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Direct data-driven tuning of look-up tables for 
feedback control systems 

 
Shuichi Yahagi and Itsuro Kajiwara 

 
Abstract—In industry, a feedback controller with a look-

up table (LUT) is often used for nonlinear systems. 
Although this structure is easy to understand, tuning the 
LUT parameters is time-consuming due to the huge 
number of parameters. This paper presents a direct data-
driven design method for a gain-scheduled feedback 
controller with a LUT to directly tune the LUT parameters 
from single-experiment data without a system model. 
Specifically, conventional virtual reference feedback 
tuning (VRFT), which is a data-driven method, is extended 
and the L2 norm for adjacent LUT parameters is added to 
the VRFT cost function to avoid overlearning. The 
optimized parameters are analytically obtained by a 
generalized ridge regression. A simulation of a nonlinear 
system demonstrates that the proposed method can 
directly obtain the LUT parameters without knowledge of 
the controlled object’s characteristics. 
 

Index Terms— Data-driven control, VRFT, Gain-
scheduled control, Look-up table, Tuning 

 

I. INTRODUCTION 

ORE than 90% of closed-loop controls in industrial 
systems use classical proportional–integral–derivative 

(PID) control [1]. Classical PID control is easy to understand 
and provides suitable performances for strongly linear systems. 
However, sufficient control performance is difficult to achieve 
with fixed gains for nonlinear systems. Nonlinear control 
theory and model-based control can be applied, but the hurdles 
are high due to the limited controller performance, complex 
theory, and large computational load. Additionally, model-
based control may not be effective because the intricacy of 
industrial systems prevents accurate modeling.  
  Against this background, gain-scheduled PID control using 
look-up tables (LUTs) is often used in industry [2, 3]. Gain-
scheduled control achieves the desired control performance by 
adjusting the controller parameters according to the plant’s 
state. Although the use of LUTs is an intuitive approach, 
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numerous parameters must be tuned to achieve the desired 
performance [2]. Fixed PID control requires tuning of only 
three parameters, whereas many parameters must be tuned for 
gain-scheduled control using LUTs. Hence, parameter tuning 
is time consuming. This is a crucial problem in industry. 

The Ziegler-Nichols (ZN), the Chien-Hrones-Reswick 
(CHR), and model-based methods may be applicable to 
controller tuning. However, the ZN and the CHR methods are 
empirical and model-based methods depend on the identified 
mathematical model. Recently, direct data-driven controller 
tuning methods have been investigated as they do not need a 
system model to be controlled. Virtual Reference Feedback 
Tuning (VRFT) [4, 5] and Fictitious Reference Iterative 
Tuning (FRIT) [6] have attracted attention because controller 
parameters can be obtained offline from a set of input/output 
data without repeated experiments. The above control 
methods, which do not use models of the controlled object, are 
also being applied to industrial systems [7–10]. VRFT and 
FRIT have not only been applied to linear systems but they 
have been extended to nonlinear systems [11–14], including 
database-driven FRIT [11], VRFT using neural networks [12], 
VRFT for linear parameter varying systems [13], and VRFT 
for sparse gain-scheduled PID [14]. However, direct tuning of 
the LUT parameters using a data-driven control approach has 
yet to be reported. 

Here, we propose a method to directly tune the LUT 
parameters used in the gain-scheduled control. First, the 
scheduling function is represented by a LUT, and a gain-
scheduled PID controller is defined. Next, the cost function is 
derived based on the VRFT approach for the LUT-type gain-
scheduled PID controller. The cost function has a convex 
characteristic. Although the least-squares (LS) method is 
applicable, the number of tuning parameters of a LUT is huge, 
which may result in overlearning. We propose a cost function 
to avoid overlearning, where the L2 norm is introduced to 
suppress the difference between adjacent LUT parameters. 
The proposed method eliminates the need for trial-and-error 
parameter tuning and identification of the system model to be 
controlled. 

The rest of this paper is organized as follows. Section II sets 
the problem and describes VRFT and gain-scheduled control. 
Section III details the proposed method to directly tune the 
LUT parameters based on VRFT. Section IV conducts a 
simulation example to confirm the effectiveness of the 
proposed method. The simulation demonstrates that the LUT 
parameters are optimized and the desired control performance 
can be obtained. Section V summarizes this study. 

