

HOKKAIDO UNIVERSITY

Title	Facile Tuning of Hydrogel Properties by Manipulating Cationic-Aromatic Monomer Sequences	
Author(s)	Fan, Hailong; Cai, Yirong; Gong, Jian Ping	
Citation	SCIENCE CHINA Chemistry, 64(9), 1560-1568 https://doi.org/10.1007/s11426-021-1010-3	
Issue Date	2021-08-12	
Doc URL	http://hdl.handle.net/2115/86544	
Rights	The original publication is available at www.scichina.com and www.springerlink.com	
Туре	article (author version)	
Additional Information	There are other files related to this item in HUSCAP. Check the above URL.	
File Information	tion Supporting information.pdf ()	

Facile Tuning of Hydrogel Properties by Manipulating Cationic-Aromatic Monomer Sequences

Hailong Fan,¹ Yirong Cai,² and Jian Ping Gong^{1,3,4*}

¹Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University,

Sapporo 001-0021, Japan

²Graduate School of Life Science, Hokkaido University, Sapporo 001-0021, Japan

³Faculty of Advanced Life Science, Hokkaido University, Sapporo 001-0021, Japan

⁴Global Station for Soft Matter GI-CoRE, Hokkaido University, Sapporo 001-0021, Japan

*Correspondence to: gong@sci.hokudai.ac.jp

Figure S1. Arrhenius plot depicting the temperature dependence of the shift factors a_T for P(cationadj- π) and P(cation-co- π) hydrogels in water. The apparent activation energy values were calculated from the slope of the curve.

Figure S2. Arrhenius plot depicting the temperature dependence of the shift factors a_T for P(cationadj- π) and P(cation-co- π) hydrogels in 0.7 M NaCl solution. The apparent activation energy values were calculated from the slope of the curve.

Figure S3. (a) Normalized tensile stress-strain curves of P(cation-adj- π) and P(cation-co- π) hydrogels in water. σ is the stress of hydrogels. λ is the extension ratio, which is related to the strain ε as $\lambda = \varepsilon + 1$. Q is the volume swelling ratio of hydrogels relative to their as-prepared state. (b) Normalized Young's modulus of hydrogels in water.

Figure S4. Tensile stress-strain curves of original and self-healed P(ATAC-adj-PEA) hydrogels and digital photos of self-healed P(ATAC-adj-PEA) hydrogels before and after stretch.

Figure S5. The energy dissipation U_{hys} and fraction of energy dissipation in relative to the total work applied (U_{hys} / W_{ext}) for P(cation-adj- π) and P(cation-co- π) hydrogels at a maximum strain of 200%. W_{ext} is estimated from the area under the loading curve of the virgin sample, and U_{hys} is from the hysteresis area of the virgin sample in Figure 8.

	P(ATAC-co-BZA)	P(ATAC-adj-BZA)	P(ATAC-co-PEA)	P(ATAC-adj-PEA)
	(kJ m ⁻³)			
Original	14.2	5.0	32.8	12.1
30 s	-	4.7	-	10.6
1 min	9.6	4.7	-	10.9
2 min	-	-	26.9	-
3 min	12.5	-	31.9	-

Table S1. The energy dissipation U_{hys} of P(cation-adj- π) and P(cation-co- π) hydrogels at a maximum strain of 200% under different recovery times. U_{hys} is the hysteresis area in Figure 8.

Instantaneous number-average sequence length of monomers $\langle N_M \rangle$ in polymer chains at different conversion point

Based on the free radical polymerization theory,¹ during the chain growth reaction, the probability of adding an M_1 monomer unit to an M_1 end chain, denoted as p_{11} , at any conversion point p, can be expressed as:

$$p_{11}(p) = \frac{r_1 f_1(p)}{r_1 f_1(p) + f_2(p)}$$
(S1)

Where conversion point p is the total conversion of monomers, r_1 is monomer reactivity ratio for the addition of monomer M_1 and M_2 to the M_1 end chain. $f_1(p)$ and $f_2(p)$ are the molar fraction of monomers M_1 and M_2 at conversion p, respectively. Similarly, the probability of adding an M_2 monomer unit to an M_2 end chain, denoted as p_{22} , can be expressed,

$$p_{22}(p) = \frac{r_2 f_2(p)}{r_2 f_2(p) + f_1(p)}$$
(S2)

