60°, the position of the fissure
is not on the z’-axis but on the z”-axis in Fig.3-14 (I), and the values of 7,/T
are smaller than the case in Fig. 3-14 (I). -Accordingly, the aforesaid appro-
ximation may be proper on the right side of the fissure, too. But if «is small,
the angle between OB and x-axis becomes large, and the ground temperature on
OB shows a large value. In this case, the approximation is not proper.

4. Influence of ascending hot water in a pipe upon the gi‘ound
temperature at 1 m depth near an orifice

The ground temperature near an orifice is affected by ascending hot
water in a pipe. To eliminate the influence, it is needed to subtract the
‘ground temperature dependent upon ascending hot water only from the ground
temperature measured actually. In this chapter, the writer discusses the in-

fluence.
Previously Oxamoro!® sought the influence under certain assumptions,

But the writer obtains the influence by another method without such assump-

tions.

4.1. Differential equation and boumiary conditions
Fig. 4-1 represents.a model in which hot water at depth D spreads

z
( 1ré
D i+ r
5 A
== 0
[+] T,

' Fig. 4-1. A schematic map of the model.
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infinietly in parallel with the ground surface, and a pipe stands perpendicularly
on the heat source. Now, let z-, 7-axes and origin of z be taken as shown in
Fig. 4-1, where z-axis agrees with the center axis of the pipe, and r-axis
takes the direction of the radius of the pipe. For this model, the ground
temperature may be considered a steady temperature as in Chapters 2 and 3.
Then, the differential equation for the ground temperature is given by

T 1 of 2T

o Ty or T =0 ¢-1)
where T is the ground temperature at an arbitrary place.
Next, the boundary conditions are as follows:
AT

_T:TO_I—H\QD_Z at r=1o (4-2)
T=20 at r=a (4-3)
T=T, at z2=0 (4-4)

ol
s = M at z=D {4-5)

where a is radius of the pipe, and ¢ is the temperature of ascending hot water
in the pipe. {(4~2) is obtained by substituting D-z into z of (2—4). This is true
because directions of z-axis in Chapters 2 and 4 are inverse and the distance
between the origins of the two is D.

4.2. Solution

The model of Fig. 4-1 is not so complicated as the model in Chapter 3.
Accordingly, it is not needful to provide two models as in Chapter 3, and from
(4-1), (4-2), (4-4) and (4-5), T becomes

AT 2 s . s
T=Ty— 1i5p i+ 5 Ceds: K0<~D—r> Ssin Sz 1 (4-6)
where
1
Cs = | cos2 s (4_7)
tan pg =-— 7\#5 (4-8)

and Ky{us7/D) is the modified Bessel function of the 2nd kind of 0 order, A4,
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is an unknown constant.

In the same way as in Chapters 2 and 3, the temperature of ascending hot
water in the pipe is considered a function of z only, and the fall in the tem-
perature is considered due to heat conduction into rock around the pipe. Then,
the following differential equation is obtained as in Chapters 2 and 3.

qpc%Bz:Zwa&zk(-%)ﬁ ' (4-9)
where notations of ¢, p, ¢ and % are the same as those in Chapters 2 and 3.

From (4-6) and (4-9), one gets

do 4wak = s s . s
T = qpeD 5 CATD K(pa)fsnps 410
where K,(u;a/D) is the modified Bessel function of the 2nd kind of the st order.
It follows from (4-10) that

L s Hs
0 = I sgl Cs A - K, (*ﬁ“d) © COS Ty~ z 4 const . (4-11)
where
drak
L = ——F-—
gpc

Boundary condition for 4 is
6=T, at z=0

Accordiﬁgly, const. in (4-11) is given by

const . = Ty — % ﬁl Cs A, - K1< s a> (4-12)

Substituting (4-12) into (4-11), one gets

0=T0‘—_£~'§1 C, 4, -'Kl< L a)-(l;cos%iz> @)

And @, obtained from (4-3) and (4-6), is

AT 2 Iz .
0=T0—Tﬁ-;z+-D—£}lC.sAs-K0<—Dia)~sm—Diz (4-14)

From the two equatioris (4;13) and (4-14), A, can be obtained by the
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method used in Section 2.3 or 3.4 As in the previous chapter, let 4,, be A;
obtained by repeated substituting process of # times.
First, let (4-13) be considered approximately as the following equation.

