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Dispersive RAYLEIGH Waves in a Layer Overlying 
a . Half Space 

K yozi T AZIME 

(Received Sept. 30, 1962) 

Abstract 

The' characteristic equation, displacement potentials and displacements appro­
priate to the topic have been expressed with reflection coefficients in references 1) and 
2). Numerical values of reflection coefficients for some geological conditions given in 
Table 2 of reference 2) are illustrated in Figs. 2 to 5 of that paper. 

Now several properties of dispersive RAYLEIGH waves may be investigated in 
reference to that table. 

1. Dispersion curves as to phase veloCity 

According to the consideration given in 2), real roots in the characteristic 
equation must exist in regions (iii), (iv) and (v). 

(iii) VS2 > C > VPI 

In agreement with reference 3), the charac1:eristic equation can be 
expressed in the next form, 

or 

[12 - sin2 ~ {(.81 + ( 1) H + E} T'2 = =+= (A r)1/2 sin ~ {(.8r-aI) H -I- E'} (1.2) 

where 

12 = ~ {I + A r =+= (I-A2)1/2 (l-p)I/21 for .LJ'BC <: 0, (1.3) 

in which numerical value of I may be seen in Fig. 1. 
An exmaple of graphical solution of (1.1) is shown In Fig. 2 where the 

left hand side of (1.1) is so drawn with thick lines that it will coincide with 
cost{(.81+al)H+E}ifl=1. On the other hand, the right hand sides having 
negative or positive sign are drawn respectively as a thin full ora thin broken 
line in this figure. 1,'hus roots of (1. 1 ) are classified into two groups, respective­
ly indicated by black and white circles. 
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Fig. 1. The graph of 1 given by (1.3). P2/Pl= 1, Vp2/vp1=4, 0'2=0.25. 
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Fig. 2. An example of graphical solution of the characteristic equation. 

P2/P1=1, Vp2/VP1=4, 0'1=0.48, 0'2=0.25, c/vp1=1.5. 

(iv) and (v) vP1>c 
In these regions shapes of dispersion curves are rather more simple than 

that of (iii). Special considerations will be omitted here. 
Dispersion curves are illustrated by thick full and dotted lines in Figs. 

3 to 6 for several cases tabulated in Table 1 in which primes mean figures 

~\ '0.25 0.48· 0.50 

0.25 Fig. 3 Fig. 4 chain lines in Figs. 3 and 4 

0.48 Fig. 5 Fig. 6 no real root 

0.50 Fig.S' Fig. 4' I chain lines in Figs. 4' and 5' 
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Fig. 4. cr1 =0.48. cr.=O.25. 
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Fig. 5. 0'1=0.25, 0'2=0.48. 
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Fig. 6. 0'1=0.48, 0'2=0.48. 
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in reference 4). The thick full line shows the trace of the black circles while 
the thick dotted line does that of the white circles indicated in Fig. 2. 
Chain lines, on the other hand, are dispersion curves for normal mode waves 
in a liquid layer overlying a solid bottom .. It must be noted in this stage 
that thick full and dotted lines should exchange their classifications with each 
other whenever they cross chain lines. This fact will be called "the first 
rule for construction of dispersion curves". 
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2. Transition from solid-solid to liquid-solid surface waves 

""'hen POISSON's ratio 0"1 becomes 0.50, 

BC=B'C'=O, A=D= -1 and D'=l. 

In this case, the characteristic equation obtained in reference 1), 

M = 1- {AA' e-2i"'lH+DD' e-2i /ll H 
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+ (B'C' -A 'D')e-2i ("'1+.91 )H +2 B'C e-i ("'1+fl1)H} = 0 , (2.1) 

will be reduced to 

or 

. cos ~1 H = 0 that is ~] H = ; (2m + 1) (2.3) 

. Eq. (2.2) is nothing but the characteristic equation for normal mode waves 

in a liquid layer overlying a solid bottom and is shown by chain lines in Figs. 
3 and 4. Eq. (2.3), on the other hand, coincides with the characteristic equation 
of LOVE waves when fL2/fL1 becomes infinitely large. Even orders of (2.3) are 
shown by thin full lines and odd ones by thin dotted lines in Figs. 3 to 6. 

One may see in reference 3) that (2.2) and (2.3) have the next combina­
tions with each other, 

but 

odd orders of (2.2) with even orders of (2.3) 

,ven oed", of (2.2) wi'h odd oed'" of (2.3). } 
(2.4) 

These combinations of (2.4) will be called "the second rule for construction 
of dispersion curves", because (2.2) and (2.3) might be taken as base lines for 
general dispersion curves. 

One sees again in Figs. 3 and 4 that the nearer 0"1 approaches to 0.50, the 
larger part of thick lines coincides with thin lines which are taken as base lines. 
Moreover, it may be expected that amplitudes in (2.3) will be zero when 0"1 be­
comes 0.50. These circumstances are similar to that of the case when 0"2=0.50 

described in reference 4). 

3. Transition from solid-solid to liquid-liquid surface waves 

Two different courses can be taken into consideration for this transition 
as shown by Fig. 7. Transitions from solid-solid to liquid-solid and from solid­
liquid to liquid-liquid can be recognized with real roots of the characteristic 
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equation, as one has seen III the previous section. These -transitions are 
indicated by full lines in Fig. 7. On the other hand, transitions from solid­
solid to solid-liquid and from liquid-solid to liquid-liquid must be recognized 

Fig. 7. Two courses of the transition from solid-solid to liquid-liquid 
surface waves. 

with complex roots of the characteristic equation, as one may see in reference 
5). Those transitions are connected by dotted lines in Fig. 7 where thick 
lines mean transitions already investigated but the thin one does a transi­
tion which has not yet been studied numerically. 