M



 
 
 
 

II. PRELIMINARY 

A. Problem setting 

Similar to previous data-driven controls, we consider 
model-referenced control. Fig. 1 shows a block diagram of 
model-referenced control with gain-scheduled control. Here, 
𝑥 ∈ 𝑅  is the scheduling parameter, which is the measurable 
state that is inputted into the gain scheduler. 𝑢 ∈ 𝑅  is the 
control input, 𝑦 ∈ 𝑅 is the output, and 𝑟 ∈ 𝑅 is the set-point. 
𝑒 ∈ 𝑅  is the error defined by 𝑒 = 𝑟 − 𝑦 . 𝜌(𝑡) ∈ 𝑅  is a 
controller parameter, which is a function of time. 𝑡 ∈ 𝑍  is the 
discrete time. 𝐶(𝑧, 𝜌) is the controller given as 𝑢 = 𝐶(𝑧, 𝜌)𝑒.  
𝑓(𝑥,𝑤) is the scheduling function, which consists of the LUT 
(described later) that is given as 𝜌 = 𝑓(𝑥, 𝑤). 𝑤 ∈ 𝑅  is the 
overall tuning parameter, which constitutes the scheduling 
function. 𝑃  is the controlled object, which is often used to 
validate data-based control [15, 16], and is described as 

𝑦(𝑡) = 𝑓 (𝑦(𝑡 − 1), … , 𝑦 𝑡 − 𝑛 ,

                    𝑢(𝑡 − 1), … , 𝑢(𝑡 − 𝑛 )) (1)
 

where 𝑓  (∙) is an unknown nonlinear function. 𝑛  and 𝑛  are 
unknown orders of the input and output, respectively. We 
assume that this system is stable and can be linearized at any 
equilibrium point. The scheduling parameter candidates are 
associated with the plant output. In general, a nonlinear system 
must be linearized to design a gain-scheduled controller. This 
paper aims to design gain-scheduled control without system 
identification and linearization. We consider the problem of 
directly tuning the LUT parameter. LUT is used as the gain 
scheduler and its parameters 𝑤 are tuned such that the closed-
loop characteristics from the set-point value 𝑟 to the output 𝑦 
match a user-defined reference model 𝑀 . The objective is to 
optimize the scheduler parameters so that the following cost 
function is minimized 

𝐽 (𝑤) =
1

𝑁
𝑦(𝑡, 𝑤) − 𝑀 (𝑧)𝑟(𝑡)

=

, (2) 

where 𝑦(𝑡, 𝑤)  is the closed-loop response to 𝑟(𝑡)  when the 
controller 𝐶(𝑧, 𝜌)  with 𝜌 = 𝑓(𝑥,𝑤)  is used. 𝑁  is the data 
length. Hence, we aim to obtain the optimal parameter 𝑤 from 
a set of plant input/output data without using a system model 
to be controlled. Section IIB describes the structure of the 
controller. Section IIC details the gain scheduler, which is 
expressed by a grid-based LUT. 

B. Gain-scheduled controller 

The gain-scheduled controller shown in Fig. 1 can be 
described as  

𝐶(𝑧, 𝜌) = 𝜌 (𝑡)𝛽(𝑧) = 𝑓(𝑥,𝑤) 𝛽(𝑧) (3) 

with 

𝜌(𝑡) = [𝜌 (𝑡) 𝜌 (𝑡) ⋯ 𝜌 (𝑡)]

𝛽(𝑧) = [𝛽 (𝑧) 𝛽 (𝑧) ⋯ 𝛽 (𝑧)]

𝑓(𝑥,𝑤) = [𝑓 (𝑥,𝑤 ) 𝑓 (𝑥,𝑤 ) ⋯ 𝑓 (𝑥, 𝑤 )]