0=T, _ (4-15)
Using (4-15), (4-14) becomes
71 Mo z+—2—§CA-K<«’iia.sinﬁ 4-16
o=To— 2D DS_ISSOD>‘DZ (4-16)
Therefore
2 & [ Hs I AT,
D 5 G Ka(pra) sinprr= s 617

If the relation of (4-8) is satisfied, the following definite integrals are
obtained. '

D :
.[0 sin % z sin —MDﬂ z2dg = —€~ . Cl‘s for m=s . (4-18)
=0 for m=s {(4-19)
D . M D N2 . '
Io zsin —p 2 dz = (I> (sin pes — ps COS pis) (4-20)

where C; is the constant given by (4-7).
Accordingly, multiplying both sides of (4-17) by sinp,z/D, then in-
tegrating each term from 0 to D, it follows from (4-18), {(4-19) and (4-20) that

_%L_ 1 th__<.D

2 Hs 2 . .
TCSAS . Kﬂ(T”)' < =10 (i > .(SH} s — fbs COS fbs)

(4-21)
Therefore

Hs
Da

Ag= Ay = 11% : K0<1 > <%>2 (i jue,— psCOS 5) . (4-22)

By use of the result which is obtained by substituting (4-22) into (4-13),
(4-14) becomes , )

L

Ty— p Con Aoy - Ky (—%" a> . (1 — cos —'uDﬁz>

L

1
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AT 2 had F2% . Ms
=T0~—1¢fD—Z+*—D_ SEI CsAs' K0<—ﬁs'a>' SIHTZ (4—23)
Therefore '
2 & /‘"S . lvbs
B El CsAs - K0< D a)- sin ~75- z
AT L 2 P\ . o’
= ﬂfp—z—fmf‘:l Con Ay - K1<—ﬁa>- (1 — cos‘D"iz> (4-24)

Because the st term of the right side in (4-24) is equal to the right side
in (4-17), the following definite integral is obtained from (4-21): )

D XT . s s .
IO ﬁ Z 8ln D 2dz = As1 . K°'<~57 d) (4—25)

Then, when (4-8) is satisfied, the following definite integral is obtained:

D "
J (1 —cos%—z>sin%zdz

0

1—cos ps W

Hm . .
= D{ s S S {1— (cos s c0S pm + 11, St ps Sin ,um)}]
for m=s (4-26)
-D I—cosps 1 —cos2ps ; 3 e
o [ s - 4 ps ] 0s M =S (4-27)

In the same way as the case of (4-17), by multiplication of both sides of
(4-24) by sinusz/D, then integrating each term from 0 to D, .t follows from
(4-18), (4-19), (4-25), (4-26) and (4-27) that

Focd(fa) B

N

L g P 1—cos
= Ao Ko(p o) = Z Cndm Koyt a) D[R
Hs Hm . . :
= T {1~ (cos ps €OS fum + o, Sin pssin ll,m)}] , (4-28)

Therefore
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L & fom
s=As=4gq — ZCmAm1'K1<D “>
K]
1—cos s P . ]
X [ o — Tz {1 — (cos 15 COS iy + . Sin pssin ;:,:,,)} _

A (4-29)
From (4-27), the value of formula in [ ] of (4-29) for m=s becomes

1 — cos ps 1 —cos2 ps

s 4 pus

Now, let the 2nd term of the right side in (4-29) be —4’;;. A, is expressed
by

Asy = Ag + A’y (4-30)

By use of (4-30), (4-13) becombes

G=Ty— 5§ Collm+A%) - Ky(4-a) (1 -costg-z) @81

ne=1 .

Again, substituting (4-31) into (4-14), one gets

Ty — %T ”: Co(Am + 4A') - K1( IB' a>-(1 — cos%z)
=Ty Py e+ £ Codee Ko pa)sinp5z (4-32) -
Therefore
7127 g}l CSAS-K(,( %s a)-sin%s—z
= 11%—2— ~£— ni:jl Crlm - K1<—l;)—" a) . (1 -wos%z) ’
L 2} Colllm - Iy (5-a) - (1 —cospz) @)

The sum of the Ist and 2nd terms of the right side in (4-33) is equal to
the right side of (4-24). Accordingly, the following definite integral is obtained
from (4-28).
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I:) {I—)E_i‘—‘b—z——é—ni .CnAm . K1<%~a>-<1 ~cos—glz>}sin%'z d_z
— Ay K0<%s—a> (4-34)

Again, let- both sides of (4-33) be multiplied by singusz/D, then let each
term from O to D be integrated. It follows from (4-18), (4-19), (4-26), (4-
27) and (4-34) that

S 2 s D 1
DA Ko(pe) 5 ¢
L @ " ‘
() § o k(G 0)
1 — s " . .
X [ ;?S Ms Mszr‘f/‘nz {1—- (cos pas cOS puy + —Z—s sin ugsin M)}]
(4-35)
Therefore
’ E L < Hon
TAs=Ag= A — S Cody K (" a
s $3 2 K0< ’S a> = 1 1< D >
1—cos . ) o )
X [# o Hs W/‘L—S/LT {1—(;:05 s COS i+ %sm s SIIL ,u,,)}]

(4-36)

From the result of numerical calculation, the 2nd term of the right side
in (4-36) is very small in comparison with the 1st term.

