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Direct Tuning Method of Gain-Scheduled Controllers with the Sparse Polynomials 
Function 
 
Keywords:  
Data-driven control, VRFT, Gain-scheduled control, Model-free design, LASSO 
regression, Sparse 
 
Abstract:  
In industry, gain-scheduled PID control is performed for nonlinear systems using a 
look-up table (LUT) that is easy to understand. Compared with the fixed PID, there 
are many more parameters of the scheduler, and it takes a lot of time to tune them. 
Also, the ROM storage area increases. To address these problems, in this paper, we 
propose a gain-scheduled control law using the sparse polynomial functions and a 
direct parameter tuning method without system identification. The polynomial 
functions are used instead of LUT to reduce the ROM area. For direct tuning, data-
driven control is formulated so that it can be applied to the gain-scheduled control, 
and the optimal parameters are obtained by the LASSO regression, with which the 
small contributing parameters of the scheduler become zero, and a sparse controller 
is obtained. The effectiveness of this method was examined by simulation for two 
types of nonlinear systems. As a result, it was revealed that a sparse controller with 
a low calculation cost and a reduced ROM area can be directly obtained without 
knowing the characteristics of the controlled object for a large number of control 
parameters of the gain scheduler. 
 

1. Introduction 

Over 90% of the closed-loop control methods in industrial systems use PID 
(Proportional-Integral-Derivative) control because the perspective is easy to understand 
and the calculation cost is low [1]. Also, the desired control performance can be obtained 
if the controlled object has strong linearity, but in the case of a nonlinear system, it is 
difficult to obtain sufficient control performance with PID control with fixed gains [2]. 
The nonlinear control theory and robust control can be applied, but the hurdles of 
nonlinear control applications are high because the theory is complicated and the 
calculation load is often large. In addition, it is generally difficult to address a robust 
controller for a system whose characteristics significantly change. Against this 
background, the gain-scheduled control is one of the most popular approaches to 
nonlinear control design [3, 4], and it is well-known as an effective and economical 
method for actual nonlinear control designs [5]. Also, the gain-scheduled control is a 
method that realizes the desired control performance by changing the controller 
parameters according to the state of the controlled object and the external environment. 
This approach is intuitively understandable and easy to accept in many industries. Also, 
the gain-scheduled PID control, which uses a look-up table (LUT), is often used in many 
industries [6, 7]. At the same time, a large number of control parameters must be tuned 
to obtain the desired control performance. The fixed PID control has three tuning 
parameters, but the gain-scheduled control with LUT has a much greater number of 
parameters that must be tuned. Hence, it takes a lot of time for parameter tuning. The 
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model-based design of the LPV (Linear Parameter-Varying) controller has been proposed, 
but it may still be difficult to obtain highly accurate models because industrial systems 
are often complicated [8], so the controller may not be fully performed. 

In recent years, the control system design methods that do not need controlled object 
models and system identification have attracted a lot of attention. The data-driven control, 
such as VRFT (Virtual Reference Feedback Tuning) [9] and FRIT (Fictitious Reference 
Feedback Tuning) [10, 11], is drawing a lot of attention because the controller parameters 
can be obtained off-line from a set of input/output data without repeated experiments. As 
model-free control methods for sequentially changing controller parameters online, the 
adaptive PID control with SPSA (Simultaneous Perturbation Stochastic Approximation 
Algorithm) [12], adaptive PID [13, 14], and FRIT-RLS [15, 16], which is an online 
version of the FRIT, and so on, have been proposed. It is noteworthy that these model-
free controls can be applied to time-varying systems because the control parameters can 
be adapted in real time. The above-mentioned data-driven control and model-free control 
methods, which do not use the model of the controlled object, are currently applied to 
industrial systems, such as process systems, automobile systems, and vibration control 
problems [17–22]. 

In general, it is possible to apply online model-free control to nonlinear and time-
varying systems, but in the case of systems with fast parameter fluctuations, it is necessary 
to quickly update the parameters, which results in increasing the computational load. 
When considering the implementation on mass products, it is difficult to guarantee the 
performance and safety of the shipped products to the market unless stability is 
theoretically guaranteed. Then, we preferred to use the predesigned controller parameters 
according to the state and environment of the controlled object in advance rather than 
those estimated online. Therefore, we considered that the data-driven control, which can 
tune the parameters off-line, is an effective method. Meanwhile, most of the data-driven 
control is based on a linear control system. Since many complex nonlinear systems exist 
in industrial systems, a data-driven control system that realizes nonlinear control is 
required. There are applications to nonlinear systems, such as DD-PID [23] and DD-FRIT 
[24, 25], FRIT (using feedback linearization) [26], and VRFT (for LPV systems) [27–29]. 
The DD-PID and DD-FRIT have relatively high storage capacity and computational cost 
when a controller is implemented. In FRIT, with feedback linearization, it is necessary to 
know the model structure in advance, and it is not possible to directly obtain the PID 
controller parameters, which are mostly used in many industries. In the VRFT for the 
LPV system, the gain-scheduled controller is obtained, which has a small calculation cost 
and storage capacity at implementation. Also, it is possible to interpret and understand 
the same, as the gain-scheduled PID control uses the described LUT at the beginning by 
visualizing the schedulers for each of the obtained PID gains. Therefore, it is desirable to 
obtain the parameters for the gain-scheduled PID control by the VRFT. 