𝑤 = [(𝑤 ) (𝑤 ) ⋯ (𝑤 ) ] ,

(4) 

where 𝜌 = 𝑓 (𝑥,𝑤 ) , 𝜌 ∈ 𝑅  is the controller parameter, 

𝛽 (𝑧) is a scalar rational function, 𝑓 : 𝑅 × 𝑅 → 𝑅 is the 

scheduling function for 𝜌 , and 𝑤 ∈ 𝑅  is an M-

dimensional vector of the LUT tuning parameter for 𝜌 , 𝑗 ∈

{1, 2, … , 𝑚}. 𝑤 ∈ 𝑅 , which is the overall LUT parameter, 
is the 𝑛 -dimensional vector consisting of 𝑤 . The length of 
𝑤 is given by 𝑛 = 𝑚 × 𝑀 . 𝜌  is gain-scheduled according to 

𝑥  because 𝑤  is fixed after tuning. 𝜌  and 𝛽(𝑧)  are m-
dimensional vectors consisting of 𝜌  and 𝛽 (𝑧), respectively. 

𝑓: 𝑅 × 𝑅 → 𝑅  is a vector-valued function consisting 
of 𝑓 . We focus on the velocity form of the PID controller (Fig. 
2) because it is most common in industry and is compatible 
with gain-scheduled control [14]. Here, 𝜌 (𝑡), 𝜌 (𝑡), and 𝜌 (𝑡) 
are the proportional, integral, and derivative gains, 
respectively; ∆  represents 1 − 𝑧− ; 𝑧−  is the backward 
operator. Thus, the gain-scheduled PID control is represented 
by  

∆𝑢(𝑡) = 𝐶 (𝑧, 𝜌)𝑒(𝑡) (5) 

with 

𝐶 (𝑧, 𝜌) = 𝜌 (𝑡)𝛽(𝑧) (6) 
𝜌(𝑡) = [𝜌 (𝑡) 𝜌 (𝑡) 𝜌 (𝑡)] (7) 

𝑓(𝑥,𝑤) = [𝑓 (𝑥,𝑤 ) 𝑓 (𝑥,𝑤 ) 𝑓 (𝑥, 𝑤 )] (8) 
𝛽(𝑧) = [1 − 𝑧− 1 (1 − 𝑧− ) ] , (9) 

where 𝑓 (𝑗 = 𝑝, 𝑖, 𝑑) is a LUT for proportional, integral, and 
derivative gains, respectively 

 

C. Grid-Based LUT [17, 18]  

In industry, the LUT-based gain scheduler is often adopted 
for nonlinear systems because it is intuitive and easy to 
understand [2, 3]. We explain a LUT 𝑓  for 𝜌 . In this section, 

𝜌  , 𝑤 , and 𝑓  are denoted as 𝜌, 𝑤, and 𝑓 , respectively, to 
avoid complications. Fig. 3 overviews a two-dimensional grid-
based LUT. Fig. 3 (a) shows a LUT’s overview. The LUT size 
is 𝑀 ×𝑀 . 𝑀  and 𝑀  represent the number of 
interpolation nodes in each axial direction. 𝑥  and 𝑥  are the 
user-defined inputs to a LUT. 𝑐 , … , 𝑐 and 𝑐 , … , 𝑐  

are the user-defined interpolation nodes. 𝜃 ∈ 𝑅 (𝑘 =

1–𝑀 , 𝑙 = 1–𝑀 ) are the weight coefficients representing the 
heights of the interpolation nodes and are the LUT parameters 
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Fig. 1. Gain-scheduled control system with a reference 
model. 
 



 
 
 
 

(c) Top view of the surrounding area  

Fig. 3. Two-dimensional look-up table [17, 18].  
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to be tuned. 𝜃 ∈ 𝑅 ×  is the matrix consisting of 𝜃 . Fig. 
3 (b) (c) shows the area after determining the four surrounding 
nodes of the current operating point. 𝑥 ∈ 𝑅  is a vector 
consisting of 𝑥  and 𝑥 . The LUT’s output 𝜌 after determining 
the four surrounding nodes of the current operating point is 
calculated by 

𝜌 = 𝑓(𝑥) = 𝜃
𝐴 + +

𝐴
+ 𝜃 +

𝐴 +

𝐴

+𝜃 +

𝐴 +

𝐴
+ 𝜃 + +

𝐴

𝐴
(10)

 

with 

𝐴 + + = 𝑐 + − 𝑥 𝑐 + − 𝑥  

𝐴 + = 𝑥 − 𝑐 𝑐 + − 𝑥  

𝐴 + = 𝑐 + − 𝑥 𝑥 − 𝑐 (11) 
𝐴 = (𝑥 − 𝑐 )(𝑥 − 𝑐 ) 

𝐴 = 𝑐 + − 𝑐 𝑐 + − 𝑐 . 

