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On the Distribution of Ground Temperature at 1 m Depth 
Influenced by Various Heat Sources (Continued) 

Akira SUGAWA 

(Received Nov. 8, 1963) 

Abstract 

In the previous paper;') the writer sought the distribution of ground temperature 
at 1m depth influenced by ascending hot water in a fissure, which intersected at 
right or any angle with the ground surface. In this paper, discussions were made on 
the ground temperature in the. presence of a hot water flow parallel to the ground 
surface. 

5. .Distribution of the ground temperature at 1m depth influ­
enced by a hot water flow parallel to the ground surface 
when the ground surface temperature is held at zero 

In this paper, the writer considered a case in which the heat source was a 
hot water flow parallel to the ground surface. Previously, as a model of hot 
water flow, YUHARA2 ) selected a cylinder with constant temperature runing 
parallel to the ground surface. The writer employed, an elliptic cylinder 
instead of a cylinder. The writer is. of the opinion that an elliptic cylinder 

is closer to the natural state than the cylinder. The model adopted in this 
chapter was an elliptic clyinder with a constant temperature running parallel to 
the ground surface, while the ground surface temperature' was held at zero. 

5. 1. Differential equation and boundary conditions 

When the temperature of the elliptic cylinder is constant, the ground 

temperature does not change in the direction of the axis of the elliptic cylinder. 

Accordingly the model adopted in this chapter may be considered as a two 

dimensional problem as shown in Fig. 5-1. Now, ifT is the ground temperature 

at any point in the ground as in Fig. 5-1, and when T is considered as a steady 
temperature, the differential equation for T is 

(5-1) 

where x and y axes are selected as in Fig. 5-1. 
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Fig. 5-1. A schematic map of the model. 
Fig. 5-2. A schematic map of model 1. 
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If b is the depth of the center of the ellipse in Fig. 5-1. The boundary 
conditions are given by 

at (5-2) 

at (5-3) 

where To is the constant temperature of the hot water of the heat source; Xo and 
Yo are respectively major and minor axes of the ellipse. 

5. 2. Approximation of the model 

If the· temperatures of two ellipses of model I in Fig. 5-2 are taken 
respectively as To and -To ,and the distance of the centers of the two ellipses is 
2b, model I satisfies the two boundary conditions (5-2) and (5-3). And if the 
ground temperature in model I is considered as a steady temperature, model I 

becomes the same as Fig. 5-1. Here the writer considered model I as the 
model of Fig. 5-1, and a discussion on model I was made as follows. If one takes 

the centers 0 and 0' of the two ellipses as the origins of (x, y) and (x', y') coord­
inate systems as shown in Fig. 5-2, and models II and III may be selected as 
the following models. Namely, model II has two ellipses with the temperatures 

To and zero placed at 0 and 0' respectively; model III has two ellipses with the 
temperatures -To and zero placed at 0' and 0 resepctively as shown in Fig. 

5-3. The positions of 0 and 0' of the all models denoted in this chapter are 
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Fig. 5-3. Division of model I. 

the same as shown in Fig. 5-,2. 
Now, if the ground temperatures for models II and III are respectively 

T' and T". T may be expressed as 

T=T' + T" (5-4) 

T' T, T: 

,.~----- ........ 
f ' ( 0 ) 
, ~f 

.... _--------

IT n-I 0-2 

Fig. 5-4. Division of model II. 

Furthermore, if models II-I and II-2 are respectively defined as an 
ellipse with temperature To placed at 0, and two ellipses with temperatures 
'-To' and zero exist at 0' and 0 as shown in Fig. 5-4. Let the ground temper­
atures for models II-I and II-2 be Tl and T2' respectively.' T' may be 
expressed as 
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(5-5) 

The above temperature To' is the distribution of the ground temperature 
on the ellipse with the center 0' influenced by the ellipse with the temperature 

To in model II-I. When the depth of the ellipse is considerably large, the 
distribution of To' approaches a constant temperature. In,this case, To" which 

is the temperature at 0' may be employed for To'. In model II-2, the 
distribution of the ground temperature on the ellipse with the center 0 is de­

fined as zero. But, when b is considerably large, To' may be considered small, 
then the temperature at 0 influenced by the ellipse with the temperature -To' 

which exists at 0' may be considered near to zero. Therefore model II-2 

"" .... ----- ........ 
I , 

\, ~/ 
-----

T' T, T. 