In the gain-scheduled control, the selection process of the scheduling parameters is 
also important. For example, the position control for the spring-mass system is very 
important, and it is combined with different states, such as the position, velocity, or 
acceleration. If the selected scheduling parameters do not affect the change in the 
characteristics of the controlled object, the calculation cost and ROM area would increase 
for unnecessary parameters. In the regression problem of machine learning, to prevent 
overlearning, a method called LASSO (least absolute shrinkage and selection operator) 
regularization, in which the L1 norm is added to the cost function is performed. Mainly, 
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this is a method for extracting essential low-dimensional information with high accuracy 
from high-dimensional information. In the model obtained by LASSO, the elements with 
little information representing the feature are zero, and such a property is called 
sparseness. 

In this paper, the authors propose a method that directly tunes the parameters of the 
scheduling function (scheduler) for gain-scheduled PID control while considering the 
sparseness property of LASSO. The gain-scheduled PID controller is defined by 
expressing the scheduling function as a polynomial that consists of weight coefficients, 
which are the tuning parameters. By using a polynomial instead of the LUT, the tuning 
parameters can be reduced. Next, the cost function of the VRFT for the gain-scheduled 
PID controller is derived. Also, the value of the optimum control parameters is calculated 
by LASSO so that the cost function becomes minimum. In addition, the gain scheduler 
with the high sparseness can be constructed by LASSO. As a result, trial and error 
parameter tuning and system identification are not needed. Moreover, the ROM area of 
the controller and the calculation cost are reduced. In other words, the controller with the 
high sparseness and reduced parameter tuning man-hours can be obtained. Studies [27–
29] for applying the VRFT to the LPV system have been previously proposed. In 
comparison with those studies, the main features of this study are as follows. For 
industrial applications, the PID controller is assumed as a control law, the gain scheduler 
adopts a quadratic polynomial, and the sparse controller can be obtained. 

The structure of this paper is as follows. In Chapter 2, the problem formulation and 
VRFT are described as preliminary. Section 3 describes the proposed method and the 
direct tuning method of the gain-scheduled control parameters using the VRFT. In 
Section 4, two types of nonlinear systems are controlled using the proposed method by 
numerical simulation, the correspondence of the controller parameters to the 
characteristic fluctuations is revealed, and the desired control performances are obtained. 
Chapter 5 provides a summary of this paper. 

 

2. Preliminary 

The problem formulation and VRFT are explained. The VRFT is one of the data-
driven controls that are used in this paper. 

 
2.1. Problem formulation 

When the controlled object has complicated characteristics, such as nonlinearity or 
time-varying, the performance deterioration cannot be avoided with a time-invariant 
(fixed) controller, whereas a gain-scheduled controller can be an effective method for 
realizing good control performance. The gain-scheduled control system shown in Figure 
1 is considered the control law. In the figure, u ∊ R is the control input, y ∊ R is the output, 
r is the set-point, e is the error, and P is the controlled object. The gain-scheduled control 
is constructed from the controller C(z, ρ), the controller parameter vector ρ, the rational 
function vector ψ(z), the scheduling parameter θ ∊ Θ, the parameter vector w, and the 
scheduling function (scheduler) f(θ, w). The controller is described as 

𝐶 𝑧,𝜌 𝜌 𝜓 𝑧 𝑓 𝜃 𝜓 𝑧 , 1  

where 
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𝜌 𝜌 𝜌 ⋯ 𝜌 ,
𝑓 𝜃,𝑤 𝑓 𝜃,𝑤 𝑓 𝜃,𝑤 ⋯ 𝑓 𝜃,𝑤 ,

𝜓 𝑧 𝜓 𝑧 𝜓 𝑧 ⋯ 𝜓 𝑧 ,

𝑤 𝑤 𝑤 ⋯ 𝑤 ,

2  

where z is the shift operator, and wi is a parameter vector that constructs the i-th 
scheduling function fi (θ, wi). The controller parameter vector ρ changes according to the 
scheduling function f (θ, w). The detailed settings of the rational function vector ψ(z) are 
described in Section 3.1.1. 
 

 
Figure 1 Gain-scheduled control system 

 
We considered the model reference control as well as the previous studies of the 

data-driven control [9, 11]. Figure 2 shows a block diagram of the model reference gain-
scheduled control. The problem setting is to acquire the sparse controller by automatically 
tuning the control parameters of the gain scheduler so that the transfer characteristics from 
the set-point to the output can match the reference model Md, which is determined by the 
designer. In other words, our aim is to obtain the optimum parameters that make up the 
sparse gain-scheduled controller that minimizes the following cost function. 

𝐽 𝑤 ‖𝑦 𝑡,𝑤 𝑀 𝑧 𝑟 𝑡 ‖ 𝜆‖𝑤‖ , 3  

where λ denotes the weight coefficients, and the second term is the weight-related to w. 
The details are provided in Section 3.3. 
 

