## HOKKAIDO UNIVERSITY

| Title | Facile Tuning of Hydrogel Properties by Manipul ating Cationic-A romatic Monomer Sequences |
| :---: | :--- |
| Author(s) | Fan, Hailong; Cai, Y irong; Gong, Jian Ping |
| Citation | SCIENCE CHINA Chemistry, 649), 1560-1568 <br> https:/dio. org/0.1007/s11426-021-1010-3 |
| Issue Date | 2021-08.12 |
| Doc URL | http://hdl. handle.net/2115/86544 |
| Rights | The original publication is avail able at www.scichina.com and www.springerlink.com |
| Type | article (author version) |
| Additional Information | There are other files related to this item in HUSCAP. Check the above URL. |
| File Information | Supporting information.pdf () |

Instructions for use

## Facile Tuning of Hydrogel Properties by Manipulating Cationic-Aromatic

 Monomer SequencesHailong Fan, ${ }^{1}$ Yirong Cai, ${ }^{2}$ and Jian Ping Gong ${ }^{1,3,4^{*}}$
${ }^{1}$ Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Sapporo 001-0021, Japan
${ }^{2}$ Graduate School of Life Science, Hokkaido University, Sapporo 001-0021, Japan
${ }^{3}$ Faculty of Advanced Life Science, Hokkaido University, Sapporo 001-0021, Japan
${ }^{4}$ Global Station for Soft Matter GI-CoRE, Hokkaido University, Sapporo 001-0021, Japan
*Correspondence to: gong@sci.hokudai.ac.jp



Figure S1. Arrhenius plot depicting the temperature dependence of the shift factors at for $\mathrm{P}($ cationadj $-\pi$ ) and $\mathrm{P}($ cation-co- $\pi$ ) hydrogels in water. The apparent activation energy values were calculated from the slope of the curve.


Figure S2. Arrhenius plot depicting the temperature dependence of the shift factors at for P (cation-adj- $\pi$ ) and $\mathrm{P}($ cation-co- $\pi)$ hydrogels in 0.7 M NaCl solution. The apparent activation energy values were calculated from the slope of the curve.


Figure S3. (a) Normalized tensile stress-strain curves of $\mathrm{P}($ cation-adj- $\pi$ ) and $\mathrm{P}($ cation-co- $\pi$ ) hydrogels in water. $\sigma$ is the stress of hydrogels. $\lambda$ is the extension ratio, which is related to the strain $\varepsilon$ as $\lambda=\varepsilon+1$. Q is the volume swelling ratio of hydrogels relative to their as-prepared state.
(b) Normalized Young's modulus of hydrogels in water.


Figure S4. Tensile stress-strain curves of original and self-healed P(ATAC-adj-PEA) hydrogels and digital photos of self-healed P(ATAC-adj-PEA) hydrogels before and after stretch.


Figure S5. The energy dissipation Uhys and fraction of energy dissipation in relative to the total work applied ( $\mathrm{U}_{\text {hys }} / \mathrm{W}_{\mathrm{ext}}$ ) for $\mathrm{P}($ cation-adj- $\pi$ ) and $\mathrm{P}($ cation-co- $\pi$ ) hydrogels at a maximum strain of $200 \%$. Wext is estimated from the area under the loading curve of the virgin sample, and Uhys is from the hysteresis area of the virgin sample in Figure 8.

Table S1. The energy dissipation $\mathrm{U}_{\text {hys }}$ of $\mathrm{P}($ cation-adj $-\pi)$ and $\mathrm{P}($ cation-co- $\pi)$ hydrogels at a maximum strain of $200 \%$ under different recovery times. Uhys is the hysteresis area in Figure 8.