CY C) 
n B-1 n-2' 

Fig. 5-5. Approximation of model II. 

approximats to modle II-2' in Fig. 5-5; and if T2 is the ground te]Uperature 
for model II-2'. (5-5) may be expressed approximately as 

(5--6) 

In the same way, model III may be approximately divided into models 

III-I and III-2 as shown in Fig. 5-6. Models III-l and III-2 correspond to 

the cases where the temperatures of the ellipses in models II-2' and II-I are 

-To and To" respectively. And T" is given by 

(5-7) 

where T3 and T4 are respectively the ground temperatures for models III-l and 
1II-2. 

Accordingly, it follows from (5-4), (5-6) and (5-7) that 
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Fig. 5-6. Approximation of model III. 

(5-8) 

The region in which (5-8) can be used will be explained below in Section 

5.4. 

5. 3. Solution for the model of Fig. 5-7 

The solution for the model of Fig. 5-1 may be found by solving each of the 
above four models. Each ellipse of the heat source is placed in the 'external 
ground as shown in Figs. 5-5 and 5-6. Let Fig. 5-7 be the model in which 
ellipse with constant temperqture is placed in the uniform ground. The above 
model are respectively the same as in Fig. 5-7. The solution fot'the model of 

Fig. 5-7 will be dealt with first. 

y 8 

-t-----::o+---~+-- x 

Fig. 5-7. A schematic map of the model. 

Now, if X and y axes are selected as in Fig. 5-7, and if the ground 
temperature {} is considered as a steady temperature, the differential equation 
and boundary conditions for () may be obtained by 
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(5-9) 

at (5-10) 

at (5-11) 

where eo is the constant temperature of the ellipse, Xo and Yo are the same 
notations as in (5-3), and xo' and Yo' are very large values compared with Xo and 

Yo· 
Next, considering the following conformal transformation 

z = ccoshw 

z = x + iy 

w=u+iv 

(5-12) 

} (5-13) 

where c is the focal distance of the ellipse. From (5-12) and (5-13) 

x + i Y = c (cosh u cos v + i sinh u sin v) (5-14) 

Hence x and yare expressed by 

x = c cosh u cos v 

y = c sinh u sin v 

Therefore, from (5-15) one gets 

1 (5-15) 

(5-16) 

(5-16) is an equation of an ellipse in which major and minor axes are 

respectively c cosh u and c sinh u. 

Putting 

and 

Xo = c coshuo 

Yo = c sinhuo 

X o' = c cosh uo' 

Yo' = c sinh uo' 

} (5-17) 

} (5-18) 

the boundary conditions (5-10) and (5-11) in the x-y plane are transformed to 
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at u=uo 

at u=uo' 

(5-19) 

(5-20) 

where uo' is very large in comparison with uo. And the differential equation 

(5-9) is transformed into the u-v plane as in the following equation: 

02 0 02 0 
~+~=O (5-21) 

. where the regions of u and v are uo~u::;;,uo' and O~v::;;'7t respectively. 
In Fig. 5-7, since the ellipse of the heat source is symmetrical for x axis, 

a tangential line of an isothermal line at y=O must intersect with x axis at 
right angle, and the positive anq. negative parts of x axis correspond to v=o 

and 7t. Then, from the relation that the wand z planes are conformal to each 

other, in the u-v plane it is found that isothermal lines at v=o and 7t are 
perpendicular to the u axis and the straight line V=7t. 

In a two dimensional plane, if an isothermal line is perpendicular to a 

given line, heat does not flow across the given line. Accordingly the model of 
Fig. 5-7 may be transformed to the model of the u-v plane as shown in Fig. 
5-8. Namely, the model is such that the heat does not flow to the outsides of 

v 

.. 