 
Figure 2 Gain-scheduled control system and reference model 

 
 

2.2. Controlled object 
The LPV system whose characteristics are changed by the scheduling parameters 

was used in many previous studies. However, the target system is unknown if it is strictly 
the LPV system or not. Hence, the controlled objects are unknown two-type nonlinear 
single-input single-output (SISO) systems, which are an explicit LPV system and a 

PC (z, ρ = f (θ, w) )

Gain Scheduler
f (θ, w)

r u y



e

θ

PC (z, ρ = f (θ, w) )

Gain Scheduler
f (θ, w)

r u y



e

Md

yr=Md r

θ
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system that is not explicitly described as an LPV system. The first system, the LPV system, 
is described as 

𝑥 𝑡 1 𝐴 𝜃 𝑥 𝑡 𝐵 𝜃 𝑢 𝑡
𝑦 𝑡 𝐶 𝜃 𝑥 𝑡

, 4  

where u ∊ R is the control input, y ∊ R is the output, x ∊ Rn is the state, and θ is the 
scheduling parameter. The matrices Ad, Bd, and Cd are bounded and unknown functions 
that are continuous with respect to θ, and the candidates of the scheduling parameters are 
associated with the controlled object output or state. We assumed that this system is stable. 
The second system is often used in the validation of the database control [23, 30, 31] as 

𝑦 𝑡 𝑓 𝑦 𝑡 1 , … ,𝑦 𝑡 𝑛 ,

                                 𝑢 𝑡 1 , … ,𝑢 𝑡 𝑛 , 5
 

where fp(･) is an unknown nonlinear function, and nu and ny denote the unknown orders 
of the input and output, respectively. We assumed that this system is stable and can be 
linearized at an equilibrium point. The candidates of the scheduling parameters are 
associated with the controlled object output. Thus, in general, it is necessary to linearize 
the nonlinear system to design a gain scheduler, but this study aims at designing the gain 
scheduler without system identification and linearization. 
 

2.3. Standard VRFT [9] 
The VRFT is a method for directly tuning the control parameters for LTI (linear 

time-invariant) systems from open-loop input/output data without system identification. 
The optimal control parameters are tuned so that the reference model and closed-loop 
system have the same characteristics. Figure 3 shows the structure of the VRFT. Here, 
CVR (ρ, z), Md, and PVR represent the fixed-order controller, which is parameterized 
through ρ, the reference model, and the controlled object (plant), which is the stable LTI 
system, respectively. u(t) and y(t) denote the input and output, respectively. ρ denotes the 
controller parameters. �̄� 𝑡  and �̄� 𝑡  are the proposed virtual reference input and virtual 
error in the VRFT, respectively. The VRFT procedure is briefly described as follows: 
[Step 1] The input and output data of the plant u(t), y(t), t = 1, ..., N is acquired in an open-
loop test.  
[Step 2] The reference model Md, which is the desired closed-loop, is set. 
[Step 3] Considering y(t) as the output of the reference model, the virtual reference input, 
which generates y(t), can be expressed as 

�̄� 𝑡 𝑀 𝑦 𝑡 . 6  

[Step 4] Considering �̄� 𝑡  as the reference input of the closed-loop in Figure 3, the virtual 
control input is described as 

�̄� 𝑡 𝐶 𝜌, 𝑧 �̄� 𝑡 𝑦 𝑡 . 7  

[Step 5] When the virtual control input and the acquired control input data from Step 1 
are close, the closed-loop can be regarded as close to the reference model. Therefore, the 
cost function can be minimized to be 

𝐽 ‖𝑢 𝑡 �̄� 𝑡 ‖ . 8  

From equations (6) and (7), the above equation becomes as follows. 
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𝐽 𝜌 ‖𝑢 𝑡 𝐶 𝜌, 𝑧 �̅�‖ , 9  

where 
�̅� 𝑡 �̄� 𝑡 𝑦 𝑡 . 10  

[Step 6] The introduction of the prefilter L: The term in Eq. (9) has the inverse matrix of 
the reference model, which means that it has a nonproper characteristic. By adding a 
prefilter, nonproper characteristics can be avoided. Equation (11) is given by adding the 
prefilter to Equation (9). 

𝐽 𝜌 ‖𝑢 𝑡 𝐶 𝜌, 𝑧 �̅� 𝑡 ‖ , 11  
where 

𝑢 𝑡 𝐿𝑢 𝑡 , �̅� 𝑡 𝐿�̅� 𝑡 . 12  

 

 
Figure 3 The VRFT concept 

 

3. Direct tuning of the PID gain scheduler 

3.1. Gain-scheduled PID control 
In the gain-scheduled PID control, the closed-loop system may become unstable 

due to the sudden change in the gain. As a countermeasure, the velocity form of the PID 
controller and the described scheduling function in the polynomial are adopted. 
 