|  | P(ATAC-co-BZA) <br> $\left(\mathrm{kJ} \mathrm{m}^{-3}\right)$ | $\mathrm{P}(\mathrm{ATAC}-\mathrm{adj}-\mathrm{BZA})$ <br> $\left(\mathrm{kJ} \mathrm{m}^{-3}\right)$ | $\mathrm{P}(\mathrm{ATAC}-\mathrm{co}-\mathrm{PEA})$ <br> $\left(\mathrm{kJ} \mathrm{m}^{-3}\right)$ | $\mathrm{P}(\mathrm{ATAC}-a d j-P E A)$ <br> $\left(\mathrm{kJ} \mathrm{m}^{-3}\right)$ |
| :---: | :---: | :---: | :---: | :---: |
| Original | 14.2 | 5.0 | 32.8 | 12.1 |
| 30 s | - | 4.7 | - | 10.6 |
| 1 min | 9.6 | 4.7 | - | 10.9 |
| 2 min | - | - | 26.9 | - |
| 3 min | 12.5 | - | 31.9 | - |

## Instantaneous number-average sequence length of monomers $\left\langle\mathbf{N}_{M}\right\rangle$ in polymer chains at

## different conversion point

Based on the free radical polymerization theory, ${ }^{1}$ during the chain growth reaction, the probability of adding an $\mathrm{M}_{1}$ monomer unit to an $\mathrm{M}_{1}$ end chain, denoted as $\mathrm{p}_{11}$, at any conversion point $p$, can be expressed as:

$$
\begin{equation*}
p_{11}(p)=\frac{r_{1} f_{1}(p)}{r_{1} f_{1}(p)+f_{2}(p)} \tag{S1}
\end{equation*}
$$

Where conversion point $p$ is the total conversion of monomers, $\mathrm{r}_{1}$ is monomer reactivity ratio for the addition of monomer $\mathrm{M}_{1}$ and $\mathrm{M}_{2}$ to the $\mathrm{M}_{1}$ end chain. $f_{1}(p)$ and $f_{2}(p)$ are the molar fraction of monomers $\mathrm{M}_{1}$ and $\mathrm{M}_{2}$ at conversion p , respectively. Similarly, the probability of adding an $\mathrm{M}_{2}$ monomer unit to an $\mathrm{M}_{2}$ end chain, denoted as $\mathrm{p}_{22}$, can be expressed,

$$
\begin{equation*}
p_{22}(p)=\frac{r_{2} f_{2}(p)}{r_{2} f_{2}(p)+f_{1}(p)} \tag{S2}
\end{equation*}
$$

Where $r_{2}$ is monomer reactivity ratio for the addition of monomers $M_{2}$ and $M_{1}$ to the $M_{2}$ end chain. The probabilities $\left(p_{M_{1}}\right)_{x}$ and $\left(p_{M_{2}}\right)_{x}$ of forming $\mathrm{M}_{1}$ and $\mathrm{M}_{2}$ sequences of length $x$ are given by

$$
\begin{align*}
& \left(p_{M_{1}}\right)_{x}=p_{11}^{x-1}\left(1-p_{11}\right)  \tag{S3}\\
& \left(p_{M_{2}}\right)_{x}=p_{22}^{x-1}\left(1-p_{22}\right) \tag{S4}
\end{align*}
$$

The value of $\left(p_{M_{1}}\right)_{x}$ and $\left(p_{M_{2}}\right)_{x}$ at each point $p$ is hence the instantaneous sequence length distribution. The instantaneous number-average sequence lengths of monomers $M_{1}$ and $M_{2}$ at conversion $p,\left\langle N_{M I}\right\rangle$ and $\left\langle N_{M 2}\right\rangle$, respectively, are:

$$
\begin{align*}
\left\langle N_{M_{1}}\right\rangle(p) & =\frac{1}{1-p_{11}(p)}  \tag{S5}\\
\left\langle N_{M_{2}}\right\rangle(p) & =\frac{1}{1-p_{22}(p)} \tag{S6}
\end{align*}
$$

Therefore, the fraction of the number of $\mathrm{M}_{1}$ in $\times \mathrm{M}_{1}$ segment to the total number of $\mathrm{M}_{1}$ is

$$
\begin{equation*}
\phi_{M_{1}}(x)=\frac{x\left(p_{M_{1}}\right)_{x}}{\sum x\left(p_{M_{1}}\right)_{x}}=x p_{11}^{x-1}\left(1-p_{11}\right)^{2} \tag{S7}
\end{equation*}
$$