8. o 

o '---.L
u
.-------· -u~ U 

Fig. 5-8. Conformal transformation of the model. 

the u axis and the straight line V=7t, and from (5-19) and (5-20)the tempera­

tures at u=uo and u=uo' are respectively 00 and zero. For the model of Fig. 

5-8, it is such that the value of oO/Ov in the rectangle uo~u~uo', O<v<7t is 

equal to zero, and (5-21) becomes 

d2 0 
([U2 = 0 (5-22) 

From (5-19), (5-20) and (5-22), one gets 
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() = _-:-{)-,O __ (UO' - U) 
U O' - U o 

where U is expressed from (5-16) by the following function of x and y: 

. lx2 + ),2 - c2 -+- v' (x2 + y2 - C2)2 + 4 c 2 y2 11/2 
U = smh-l 

. 2 c2 

5. 4. Solution for the model of Fig. 5-1. 

(5-23) 

(5-24) . 

By use of (5-23) and (5-24), one can immediately get the solutions for 
models II-I, II-2', II-3 and II-4. The solutions for Tl and Ta are 

(5-25) 

(5-26) 

where the origins of u and u'coordinate systems correspond to 0 and 0' in the 

x-y plane as in Fig. 5-2.· 

In model II-2', let u o" be defined as the value of u' at which T2 becomes 

zero. T2 and T4 may also be given by 

(5-27) 

T" T4 = _~O __ (u" -u) 
uo" __ Uo 0 

(5-28) 

where To" is the ground temperature at 0' in model II-I; let u1 be the value 
of u at 0' in the same model, from (5-25) To" is expressed by . . 

(5-29) 

Substituting (5-29) into (5-27) and (5-28), T2 and T4 become 

T 2 = - To uo' - U 1 (uo" - u') (5-30) 
uo' - Uo uo" - Uo 

T4'= To uo' - uJ (uo" - u) (5-31) 
uo' - Uo U O

H 
- Uo 
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However the distance between 0 and 0' is 2b in the x-y plane, when xo' 

and Yo' are taken much larger than b, it may be considered that the ellipse of 
the outer boundary condition in model II-I corresponding to (5-11) agrees with 

that in model III-I. Accordingly the outer boundaries of model II-I and 

III-I, inside which the ground temperatures are given by (5-25) and (5-26) 
respectively, are expressed by one ellipse, and (5-25) and (5-26) can be 

summed up in the region uo-s;,(u or u')-s;,uo'. Simmilarly the outer boundaries 
of models II-2' and III-2 are also given by one ellipse, (5-27) and (5-28) can be 

summed up in the region uo-s;,(u or tt')-s;,uo". And, since To is larger than To", 

uo' becomes larger than uo\ (5-30) and (5-31) can not use in the region uo" 

«u or u') -s;,uo'. Then (5-25), (5-26), (5-30) and (5-31) can be summed in 

the region (u or u')-s;,u", and in thus regions of u and u', it follows from (~25), 
(5-26), (5-30) and (5-31) that 

) (u' - u) (5-32) 

where u is expressed by (;5-24) and u' is given by 

. {X'2 + y'2 _ c2 + 1/(x'2 + y'2 _ C2)2 + 4 c2 y'2 }1/2 
1/ =smh-1 

. 2 c2 
(5-33) 

Now, let the new coordinate axes be selected as Fig. 5-9 in which x-axis is 
taken along the ground surface and y-axis passes the center of the ellipse of the 

heat source. By comparing Fig. 5-2 with Fig. 5-9, it is found that the each 

distance between the origin of the new coordinates system and 0 or 0' isb, all 

the x-axis of the each coordinates system are in the same direction, and the 

o K 

II. 
b : 

Fig. 5 9. New space coordinates under consideration. 
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directions of each y-axis are the same or opposite as shown in the figures. 
Accordingly, from (5-24) and (5:-33) u and u' are expressed by the following 

equation of new coordinates x and y : 