3.1.1. Velocity form of the PID controller 
The velocity form of the PID control law that is suitable for the gain-scheduled 

control is adopted. This has the advantage that the integral term does not need to be reset, 
and the control input does not rapidly change even when the gain rapidly changes [32, 
33]. If the gain abruptly changes, the control input changes over time, causing disturbance 
to the system. Figure 4 shows a block diagram of the velocity form of the PID control. 
An integral element appears just before the control input, and the time change can be 
reduced. Furthermore, an integral element is used after the Ki element, and the Kd element 
is used after the difference element. However, it is not preferable when these orders are 
reversed, as the time change of the control input at the time of switching becomes large 
[34]. The velocity form of the PID control that is shown in Figure 4 is expressed by the 
following equation.  

𝑢 𝑡 𝑢 𝑡 1 𝐶 𝑧, 𝜌 𝑒 𝑡 13  

with 

𝐶 𝑧,𝜌 𝐾 𝑡 𝜓 𝑧 ,
𝐾 𝑡 𝐾 𝑡 𝐾 𝑡 𝐾 𝑡 ,

𝜓 𝑧 1 𝑧 1 1 𝑧 ,
14  

Md

CVR (ρ) PVR

+

-
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where e(t) is the error that is given by e(t) = r(t) − y(t), and r(t) is the set-point. Kp(t), Ki(t), 
and Kd(t) denote the proportional gain, integral gain, and derivative gain, respectively, 
and Δ represents the difference operator, which is expressed as Δ = 1 − z−1 using the 
backward operator z−1, where z−1y(t):= y(t − 1). 
 

 
Figure 4 Block diagram of the velocity form of the PID controller 

 
3.1.2. PID gain scheduler 

In this paper, the gain scheduler in Equation (2) uses a polynomial. The use of the 
Just-In-Time method [30], database control [23], and neural network [35] is difficult to 
install in mass product controllers due to the limitations of the calculation cost and ROM 
area. The gain schedulers that use the LUTs have been used for a long time in many 
industries, especially in automobile control. However, the ROM capacity and tuning 
parameters increase. Furthermore, as a concern of the gain-scheduled control in which 
the gain that is designed for each operating point is directly expressed by the LUT, there 
is a possibility that the PID gain rapidly fluctuates and that the system becomes unstable. 
Therefore, in this paper, the scheduling function is represented by the quadratic 
polynomial shown in Equation (15). As a result, in addition to reducing the number of 
stored parameters, the gain continuously changes so that the sudden gain changes are less 
likely to occur. 

𝐾 𝜃 𝑤 𝜃  ,

𝑤 𝑤 𝑤 𝑤 𝑤 𝑤 𝑤 ,
𝑗 ∈ 𝑝, 𝑖,𝑑 ,

𝜃 𝜃 1 𝜃 𝜃 𝜃 𝜃 𝜃 𝜃 ,

𝜃 𝜃 𝜃 ,

15  

where Kj(θ) is the PID gain scheduler (j = p, i, d), which is the scheduling function. θl is 
the scheduling parameter (l = 1, 2), and θsf is the function vector, which is the base 
function that is composed of the scheduling parameters. In addition, wj is the weight 
coefficients vector, which is the regression coefficient vector of the PID gains, which are 
the tuning parameters. As scheduling parameters, the signals of the external environment, 
such as the temperature, or the states, such as the position and speed of the controlled 
object, are generally used. In Equation (15), the number of scheduling parameters is two, 
and the scheduling function is a quadratic polynomial, but it is not limited to this order. 
 

3.2. Derivation of the cost function 
Here, we derive a cost function that finds the optimum values of the weight 

coefficients of the gain scheduling function. From the cost function of the VRFT (see 
Equations (11, 12)) and Equations (13–15), which are related to the gain-scheduled PID 
control, the weight coefficient of the gain scheduler can be obtained. The cost function is  

Kd (t)

1/Δ

Δ2

Δ
e(t) Δu u

+
+

+
+

Ki (t)

Kp(t)
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𝐽 𝑤 ‖𝑑 𝑡 𝑤 𝜉 𝑡 ‖ , 16  

𝑑 𝑡 𝐿∆𝑢 𝑡 ,
𝜉 𝑡 𝑋 𝑀 𝑧 𝐼 𝐿𝑦 𝑡 ,

17  

with

𝑤 𝑤 𝑤 𝑤 , 18  

𝑋 𝜃 𝜓 𝑧 𝜃 𝜓 𝑧 𝜃 𝜓 𝑧 , 19  

where 𝜓 is the i−th element of the vector ψ, as shown in Equation (14). Since the cost 
function is linear with respect to the weight coefficients vector w, the optimal solution w∗ 
can be obtained by the following equation using the least-squares (LS) method. 

𝑤∗ 𝑍 𝑍 𝑍 𝐷, 20  

where 

𝑍 𝜉 1 𝜉 2 ⋯ 𝜉 𝑁 , 21  
𝐷 𝑑 1 𝑑 2 ⋯ 𝑑 𝑁 . 22  

 
3.3. Automatic tuning by LASSO 

LASSO is a method for extracting essential low-dimensional information from 
high-dimensional information with high accuracy. By introducing the L1 regularization 
term, the weight coefficients with less influence are set to zero. This property is called 
sparseness. In the field of machine learning, it is used to reduce the prediction error of the 
model by preventing overfitting. In this paper, LASSO is applied to find the optimal 
solution of Equation (16). As a result, it can be expected to suppress the overfitting of the 
weight coefficients and to obtain a controller with high sparse. 