Next, the basis function 𝜙 (𝑥, 𝑐) is introduced to obtain the 
generalized expression for (10). This function finds the four 
nodes surrounding the current operating point and computes 
the corresponding normalized region using (11) [17, 18]. 
Considering the basis function, the generalized LUT’s output 
is expressed as 

𝜌 = 𝑓(𝑥) = 𝜃 𝜙 (𝑥, 𝑐)
==

. (12) 

Additionally, (12) can be described as 

𝜌 = 𝑓(𝑥) = 𝑤 𝜙(̃𝑥, 𝑐) = 𝑤
=

𝜙 ̃ (𝑥, 𝑐) (13) 

with 

𝑤 = [𝑤 𝑤 ⋯ 𝑤 ]

= [𝜃 𝜃 ⋯ 𝜃 ] (14)
 

𝜙 ̃ = 𝜙 ̃ 𝜙 ̃ ⋯ 𝜙 ̃

= [𝜙 𝜙 ⋯ 𝜙 ] , (15)
 

where the matrix elements are converted to vector elements 
using the following equations: 

𝑤 +( − ) = 𝜃 , 𝜙 ̃
+( − ) = 𝜙 . (16) 

It should be noted that 𝑤 and 𝜃 both represent LUT parameters, 
but they are expressed as a vector and matrix, respectively. 
Similarly, 𝜙 ̃ and 𝜙  differ only in their expressions. Below, 
expression (13) is used because it can be easily handled by 
mathematical expressions. 

III. DATA-DRIVEN TUNING OF THE LUT PARAMETERS 

A. VRFT 

The standard VRFT [4, 5] directly tunes the control 
parameters from open-loop input/output data without system 
model. The controller parameters are tuned so that the 
reference model and the closed-loop system have the same 
characteristics. We consider the fixed-order LTI controller 
𝐶 (𝜌, 𝑧)  which is parameterized through the controller 
parameters ρ. The plant is a stable system. The VRFT 
procedure is as follows: 
[Step 1] Acquire the initial plant input/output data 𝐷 =
{𝑢 (𝑡), 𝑦 (𝑡)|𝑡 = 1, … 𝑁} in a test. The user sets the reference 
model 𝑀 , which is the desired closed-loop system. 
[Step 2] Considering 𝑦 (𝑡) to be the output of the reference 
model, express the virtual reference signal 

𝑟(̄𝑡) = 𝑀− 𝑦 (𝑡). (17) 

[Step 3] Considering 𝑟(̄𝑡)  to be the reference input of the 
closed-loop system, describe the virtual control input as 

𝑢(̄𝑡) = 𝐶 (𝜌, 𝑧) 𝑟(̄𝑡) − 𝑦 (𝑡) . (18) 

[Step 4] If the virtual control input and the acquired initial 
input data are close, regard the closed-loop system as close to 
the reference model. Thus, the cost function is given as 

𝐽 (𝜌) =
1

𝑁
𝑢 (𝑡) − 𝑢(̄𝑡)

=

. (19) 

Fig. 2. Block diagram of the velocity form of the PID 
controller. 
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[Step 5] Introduce a prefilter 𝐿. The prefilter is effective when 
the inverse of the reference model is nonproper or when the 
chosen controller structure does not belong to the class of 
controllers that can achieve the reference closed-loop model [4, 
5, 14]. The cost function with a prefilter is described as 

𝐽 (𝜌) =
1

𝑁
𝑢 (𝑡) − 𝐶(𝜌, 𝑧)𝑒 (𝑡)

=

(20) 

with 
𝑢 (𝑡) = 𝐿𝑢 (𝑡), 𝑒 (𝑡) = 𝐿𝑒(̅𝑡). (21) 