. Let UY~l and U'Y~l be respectively the values of u and u' at y= 1m. 
from (5-32) the ground temperature TY~l at 1 m depth becomes 

and from (5-34) and (5-35), UY~l and U'Y~l are given by 

(5-34) 

(5-35) 

Then, 

(5-36) 

_. _ljX2+(b-l)Lc2+V{x2+(b-l)2-c2}2+4c2(b-l)1: }1/2 
UV~l - smh l 2 . 2c 

(5-37) 

(5-38) 

5. 5. Results of numerical calculations 

By use of (5-36), the distribution of TY~l can be sought. But, since it is 

difficult to determine exactly the values of uo' and u o", the writer calculated the 
value of (u'Y~CUY~l) in (5-36) and showed the results of numerical calculations 
in Fig. 5-10. The focal distance and depth of the ellipse used for the calcu­
lations are 

c = 25, 50, 100, 200 m 

b = SO, 100, 200, 300, 500, 700, 1,000 m 

In order to clarify the relation between the curves TY~l and (U'r~l -UY~l)' 
taking the logarithms of both sides of (5-36), one has 
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Fig. 5-10. Examples of UY~l'-Uy~l curves for x. 

(5-39) 

Hence it is found that the loglo (U'Y~l -UY~l) and IOglO (TY~l) curves drawn in 
the ordinary section paper must be parallel, and the interval of the two curves 

is 10glO {To/(uo'-uo)}{(1+(UO'-Ul)/(UO"-uo)}' Then, if the curve of observed lOglO 
(TY~l) is parallel to the loglo (u' Y~l -UY~l) curve, band c for the loglo (u' Y~l -UY~l) 
curve are those of the ellipse of the heat source governing the above 10glO(TY~1) 
curve. Thus, one can determine the depth and focal distance of the elliptic 

cylinder of the heat source. 

6. Distributio'n of the ground temperature at 1m depth influenced 
by the hot water flow parallel to the ground surface when 
Newton's cooling is held at the ground surface 

For the boundary condition at the ground surface, the case holding New­
ton's cooling is more common than the case described'in Chapter 5. The follow­

ing is a discussion in case Newton'scooling is held at the ground surface and the 
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elliptic cylinder with constant temperature To runs parallel to. the ground 
surface as in Chapter 5. 

6. 1. Differential equation and boundary conditions 

When the elliptic cylinder of the heat source with. the constant temper­
ature runs parallel to the ground surface, the model is treated as a two 
dimensional problem as in Chapter S. Then, if T is the ground temperature 

of any point, and if T is considered a steady temperature, the differential 

equation and boundary conditions for Tare 

'OT =hT 
'Oy 

at 

at 

(6-1) 

(6-2) 

y=o (6-3) 

where x and y axes are selected as shown in Fig. 6-1; xo, Yo and b are the same 
notations as used in Chapter S. And h is 

h' 
h=­

k 
(6-4) 

where h' is the constant of Newton's cooling, and k is the thermal conductivity 
of the ground. 

0 Ground 6urface 

I!' 
x 

T 

b 

Fig. 6-1. A schematic map of the model. 
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In the following discussion, temperature zero is taken as the atmospheric 

temperature. 

6. 2. Approximation of the model 

Now, one calls the model of Fig. 6-1 as model 1. And if Tl and T 2' are 

respectively the ground temperatures for models II and III in Fig. 6-2, the 

ground temperature T for model I may be given by 

(6-5) 

o 
ICT,+T:l_ hT• 

dY - t :~ =hT 

I 
b T T, T: 

CY ------, , 
I 0) 
" ---- -_ .... 

II ][ 

Fig. 6-2. Division of model 1. 