The cost function obtained by adding the L1 regularization term to Equation (16) is 

𝐽 𝑤 ‖𝑑 𝑡 𝑤 𝜉 𝑡 ‖ 𝜆‖𝑤‖ , 23  

where λ is a positive constant and a parameter that tunes the relative strength between the 
regularization term and the sum of the squared error terms. The sparsity can be tuned by 
changing the value of λ. In this paper, cross-validation is used to automatically determine 
the optimal regularization parameter λ from the multiple λ, which is set by the designer. 
The cross-validation can be explained using Figure 5. 
[Step 1] Divide the data into k (=5) blocks. This is called a fold. 
[Step 2] Fold 1 and the others (folds 2–5) are used as the test and training sets, respectively. 
Then, the learning and evaluation of the model are performed, and the cost function value 
J1 is obtained. 
 [Step 3] Fold 2 and the others (folds 1, 3–5) are used as the test and training sets, 
respectively. Then, the learning and evaluation of the model are performed, and the cost 
function value J2 is obtained. 
[Step 4] This process is repeated until fold 5 becomes the test set, and the cost functions 
J1–J5 can finally be obtained. Also, the cost value J, which is the average value of J1–J5, 
can be calculated.  
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By performing cross-validation for multiple λ values, which are set by the designer, and 
by obtaining the cost function value J for each λ, the optimum λ and the optimum 
parameters with the smallest cost functions are obtained. Python is used as the 
programming language, and cross-validation is performed by LASSO CV, which is 
included in the package scikit-learn to determine λ and to find the optimal solution. 
 

 
Figure 5 k-fold cross-validation (k is five in the figure.) 

 
3.4. Algorithm 

Using the VRFT, the algorithm for the direct tuning method of the weight 
coefficients of the PID gain scheduling function is shown below. 
[Step 1] Measure the input and output data u(t), y(t), t = 1, ..., N in the test. The data set 

is Z and D described in Equations (21) and (22), respectively. 
[Step 2] Set the reference model. 
[Step 3] Decide the scheduling parameter candidates and the scheduling function for each 

PID gain. 
[Step 4] Design the prefilter for the VRFT. 
[Step 5] Obtain the weight coefficients, which are the scheduling parameters, of the 

scheduling function that minimizes the cost function by LASSO.  

Remark 1. In Step 4, by applying a strict prefilter in the study [27–29], the original cost 
function and the VRFT cost function can be matched. However, additional experiments 
are required. In this paper, we consider the practical application and use the prefilter of 
the following filter [18]: 

𝐿 𝑧 𝑀 𝑧 . 24  

Remark 2. This algorithm is based on VRFT, where an open-loop test has been adopted, 
as in many studies [9, 17–19, 27–29]. This algorithm faces the same theoretical problem 
as the general system identification and the previous studies [27–29] when using closed-
loop test data. For practice use, we could obtain controller parameters realizing model-
matching if the noise is of an acceptable magnitude. The literature [17] shows that 
optimized parameters can be obtained using closed-loop data for an industrial system with 
the standard VRFT. If the observed noise is large, a filtering process is required similar 
to the common machine learning process. In addition, in FRIT, which has a lot of 
achievements using closed-loop test data, a filtering process is performed for noisy data 

Fold 1 Fold 2 Fold 3 Fold 4 Fold 5

Fold 1 Fold 2 Fold 3 Fold 4 Fold 5

Fold 1 Fold 2 Fold 3 Fold 4 Fold 5

Fold 1 Fold 2 Fold 3 Fold 4 Fold 5

Fold 1 Fold 2 Fold 3 Fold 4 Fold 5

Split 1

Split 2

Split 3

Split 4

Split 5

Data set

5-fold (k=5)

Validation

Training

: Data set for validation

: Data set for training

J1

J2

J3

J4

J5

J = ΣJi /5
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[36]. In Section 4, we will show the results when using the initial data of open-loop and 
closed-loop tests. The results show that good performance was achieved in both cases. 
Remark 3. We summarize the feature of this method. The advantages of the proposed 
method are described as follows: (i) The gain-scheduled controller parameters can be 
obtained without the controlled object model. (ii) ROM area and calculation cost can be 
reduced using LASSO. In addition, LASSO prevents overlearning. (iii) Many engineers 
can easily understand the controller structure, as industrial engineers are familiar with 
gain-scheduled control and PID control. On the other hand, the disadvantage is that 
stabilization is not completely guaranteed; however, this is a common issue with direct 
tuning methods based on data-driven controllers [2, 9, 11, 17, 18, 23–26, 34]. This will 
be one of our future works. 
 

4. Simulation validation 

The controlled objects are two nonlinear systems. The first one is a nonlinear 
dynamic system described in the LPV system, and it is a spring-mass system that is often 
used in industrial systems, where each parameter is time-varying. The second system is 
the Hammerstein model [37], in which a linear dynamic system is connected in series to 
the output of the static nonlinear function, and it is widely used as a model for describing 
the nonlinear system [38]. This model is also used as a verification model for data-driven 
control [23–25, 39]. We use open-loop and closed-loop data to validate the effectiveness 
of the proposed method for these systems. 