Where r_2 is monomer reactivity ratio for the addition of monomers M_2 and M_1 to the M_2 end chain. The probabilities $(p_{M_1})_x$ and $(p_{M_2})_x$ of forming M_1 and M_2 sequences of length x are given by

$$(p_{M_1})_x = p_{11}^{x-1}(1-p_{11})$$
(S3)

$$(p_{M_2})_x = p_{22}^{x-1}(1-p_{22}) \tag{S4}$$

The value of $(p_{M_1})_x$ and $(p_{M_2})_x$ at each point p is hence the instantaneous sequence length distribution. The instantaneous number-average sequence lengths of monomers M₁ and M₂ at conversion p, $\langle N_{M1} \rangle$ and $\langle N_{M2} \rangle$, respectively, are:

$$\langle N_{M_1} \rangle(p) = \frac{1}{1 - p_{11}(p)}$$
 (S5)

$$\langle N_{M_2} \rangle(p) = \frac{1}{1 - p_{22}(p)}$$
 (S6)

Therefore, the fraction of the number of M₁ in xM₁ segment to the total number of M₁ is

$$\phi_{M_1}(x) = \frac{x(p_{M_1})_x}{\sum x(p_{M_1})_x} = xp_{11}^{x-1}(1-p_{11})^2$$
(S7)

Similarly, the fraction of the number of M₂ in xM₂ segment to the total number of M₂ is

$$\phi_{M_2}(x) = \frac{x(p_{M_2})_x}{\sum x(p_{M_2})_x} = xp_{22}^{x-1}(1-p_{22})^2$$
(S8)

Calculation of percentage of monomer in adjacent location

Here we derived the equation for the percentage of monomer in adjacent sequence. For a segment with one M_1 sequence length (x = 1), all M_1 are adjacent to M_2 , namely the percentage of M_1 in adjacent to M_2 is

$$(p_{M_1}{}^{adj})_1 = 100\% \tag{S9}$$

When sequence length of M_1 is larger than 1 (x = 2, 3...), the percentage that M_1 is adjacent to M_2 for x sequence length is

$$(p_{M_1}{}^{adj})_x = \frac{2}{x} \times 100\% \tag{S10}$$

Then the total percentage that M_1 is adjacent to M_2 in total number of M_1 is

$$P_{M_1}{}^{adj} = \phi_{M_1}(x=1) \times (p_{M_1}{}^{adj})_1 + \sum_{x=2}^n [\phi_{M_1}(x) \times (p_{M_1}{}^{adj})_x]$$
(S11)

Similarly, the total percentage that M₂ is adjacent to M₁ in total number of M₂ is

$$P_{M_2}{}^{adj} = \phi_{M_2}(x=1) \times (p_{M_2}{}^{adj})_1 + \sum_{x=2}^n [\phi_{M_2}(x) \times (p_{M_2}{}^{adj})_x]$$
(S12)

Based on the equation S11 and S12, the total percentage of M₁ and M₂ in adjacent location in polymer chains is

$$P_M^{adj} = \frac{[M_1]P_{M_1}^{adj} + [M_2]P_{M_2}^{adj}}{[M_1] + [M_2]}$$
(S13)

By using r_1 , r_2 values in Table 1, and $f_1(p)$, $f_2(p)$ determined experimentally, we estimated conversion *p* dependence of $\langle N_{M1} \rangle$ and $\langle N_{M2} \rangle$ using Eqs. S5, S6 for equimolar ratio of ATAC-BZA pair and ATAC-PEA pair in different solvent, and the results are shown in Figure 2g and 2h. The percentage of adjacent sequence for equimolar ratio of ATAC-BZA pair and ATAC-PEA pair in DMSO were estimated from Equation S13 using r_1 , r_2 values in Table 1.

References

1. Odian, G. Principles of Polymerization, 4th ed. Wiley-Interscience: Hoboken, NJ 2004.