 

B. Derivation of the cost function 

Based on (13), the PID gains 𝜌  (𝑗 = 𝑝, 𝑖, 𝑑) are computed as  

𝜌 = 𝑓 (𝑥) = (𝑤 ) 𝜙(̃𝑥, 𝑐) = 𝑤  𝜙 ̃ (𝑥, 𝑐)
=

(22) 

with 

𝑤 = 𝑤 𝑤 … 𝑤 (23) 

𝜙 ̃ = 𝜙 ̃ 𝜙 ̃ … 𝜙 ̃ , (24) 

where 𝑤 (𝑗 = 𝑝, 𝑖, 𝑑) is the LUT parameter for proportional, 
integral, and derivative gains, respectively. From the VRFT 
framework and the LUT structure, the cost function for the 
optimized LUT parameters is given by 

𝐽 (𝑤) =
1

𝑁
𝑑(𝑡) − 𝑤 𝜉(𝑡)

=

(25) 

with 

𝑑 = 𝐿∆𝑢(𝑡) (26) 
𝑤 = [(𝑤 ) (𝑤 ) (𝑤 ) ] (27) 

𝜉(𝑡) =

⎣

⎢⎢
⎡

𝜙(̃𝑥, 𝑐)𝛽 (𝑧)

𝜙(̃𝑥, 𝑐)𝛽 (𝑧)

𝜙(̃𝑥, 𝑐)𝛽 (𝑧)⎦

⎥⎥
⎤

𝑒 (𝑡). (28) 

Since the cost function is convex, the LS method yields the 
optimal solution as 

𝑤∗ = (𝑍 𝑍)− 𝑍 𝐷 (29) 

with 

𝑍 = [𝜉(1) 𝜉(2) ⋯ 𝜉(𝑁)] (30) 

𝐷 = [𝑑(1) 𝑑(2) ⋯ 𝑑(𝑁)] . (31) 

Applying the LS method gives the LUT parameters, but the 
difference between neighboring LUT parameters may become 
extremely large. This leads to sudden changes in the PID gain 
and instability in the closed-loop system. To suppress the 
significant gain fluctuation, the L2 norm is introduced for the 
difference between LUT adjacent parameters. The cost 
function, including the L2 norm, is expressed as 

𝐽 (𝑤) = ‖𝐷 − 𝑍 𝑤‖ + 𝜆‖𝜓𝑤‖ , (32) 

where 𝜆  is a positive constant and a design parameter that 
tunes the relative strength between the sum of the squared 

error terms and the regularization term. Here, cross-validation 
provides an appropriate value 𝜆. The optimization problem of 
the cost function (32) is called the generalized ridge regression. 
When 𝜓  is an identity matrix, (32) is called the ridge 
regression. The second term of (32) is called the total variation 
[19]. It represents the difference between parameters in close 
proximity, and is expressed as 

‖𝜓𝑤‖ = |𝑤 + − 𝑤 |
−

=

− 𝑤 × + − 𝑤 ×

−

=

 

+ 𝑤 + − 𝑤
−

=

. (33) 

The first two terms represent the first axis direction, while the 
third term represents the second axis direction. 𝜓  can be 
expressed by the matrix. The optimal solution of cost function 
(32) can be analytically obtained as 

𝑤∗ = (𝑍 𝑍 + 𝜆𝜓 𝜓)− 𝑍 𝐷. (34) 

Herein k-fold cross-validation is used to directly determine the 
optimal regularization parameter 𝜆  from multiple 𝜆 . For the 
details, refer to the literature [20]. 
 