 
4.1. Application to LPV systems 

It is applied to a controlled object whose system parameters change according to 
the state of the controlled object. In other words, the target is a nonlinear dynamic system. 

 
4.1.1. System formulation 

The controlled object, reference model, and controller used in the simulation 
verification are formulated. The controlled object is a spring-mass system with time-
varying parameters, as shown in Figure 6. Here, m, c, k, and y denote the mass, viscosity 
coefficient, spring stiffness, and system response (position), respectively. The mass, 
spring stiffness, and viscosity coefficient change depending on the system response and 
the controlled object is a system in which the following equation of motion is discretized. 

𝑚 𝑦, 𝑡
𝑑 𝑦 𝑡
𝑑𝑡

𝑐 𝑦, 𝑡
𝑑𝑦 𝑡
𝑑𝑡

𝑘 𝑦, 𝑡 𝑢 𝑡 𝑣 𝑡 , 25  

where 

𝑚 𝑦, 𝑡 1 0.2𝑦 𝑡 ,
𝑘 𝑦, 𝑡 5 2𝑦 𝑦 𝑡
𝑐 𝑦, 𝑡 2 0.5𝑦 𝑡 .

, 26  

v is the white noise with the variance 1×10-4, and the set-point at each time is given as 
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𝑟 𝑡

0.75  0 𝑡 10
2.0 10 𝑡 25
1.25 25 𝑡 40
0.5 40 𝑡 50

. 27  

The reference model is a first-order system with a time constant of 1 s as 

𝑀 𝑧 𝑧 𝑀 𝑠 ,

𝑀 𝑠
1

𝑠 1
,

28  

where z(･) represents the discretization, s is the Laplace operator, and the sampling period 
of the controller is 10 ms. The gain scheduler uses Equation (15), and the scheduling 
parameters are the position and its derivative as 

𝜃 𝑡 𝑦 𝑡 ,𝜃 𝑡 𝑦 𝑡 1 𝑧 . 29  

 

 
Figure 6 Controlled object with time-varying parameters 

 
4.1.2. Result 

Figure 7 shows the given input/output data in the open-loop test. The input signal 
is given to the staircase signal to obtain the input/output data that represents the 
characteristics around the equilibrium points, and the step width is 3.0. From the figure, 
it can be seen that the system becomes difficult to move with the increase in the position. 
Figure 8 shows the time series data when the gain scheduling parameters were obtained 
from the input/output data in the open-loop test. For comparison, the data when using the 
fixed PID gain (VRFT), the VRFT by GS (using the least-squares method (GS-VRFT-
LS)), and the VRFT by GS (using LASSO regression (GS-VRFT- LASSO)) are shown. 
The fixed PID gains obtained by the VRFT are Kp = −0.0340, Ki = 0.0605, and Kd = 0.0070, 
respectively. From the top of the figure, the output, input, proportional gain, integral gain, 
and derivative gain are shown. Table 1 shows the MSE (mean squared error) of the 

tracking error performance, which is MSE ∑ 𝑦 𝑡 𝑀 𝑧 𝑟 𝑡 , of VRFT, GS-

VRFT-LS, and GS-VRFT-LASSO As shown in the figure and table, the GS-VRFT-LS 
has a better tracking performance than the standard VRFT. This is because the PID gain 
changes appropriately according to the state of the controlled object in the GS-VRFT-LS. 
Next, by comparing GS-VRFT-LS and GS-VRFT-LASSO, it can be seen that they have 
the same tracking characteristics. Table 2 shows the operation counts and weight 
coefficients obtained by the GS-VRFT-LS and GS-VRFT-LASSO for calculating PID 
gains from the gain scheduler in Equation (15). The total counts of multiplication and 
addition in the scheduler obtained using LASSO are less than those obtained using the 

m

k u c

y
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least-squares method. In the scheduler obtained by LASSO, the 18 weight coefficients 
that make up the PID gain scheduler are reduced to 9, and the same performance is 
obtained when using 18 weight coefficients. The weight coefficients w2, w3, and w5 of the 
PID gain scheduler became zeros. In other words, the gain-scheduled PID controller with 
high sparsity is obtained. The optimum value of λ for the L1 regularization was 1 × 10−7 
because of the cross-validation for multiple λ, which is described in Section 3.3.  

 

 
Figure 7 Time series data of the initial input and output under open-loop test 
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Figure 8 Time series data with the proposed method and fixed PID gain using open-loop 

data (The GS-VRFT-LS and GS-VRFT-LASSO are almost overlapped.)   
 