Similarly, the fraction of the number of $\mathrm{M}_{2}$ in $\times \mathrm{M}_{2}$ segment to the total number of $\mathrm{M}_{2}$ is

$$
\begin{equation*}
\phi_{M_{2}}(x)=\frac{x\left(p_{M_{2}}\right)_{x}}{\sum x\left(p_{M_{2}}\right)_{x}}=x p_{22}^{x-1}\left(1-p_{22}\right)^{2} \tag{S8}
\end{equation*}
$$

## Calculation of percentage of monomer in adjacent location

Here we derived the equation for the percentage of monomer in adjacent sequence. For a segment with one $M_{1}$ sequence length $(x=1)$, all $M_{1}$ are adjacent to $M_{2}$, namely the percentage of $M_{1}$ in adjacent to $\mathrm{M}_{2}$ is

$$
\begin{equation*}
\left(p_{M_{1}}{ }^{a d j}\right)_{1}=100 \% \tag{S9}
\end{equation*}
$$

When sequence length of $\mathrm{M}_{1}$ is larger than $1(x=2,3 \ldots)$, the percentage that $\mathrm{M}_{1}$ is adjacent to $\mathrm{M}_{2}$ for x sequence length is

$$
\begin{equation*}
\left(p_{M_{1}}^{a d j}\right)_{x}=\frac{2}{x} \times 100 \% \tag{S10}
\end{equation*}
$$

Then the total percentage that $M_{1}$ is adjacent to $M_{2}$ in total number of $M_{1}$ is

$$
\begin{equation*}
P_{M_{1}}^{a d j}=\phi_{M_{1}}(x=1) \times\left({p_{M_{1}}}^{a d j}\right)_{1}+\sum_{x=2}^{n}\left[{\phi_{M_{1}}}(x) \times\left(p_{M_{1}}^{a d j}\right)_{x}\right] \tag{S11}
\end{equation*}
$$

Similarly, the total percentage that $\mathrm{M}_{2}$ is adjacent to $\mathrm{M}_{1}$ in total number of $\mathrm{M}_{2}$ is

$$
\begin{equation*}
P_{M_{2}}^{a d j}=\phi_{M_{2}}(x=1) \times\left(p_{M_{2}}^{a d j}\right)_{1}+\sum_{x=2}^{n}\left[\phi_{M_{2}}(x) \times\left(p_{M_{2}}^{a d j}\right)_{x}\right] \tag{S12}
\end{equation*}
$$

Based on the equation S11 and S12, the total percentage of $\mathrm{M}_{1}$ and $\mathrm{M}_{2}$ in adjacent location in polymer chains is

$$
\begin{equation*}
P_{M}^{a d j}=\frac{\left[M_{1}\right] P_{M_{1}}{ }^{a d j}+\left[M_{2}\right] P_{M_{2}}{ }^{\text {adj }}}{\left[M_{1}\right]+\left[M_{2}\right]} \tag{S13}
\end{equation*}
$$

By using $r_{1}, r_{2}$ values in Table 1 , and $f_{1}(p), f_{2}(p)$ determined experimentally, we estimated conversion $p$ dependence of $\left\langle N_{M 1}\right\rangle$ and $\left\langle N_{M 2}\right\rangle$ using Eqs. S5, S6 for equimolar ratio of ATAC-BZA pair and ATAC-PEA pair in different solvent, and the results are shown in Figure 2 g and 2 h . The percentage of adjacent sequence for equimolar ratio of ATAC-BZA pair and ATAC-PEA pair in DMSO were estimated from Equation S13 using $r_{1}, r_{2}$ values in Table 1.

## References

1. Odian, G. Principles of Polymerization, 4th ed. Wiley-Interscience: Hoboken, NJ 2004.