In the above ~odels, model II is such that an ellipse with the temperature 

To is placed at depth b and the temperature of the ground surface i3 held at 
zero; model III is such that the temperature of the ellipse at depth b is held 

at zero and the boundary condition at the ground surface is as follows: 

o(Tl + T 2') = h T ' 
oy 2 

at 

Model II is the same as Fig. 5-1 in Chapter 5, and it is difficult to solve 

model III exactly. Then the writer considered an approximate model for 

model III, and employed model IV in Fig. 6-3 as the approximate model. On 

the boundary condition of model IV, the writer considers only the ground 

surface, and the condition is 

at y=O (6-7) 

where T2 is the ground temperature for model IV. 
Hence the difference between models III and IV is the condition at depth 

b. For modles III and IV; the temperatures of the ellipses at depth b are zero 
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d(T,+T,'}_ nT' 
d ~ - , 

d(Td;T,) = nT, 

T: T, 

, 
( ~) 
" -----_ ... 

ill W 

Fig. 6-3. Approximation of model III. 

or not zero respectively. But, if the temperature of the ellipse in model IV at 
depth b is very small in comparison with To, model IV may be used for model 
III. This problem will be made clear below in Section 6. 4. 

By the above approximation, T is given by 

(6-8) 

6. 3. Solution 

Since the writer considers T and Tl as steady temperatures, from (6-8) 
T2 is also considered as a steady temperature. Then the differential equation 
for T2 is 

From (6--7) the boundary condition is 

'O(TI + T 2) -hT 
--'O-y--- 2 at 

(6--9) 

y=o (6--10) 

In order. to be satisfied (6--10), one expresses T 2 in the following definite 
integral as 

T 2 = f~ A e-I-.y cos A. x d A. (6-11) 

where A is an unknown constant. And (6--11) clearly satisfies (6--9). 
From (6--11) 

( 'OT2) = -A.Joo A COSA.xdA. 
'Oy y=o 0 

(6--12) 
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(6-13) 

From (5-32) 

( 
aTl ) 
ay y=o 

=2sb [ 
x2+b2+C2+V(X2+b2-C2)2+4 b2 C2 J1 /2 

{(x2+b2-C2)2+4 b2 C2} {x2+b2-C2+ V (x2+b2-c2)2+4 b2 c2} 

(6-14) 
where 

(6-15) 

When clb is less than 1j2, (cjb)4 is less than 1/16. Then in the case (clb)~ 
1/2, by expanding (6-14) and neglecting terms over the order of (clb)4, (6-14) 

becomes approximatly 

2 b2 c2 } -

(x2+b2_C2)2 

(6-16) 
Substituting (6-12), (6-13) and (6-16) into (6-10) 

=h J~ A COSA.xd\, (6-17) 

Therefore 

Joo 2 s b { c2 2 b2 c2 
} 

o A (\'+h) COSA.xd\' = (x2+b2-C2) 1 + 2 (x2+b2_C2) + (x2+b2_C2)2 

(6-18) 
Expressing the right side of (6-18) by Fourier's integral, one gets 

2 s b { c2 2 b2 c2 
} 

(x2+b2-C2) 1 + 2 (x2+b2-C2) + (x2+b2_C2)2 

= ; [d\' [ (y2!;2~C2) {1 + 2 (y2:~2_C2) (1 - - y~ _ c2 )} 
1 + b2 

x cos \, y cos A. x d y (6-19) 
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Since the region of y is from 0 to 00, and for y which is much larger than 
b; the value of ( ) in { } of the right side in (6-19) is considered as 1. 

Thus, the writer made the following rough approximation: 

(6-20) 

By using (6-20), the definite integral for y in (6-19) becomes approximately 

'- 'ltsb 
-;' 4 'lIb2 ~ c2 

(6-21) 

Putting 

'vb2 ~ c2 = B (6-22) 

it follows from (6-18), (6-19) and (6-21') that 

J
oo s b JX> ( 4 B2 + c2 c2 'A. ) 
o A (h+ 'A.) cos 'A.x d'A. = 2B 0 B2 + -B- e-BI.. cos A.x d'A. 

(6-23) 

Accordingly the unknown constant A is obtained from (6-23): 

(6-24) 

Substituting (6-24) into (6-11), T2 becomes 

Joo s~ ( 4 B2+C2 _C2'A.) e-(B+y)1.. T - ~. + cos \ox d'A. 
2 - 0 2B B2 B h + 'A. 