Table 1. Results of the tracking error for the spring-mass model 
for open-loop test 

 Fixed (VRFT) GS-VRFT-LS GS-VRFT-LASSO 
MSE 1.918×10-2 4.149×10-3 4.178×10-3 

 
Table 2. Operation counts and parameters of gain scheduler for spring-

mass system 
 GS-VRFT-LS GS-VRFT-LASSO Efficiency [%] 

Multiplication 33 12 36.4 
Addition 15 6 40.0 

Total 48 18 37.5 
Weight 

coefficients 
18 9 50.0 

 
Figure 9 shows the given input/output data in the closed-loop test. The set-point 

signal is given to the staircase signal of which step width is 0.25, and the input/output 
data is measured. The fixed PID gains are set to Kp = 0.0, Ki = 0.3, and Kd = 0.0. Figure 
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10 shows the time series data obtained from the closed-loop test input/output data when 
gain scheduling parameters are used. For comparison, the data when using the fixed PID 
gain (VRFT), VRFT by the GS (using the least-squares method (GS-VRFT-LS)), and 
VRFT by GS (using LASSO regression (GS-VRFT- LASSO)) are shown. The fixed PID 
gains obtained using VRFT are Kp = −0.0651, Ki = 0.0684, and Kd = 0.0212. Table 3 shows 
the MSE of the tracking error performance of VRFT, GS-VRFT-LS, and GS-VRFT-
LASSO. From the figure and table, we can see that the performance using closed-loop 
experiment data is good as well as the results using open-loop experiment data. In addition, 
the operation counts and weight coefficients obtained using the GS-VRFT-LS and GS-
VRFT-LASSO are the same as those shown in Table 2. The total counts of multiplication 
and addition in the scheduler obtained using LASSO are less than those obtained using 
the least-squares method. In the scheduler obtained using LASSO, the 18 weight 
coefficients that make up the PID gain scheduler are reduced to 9, and the same 
performance is obtained when using 18 weight coefficients. The weight coefficients w2, 
w3, and w5 of the PID gain scheduler became zeros. In other words, a gain-scheduled PID 
controller with high sparsity was obtained. The optimum value of λ for the L1 

regularization was 1 × 10−7.  
 

 
Figure 9 Time series data of the initial input and output under closed-loop test.  
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Figure 10 Time series data with the proposed method and fixed PID gain using closed-

loop data (The GS-VRFT-LS and GS-VRFT-LASSO are almost overlapped.) 
 

Table 3. Results of the tracking error for the spring-mass model for 
closed-loop 

 Fixed (VRFT) GS-VRFT-LS GS-VRFT-LASSO 
MSE 1.474×10-2 2.846×10-3 2.834×10-3 

 
4.2. Application to the Hammerstein model 

The Hammerstein model, which is widely used as a model for describing nonlinear 
systems, is the controlled object. 

 
4.2.1. System formulation 

 
The system formulation in this section is the same as that in the previous literature 

[23–25, 37]. The sampling period of the simulation, which includes the controller, is 1s, 
and the Hammerstein model is the control target, as shown in the following equation.  

𝑦 𝑡 0.6𝑦 𝑡 1 0.1𝑦 𝑡 2 1.2𝑥 𝑡 1
0.1𝑥 𝑡 2 𝑣 𝑡 ,

𝑥 𝑡 1.5𝑢 𝑡 1.5𝑢 𝑡 0.5𝑢 𝑡 ,
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where v is the white noise with the variance 1×10−3. The set-point at each time is 

𝑟 𝑡

1.0  0 𝑡 100
3.0 100 𝑡 200
0.5 200 𝑡 300
2.0 300 𝑡 400

. 31  

The reference model uses the following equation [23–25]. 

𝑀 𝑧
0.399𝑧

1 0.736𝑧 0.135𝑧
32  

The gain scheduler uses Eq. (15), and the scheduling parameters are the output, and its 
second derivative is 

𝜃 𝑡 𝑦 𝑡 , 𝜃 𝑡 𝑦 𝑡 1 𝑧 . 33  

In Section 4.1, we adopted the derivative as a scheduling parameter. In Section 4.2, we 
adopted the second derivative, which is more susceptible to noise, as another candidate. 
  

4.2.2. Result 
Figure 11 shows the given input/output data in the open-loop test. A chirp sin signal 

(frequency 0 to 1 Hz, amplitude 1.75, offset 1) is applied to the input, and the input/output 
data is measured. Figure 12 shows the time series data after the gain scheduling 
parameters are obtained from the measured input/output data. For comparison, this figure 
shows the time series data when using the CHR method, the standard VRFT (fixed PID 
gain), the VRFT by GS (applying the least-squares method (GS-VRFT-LS)), and the 
VRFT by GS (applying LASSO (GS-VRFT-LASSO)). The PID gains by the CHR 
method are Kp = 0.059, Ki = 0.058, and Kd = 0.0038, which were obtained from previous 
studies [23–25]. The fixed PID gains obtained by VRFT are Kp = 0.0655, Ki = 0.1744, and 
Kd = 0.0166. From the top of the figure, output, input, proportional gain, integral gain, 
and derivative gain are shown. Table 4 shows the MSE of the tracking error performance 
of CHR, VRFT, GS-VRFT-LS, and GS-VRFT-LASSO. In addition, as shown in the figure 
and the table, the response was very slow in the classical CHR method. By comparing the 
standard VRFT and GS-VRFT-LS, we can confirm that the GS-VRFT-LS has a PID gain 
that changes according to the state of the controlled object and that follows the target 
response. Also, by comparing the GS-VRFT-LS and GS-VRFT-LASSO, it can be seen 
that they have the almost same followability. Table 5 shows operation counts and weight 
coefficients obtained using the GS-VRFT-LS and GS-VRFT-LASSO for calculating PID 
gains from the gain scheduler shown in Equation (15). The total counts of multiplication 
and addition in the scheduler obtained using LASSO are less than those obtained using 
the least-squares method. In LASSO, two weight coefficients became zero. In other words, 
the gain scheduling was performed with 18 weight coefficients for the LS and 16 weight 
coefficients for LASSO. The optimum value of λ for the L1 regularization was 0.002 
because of the cross-validation for multiple λ, which is described in Section 3.3.  
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Figure 11 Time series data of the initial input and output under open-loop test 
 