4. Dispersion curves as to group velocity 

From now on, in the present paper, POISSON'S ratio 0"2 will be fixed to 0.25. 
Group velocity has been obtained graphically from dispersion curves as to 
phase velocity and is illustrated by thick lines in Figs. 8 and 9, where thin 
chain lines indicate group velocities for liquid-solid waves. The part which 
has steep inclination corresponds to that part for the phase velocity curve coin­
ciding approximately with (2.3). 

Since amplitudes of that part will become zero when 0"1 reaches 0.50, 
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a group velocity curve for liquid-solid waves will be constructed from that 
for solid-solid waves of various orders. 

In Fig. 9 the group velocity curve for the fourth order, for example, is 
very complicated, because one part of it is affected by liquid-liquid waves of 
the first order but the other part is affected by those of the second order. 

Sometimes extremely small group velocity appears in dispersion curves 
when G'l approaches to 0.50. However this phase may be neglected, because it 
can not be propagated even if it has a large amplitude . . 
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5. Discussion on amplitudes 

Expressions for displacement potentials have had a common coefficient 

I/M~(w, ~). 

Now 

M (w,~) = M (e,~) = 0 (5.1) 
in which 

(5.2) 

From (5.1) and (5.2), one sees 

U _ _ ~w _ M~ (w, f) 
- d~ -- M w (w, ~) and U-c de M~ (e, ~) 

-~-. = d~ =- Me (e,~) (5.3) 
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Therefore 

M~ (c, ~) . M", (w,~) ___ 1 . ~ __ 1 (' 1- ~) 
M~ (w, ~) Me (c, f) - U d~ - f U' 

Taking ~ as a constant, however, one has 

f M", (w, ~).= Me (c,~), 

because a wla c = ~ from (5.2) . 

Inserting (5.5) into (5.4), one obtains 

where M~H means aMla (fH). 

(5.4) 

(5.5) 

Here one must recall to mind that oM (c, ~)la(~H) has been already given 
in Fig. 2 in the process of getting dispersion curves. Thus the common 
coefficient is to be easily obtained, at least logically. Unfortunately the rela­
tion between the common coefficient and period is not so simple in cases of 
solid-solid waves that one must take special care in numerical calculations. 

Another difficulty exists in the expression of displacement potential in 
which coefficients containing only E and z are not separated from each other. 
In region (iii), displacement potentials may be rewritten as 

[<PIJM~O= - 7t (iiI Md-l {@ sin iiI E sin iiI Z + @cos iiI E cos iiI z 
+© sin iidE + z)} , (5.7) 

['1hJM~O= i 7t (iiI M~)-l {- @sin iiI E sin ~l z 
+ ® cos iiI E cos ~l Z + CD sin iiI E cos ~l Z + ® cos iiI E sin ~l z) 

(5.8) 
where 

@= (I-A) (sin®-rsin~), @= (l+A) (sin®+rsin~), 

© =- (A cos ®+rcos~) , @ =B(cos®+rcos~)+(l-A)B'ei<, 

® =B(cos®-rcos~) +(l+A)B'ei', CD =B(sin®-rsin~), 

®=B(sin®+rsin~) . 

But, @' @ .... , ® are also altered considerably with change of period. 
Therefore the numerical value of (M~)-l @' for instance, needs precise 
calculations of M~ as well as of @' 

If CT~ becomes 0.50, 
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E+E' - 371', cos (al H+E) - 0 or cos filH - 0 

sin®-rsin~-2 cos~lHsin (alH+E) , 

sin ®+r sin ~-... 2 sin ~l H cos (iiI H +E) , 
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A cos ®+rcos ~-- 2 cos filH cos (alH +E) 

On the other hand, 

M~H(C, t)-...-2{ (?i1/t) cos ~lH sin (alH +E) + (~l/t) sin f3lH cos (alH +E)} '. 

Therefore the first term is most important on the left hand side of (5.7) 

whilst C'I/'\]M=O may be trivial when 0""1 approaches to 0.50. . 
The coefficient of sin alE sin alz alone has been calculated here when 

0""1 =0.48, because the amplitude of [(?l]M=O in . region (iv) has been found 
also trivial. 

If the original displacment potential is not sinusoidal but a pulse, [CPl]M=O 
must be proportional to 

;rl/2 U (Id U/dwl)-1/2 T (5.9) 

when dU/dw is different from zero. In Fig. 10, 

(c- U) Vpl-
l (ul/1;)-l {Mw (c, 1;) }-l(sin ® - r sin ~) (5.10) 

is illutstrated by appropriate width of group velocity curve. The upper 

• 
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10 

Fig. 10. Approximated amplitude of <P .. when a"1=0.48 and a"2=0.25. 
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shadow zone exhibits (c-U)/vPl for liquid-solid waves of the fundamental mode 
on its group velocity curve, using the same scale as (5.10). 

It must be noted in Fig. 10 that the property of band-pass is more 
apparent for <T~ =0.48 than for 0.50. Some period having predominant 

amplitude coincides nearly with TVPl/H =4/(2l+ 1) and another with TV'l/H =4/ 
(2m + 1). 

It has been a matter of surprise that plots of observed group velocities 
are often partial to either side of the minimum group velocity. This question 
may be recognized in Fig. 10 which shows amplitudes will predominate 
partially on either side of it. 
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