(6-25) 

Expanding l/(h+'A.), (6-25) becomes 

T =~ Joo I( 4 B2 + c2 ) _1_ -( 4 B2 + c2 _ c2 h ) 
2 2B l B2 h + B2 B o 

x (~ ~ + ~:-""")1 e-(B+y)1.. cos \.x d'A. (6-26) 

Hence, by integrating each term in (6-26) from 0 to 00, one gets 
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.. J] 
(6-27) 

Then it follows from (5-32), (6--8), (6-15) and (6-27) that 

, S b [ 4 B2 + c2 cos( tan-
1 

B: y ) 
T = S (u - u) + 2B ( B2 ) h {(B +y)2 + x2J1/2 

x [ cos( 2 tan-
1 B-}y) + 2! cos( 3 tan-

1 ~ ) l] 
. h2 {(B + y)2 + X2} h3 {(B + y)2 + X2}3/2 _ ...... J (6-28) 

Putting 

tan-1 ~x~ = 0 
B+;y 

h {(B + y)2 + X2}I/2 = Y 
} (6-29) 

(6-28) . becomes 

T=s(u'-U)+~(( 4B2+c
2

) cosO +( 4B2+C
2 

2B 1 B2 y B2 
_ C~h) 

x (_ cos 2 {j + 2! cos 3 (j _ ...... )} 
y2 y3 (6-30) 

Now, let T y4, uY=l> U'Y=l' 0Y=l and YY=1 be respectively the ground temper­
ature at 1 m depth, the values of u, u', {j and y at y= 1 m. From (6-30) 

TY=l is given by 

(6-31) 

where U Y=l and U Y=l are expressed by (5-37) and (5-38) respectively, 0Y=l and 

r)'=1 are given by 
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X 
°Y~l = tan-1 B + 1 

rY~l = h {(B + 1)2 + X2}I/2 

6. 4. Results of numerical calculations 

} (6-32) 

The value of TY~l/s is calculated from (6-31), and Fig. 6-4 indicates 

examples of numerical calculations. The constants used for the calculations 

are as follows: 

h = 0.15m-1 3) 

c = 25, 50, 100, 200 m 

b = 50, 100, 200, 500, 700, 1,000 m 

19 sa 1960 

100 200 300m 

0:=21. 

,= r------:--=s::::;;':'S;;;;;:;=200m 
300 
100 

,0 100 200 300 400 500 II'! 

c=IOO m 

1500rn 
'00 
200 

00 
r----------=:::::;;::;:::::::::~gg. 

000 
100 

100 200 300 400 600 800 700 m 

c=200111 

500m 

~--------__ ~====~~~~700 
1000 

Fig. 6-4. Examples of Ty_i/s curves for x. 

In the same way as described in Section 5. 5, by comparing the curve of 

observed TY~l with the TY~l/s curve, the values of band c of the heat source are 

sought. 
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Next, from (6-27) the writer sought a ratio between T2 and To at the point 
which corresponds to the center of the ellipse in model III, and ascertained 

the propriety of the above approximation· using model IV for model III. For 

example, when band care 50 m and 25 m respectively, let (T2)X~O, y~50 be the 

value of T2 obtained by substituting x=Om and y=50m into (6-27). (T2) 

X~O., y~50 expresses the ground temperature at the point corresponding to the 

center of the ellipse in model III of which band care 50 m and 25 m 

respectively, and the value becomes 

u.l-u + 0 1 

~~--:u_"~o-~u-"o_ X 0.17 
uo'-uo 

(6-33) 

When uo' is veryJarger than uO' (T2)X~O, Y~5oITO takes a very small value 
compared with 1. Therefore (T2)x~O, y~50 is 

(6-34) 

Accordingly, when band care 50 m and 25 ill respectively, it is found that 
model IV may be used for model III. 

In cases of other combinations of band c in Fig. 6-4, from (6-27) it is also 

immediately calculated that the value of T2 at the point corresponding to the 

center of the ellipse is very small in comparison with To. 
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