C. Algorithm 

The algorithm for the direct data-driven tuning of the LUT 
parameters employs the following steps: 
[Step 1] Measure input/output data 𝐷 = {𝑢 (𝑡), 𝑦 (𝑡)|𝑡 =

1,… 𝑁} in an open-loop test. 
[Step 2] Determine the input signals to LUTs (the scheduling 
parameters) 𝑥 , 𝑥 . Set the sizes 𝑀 , 𝑀  and interpolation 
nodes 𝑐 , 𝑐  of LUTs (see Fig. 3). Additionally, the LUT size 
is determined based on the maximum and minimum values of 
the input signals to LUTs. Set the reference model 𝑀  and 
prefilter 𝐿. Similar to previous studies [5, 10, 14], the prefilter 
used in this paper is 𝑀 . 
[Step 3] After calculating (30) and (31) using (26) and (28), 
respectively, minimize the cost function (32) using (34) and 
the cross-validation to find the weight coefficients (LUT 
parameters) of the scheduling function. The proposed method 
can be implemented from the above algorithm. In addition, the 
implementation of the controller uses the LUT-type gain-
scheduled PID controller, as shown in (5)–(9), and the PID 
gains are calculated using (22). 
Remark 1. The previous study [11] for nonlinear system is 
based on FRIT and requires nonlinear optimization, which is 
computationally expensive. The obtained optimal value may 
fall into a local solution. On the other hand, the cost function 
in the proposed method is convex with respect to the tuning 
parameters. Thus, the solution can be uniquely determined 
using the LS method for numerous tuning parameters of LUT, 
which does not require much computation time. 
Remark 2. In gain-scheduled control, abrupt gain fluctuations 
are undesirable because they destabilize the system. The 



 
 
 
 
proposed method can suppress sudden gain changes by 
introducing a cost function, which includes the L2 norm to 
suppress the difference between adjacent parameters. 
Furthermore, cross-validation can automatically obtain the 
design parameter 𝜆. 
Remark 3. Since the proposed algorithm is based on VRFT, 
the stability of the closed-loop system is not guaranteed. This 
is a drawback of the proposed method. However, this is a 
common problem in direct data-driven control, and it remains 
an attractive approach when the system is complex or models 
are unavailable due to development costs (engineering time 
and required hardware) [21]. In the proposed method, the 
generalized ridge regression can suppress the closed-loop 
instability. 

IV. NUMERICAL EXAMPLE 

A. System Description 

The controlled object is the Hammerstein model, which is 
often used to describe nonlinear systems [22]. It has also been 
used as a verification model for data-driven control [11, 14, 
15]. The plant is described as 

𝑦(𝑡) = 0.6𝑦(𝑡 − 1) − 0.1𝑦(𝑡 − 2) + 1.2𝑣(𝑡 − 1)

−0.1𝑣(𝑡 − 2) + 𝜉(𝑡)

𝑣(𝑡) = 1.5𝑢(𝑡) − 1.5𝑢 (𝑡) + 0.5𝑢 (𝑡),

(35) 

where 𝜉  is white noise with variance 1×10−3. The reference 
model [11, 14], which has a time constant of 2 s, is given as  

𝑀 (𝑧− ) =
0.399𝑧−

1 − 0.736𝑧− + 0.135𝑧−
, (36) 

The inputs to LUT (scheduling parameters) are given by 

𝑥 (𝑡) = 𝑦(𝑡), 𝑥 (𝑡) = 𝑦(𝑡)(1 − 𝑧− ). (37) 

The sampling period is set to 1 s. These system settings are the 
same as the literature [11, 14].  
 

B. Simulation Results and Discussion 

The results are described based on the algorithm shown in 
Section IIIC. In Step 1, a chirp sine signal (frequency 0–0.5 
Hz, amplitude 1.75, offset 1) is applied to the input. The 
frequency band is determined based on the time constant of 
the reference model and the sampling period. Then the 
input/output data are measured. Fig. 4 shows the initial 
input/output data obtained by the open-loop test. A total of 
800 data points are collected. The number of the fold for the 
cross-validation is set to 2. In Step 2, the grid spacing of LUT 
is set to 1.0, and the LUT size is defined as 𝑀 =

13 (range: −5 to 7) and 𝑀 = 11 (range: −5 to 5). That is, 
𝑐 = [−5,−4, … , 6, 7] and 𝑐 = [−5,−4, … , 4, 5]. The input 
signals to the LUTs are shown in (37). Similar to other VRFT 
studies [5, 10, 14], the prefilter 𝐿 uses 𝑀 . In Step 3, the LUT 
parameters are tuned from the data. Fig. 5 shows the tuned 
LUTs for the PID gain by LUT-VRFT-Ridge. The obtained 
LUTs consist of 𝑥 -, 𝑥 -, and 𝑤 (𝑗 = 𝑝, 𝑖, 𝑑) -axes, where 
𝑤  is the LUT parameter for each PID gain. The lengths of 