Therefore
Ay = Ay (4-37)
Hence, 45, may be used for 4, from (4-36) and (4-37). Thus, A, becomes
' Hom
. T,D AD [ sin ps—puscos p oo Kl( D “)
As—'—.—Aszz m “TIND - 2 _chmT
Ko(-5-2) : =" Ky (fa)
SN flyy — Jhap COS g { 1—cos pg B N Jbs
Mm?

s st fm®

X (1 — COS s COS o — —l:g sin' pgsin ;Lm)”’ T : (4-38)

~
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Now, if one puts

. K1<~i"~'~ a> .
B — AD [ SIN f4g— o5 COS L5 I OZOJ c D SIN Ly — fom COS [,
s=T+AD st " K0<_L"Dﬂa> Hom®
X { 1'—(:28 He - pszﬁsu,f (1— cos s COS o — l;—’: sin u, sin Mm)}]
(4-39)
(4-38) becomes
A, = ____7_‘0_/?___ B, (4-40)
s
Ko(5-a)

By use of (4-40), (4-6) becomes

K Hs o .
T AZ x® 0 . Hs 4-41
T, =1 T T2% GBs K0<fga> sin-p-z - (4H41)

Let T, be the ground temperature at 1m depth. From (4-41), Ty, is
given by '

' K ,&y)
Ty 1+2 &, 0< D . Hs 4
T, — 1+AD +2 :é] Ce B K()(——’B a) 8D b1 @)

As remarked in Section 2.3, the 1st term of (4-42) s the ratio between the
ground temperature at 1m depth and T, in the case that there is no pipe and
the heat source spreads infinitely at depth D. The 2nd term of (4-42) is
considered the influence of the ascending hot water upon the ground temperature
near the orifice.

Now, let T')-; be the ground temperature due to the ascending hot
water only. Then, T";,,/T, is

,@
T]':i:l ) gl C, B, —2%}% sin-p5- (D—1) (4-43)

4.3. Results of numerical calculation
Figs. 4-2 and 4-3 indicate the relation between 774/T, and 7'(=7-a).
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40 r

D=50m

T a0 50m

p=100

4
40 02200

30

20

[) = I " 1
Fig. 4-2. Examples of T;_,/T, Fig. 4-3. Examples of T, _,/T,
curves for ¢, curves for #’.
O ; D=50m O ; ¢g=0.1L/sec
—; =200 —; =10

s

® ; =500 e ; =50



446 ’ A. Sugawa

In this case, Fig. 4-2 holds in the case of constant discharge rate, and Fig. 4-3
in the case of constant depth of the heat source. The, constants used for the
calculation are as. follows:

= 1.7 X 10-® C.G.S. (Thermal conductivity of tuff)

A =0.15m"?
a=35cm
p=1glcc.
c= 1ca1/g-°C

D = 50, 100, 200, 300, 500 m
q= 0.1, 0.5, 1.0, 2.0, 5.0 L/sec

From Figs. 4-2 and 4-3, it becomes clear that the values of T';.,/T, at
#’=1m are smaller than 0.5 and the values of 7",,/T, at #’=>50 m are included
in range of 0~0.02 for any discharge rate and depth of the heat source.
In the case of ¢=0.5 Ljsec, the deeper the heat source is, the larger the
value of 17, /T, at #’>=1m becomes for the same discharge rate and 7"
But the values at the distance of more than a certain #' take an equal
value regardless of depth of the heat source. When the depth of the heat
source is constant, the greater the discharge rate is, the larger the value of
T’4—/T, becomes for the same #’. But the values of T”;,/T, become equal
for a discharge rate of more than go which depends on the depth of the heat
source as shown in Fig. 4-4. ‘ '

\,
sec ’
20r [} °
Qo .
1.0 L
[ ] [ ]
- o 1 1 1 i1 }
0 100 200 300 400 300m
D

Fig. 4-4. Relation between ¢, and D.

The values of T"4[Ty at #'=20m are included in a range of 0.01~
0.04 for various discharge rates and depths of the heat source. Hence, it may
be considered that the ground temperature of 1 m depth at the distance of
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=20 m is hardly affected by the ascending hot water in the pipe, but the
ground temperature nearer than 7'=20 m must be affected by the influence
of the ascending hot water.
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