𝑤  and 𝑤  are 143 ( = 𝑀 𝑀 ) and 429 ( = 3𝑀 𝑀 ), 
respectively. The obtained 𝜆 is 0.5. We can confirm that many 
parameters are tuned. Finally, the controller is implemented. 
The PID gains are adapted according to 𝑥 using the obtained 
LUTs (see (22)). Fig. 6 shows the time series data after the 
LUT parameters are tuned from the measured input/output 
data. For comparison, the time series data are shown when 
using the CHR method, which is a classical PID gain tuning 
method, the standard VRFT (fixed PID gain), VRFT for LUT 
applying the LS method (LUT-VRFT-LS), and VRFT for 
LUT with the generalized ridge (LUT-VRFT-Ridge). As 
reported previously, the PID gains obtained by the CHR 
method were Kp = 0.059, Ki = 0.058, and Kd = 0.0038 [11, 15]. 
The fixed PID gains obtained by VRFT were Kp = 0.0862, Ki = 
0.1597, and Kd = 0.0037. From the top, the output, input, 
proportional gain, integral gain, and derivative gain are shown. 
Table I shows the value of the cost function (2), which 
indicates the tracking error performance, for CHR, VRFT, 
LUT-VRFT-LS, and LUT-VRFT-Ridge. The response was 
very slow in the CHR method. A comparison with the 
standard VRFT and LUT-VRFT-LS confirmed that LUT-
VRFT-LS had a PID gain, which changed based on the 
scheduling parameters. The response with LUT-VRFT-LS 
followed the desired response. Comparing LUT-VRFT-LS and 
LUT-VRFT-Ridge demonstrated that the overshoot in LUT-
VRFT-Ridge was smaller than that in LUT-VRFT-LS, and the 
PID gain in LUT-VRFT-Ridge had a smoother change than 
that in LUT-VRFT-LS. Next, we checked the effect of lattice 
spacing of LUTs. Table II shows that the closed-loop stability 
depended on the lattice spacing. The system in the LS case 
became unstable as the lattice spacing decreased. This was 
attributed to an increase in the LUT parameters, which led to 
overlearning. On the other hand, the closed-loop system 
became stable when the generalized ridge generated optimal 
parameters. These results confirm the effectiveness of the 
proposed method.  

 

 
Fig. 4. Time series data under an open-loop condition. 

 

 
Fig. 5. Tuned LUTs by the proposed method. 
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TABLE I. RESULTS OF THE TRACKING ERROR 

Fixed (CHR) 1.548×10−1 
Fixed (VRFT) 5.562×10−2 

LUT-VRFT-LS 2.557×10−2 
LUT-VRFT-Ridge 1.173×10−2 

 
TABLE II. CLOSED-LOOP STABILITY  

Interval LS Ridge 
2.0 Stable Stable 
1.0 Stable Stable 
0.5 Unstable Stable 

 

 
Fig. 6. Time series data with the proposed method. 

V. CONCLUSION 

Here, we proposed a direct data-driven design for the gain-
scheduled controller, which consists of LUTs. First, a cost 
function was derived based on VRFT to tune LUTs. The 
optimized parameters were obtained by the LS method. Next, 
the L2 norm of the magnitude of the difference between 
adjacent LUT parameters was introduced to prevent 
overlearning. The proposed method enabled LUT parameter 
tuning from plant input/output data without a system model. 
Moreover, the analytical solution could be obtained using the 
generalized ridge regression. A numerical example 
demonstrated that the proposed method could generate 
numerous LUT parameters without knowledge of the 
controlled object’s characteristics. Moreover, using the cost 
function with the L2 norm avoided overlearning. Consequently, 
the proposed method eliminates the need for trial-and-error 
LUT parameter tuning. In the future, we will analyze for noise, 
compare LUTs obtained by the proposed method and a model-
based approach, and apply the proposed approach to industrial 
systems such as automobiles.  
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