  
Figure 12 Time series data with the proposed method and fixed PID gain using open-

loop data (GS-VRFT-LS and GS-VRFT-LASSO are overlapped.) 
 

Table 4. Results of the tracking error for the Hammerstein model for open-loop test 
 Fixed (CHR) Fixed (VRFT) GS-VRFT-LS GS-VRFT-LASSO 
MSE 1.548×10-1 2.830×10-2 8.121×10-3 1.053×10-2 
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Table 5. Operation counts and parameters of gain scheduler for 

Hammerstein using open-loop data 
 GS-VRFT-LS GS-VRFT-LASSO Efficiency [%] 

Multiplication 33 30 90.9 
Addition 15 13 86.7 

Total 48 43 89.6 
Parameters 18 16 88.9 

 
Figure 13 shows the given input/output data in the closed-loop test. The set-point 

signal is given to the random signal of which range is from −1 to 5, and the input/output 
data are measured. The fixed PID gains are set to Kp = 0.059, Ki = 0.058, and Kd = 0.0038, 
which were obtained using the CHR method in previous studies [23–25]. Figure 14 shows 
the time series data when gain scheduling parameters were obtained from the input/output 
data in the closed-loop test. For comparison, the data obtained when using the fixed PID 
gain (VRFT), the VRFT by GS (using the least-squares method (GS-VRFT-LS)), and the 
VRFT by GS (using LASSO regression (GS-VRFT- LASSO)) are shown. The fixed PID 
gains obtained using VRFT are Kp = 0.0206, Ki = 0.1246, and Kd = 0.0229. Table 6 shows 
the MSE of tracking error performance of CHR, VRFT, GS-VRFT-LS, and GS-VRFT-
LASSO. Table 7 shows the operation counts and weight coefficients obtained using GS-
VRFT-LS and GS-VRFT-LASSO for calculating PID gains from the gain scheduler 
shown in Equation (15). The total counts of multiplication and addition in the scheduler 
obtained by LASSO are less than those obtained using the least-squares method.  In 
LASSO, one weight coefficient became zero. In other words, the gain scheduling was 
performed with 18 weight coefficients for the LS and 17 weight coefficients for LASSO. 
The optimum value of λ for the L1 regularization was 1 × 10−5 because of the cross-
validation for multiple λ, which is described in Section 3.3.  
 

 
Figure 13 Time series data of the initial input and output under the closed-loop 
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Figure 14 Time series data with the proposed method and fixed PID gain using closed-

loop data (GS-VRFT-LS and GS-VRFT-LASSO are overlapped.) 
 

Table 6. Results of the tracking error for Hammerstein model for closed-loop test 
 Fixed (CHR) Fixed (VRFT) GS-VRFT-LS GS-VRFT-LASSO 

MSE 1.548×10-1 5.562×10-2 1.884×10-2 1.908×10-2 
 

Table 7. Operation counts and parameters of gain scheduler for 
Hammerstein model using closed-loop data 

 GS-VRFT-LS GS-VRFT-LASSO Efficiency [%] 
Multiplication 33 31 93.9 

Addition 15 14 93.3 
Total 48 45 93.8 

Parameters 18 17 94.4 
 

4.3. Discussion 
When applied to System 2, the number of reductions of the weight coefficients by 

LASSO was low. However, System 1 was an LPV system whose characteristics changed 
because of the position. Therefore, it is considered that the velocity, which is the first 
derivative of the position used as the scheduling parameter, has little effect on the system 
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characteristic fluctuation and that the number of weight coefficients is reduced. As a result, 
the calculation cost of the controller and the ROM area can be reduced, which is a 
significant result for the implementation in the mass product controllers. In System 1, the 
closed-loop system became unstable when the weight coefficients were obtained by the 
LS method under the simulation condition that scheduling parameters are positions and 
acceleration without the white noise. However, it was stable when LASSO was used. This 
is because overlearning occurred due to the unnecessary weight coefficients related to the 
acceleration when the LS method was used; however, in LASSO, the weight coefficients 
for acceleration were zero, implying that overlearning was suppressed. Regarding the use 
of open-loop and closed-loop test data, we showed the tracking performance of the 
proposed method is significantly better than those of the conventional fixed gain tuning 
methods in both cases. However, in system 2, the trajectory of PID gains between open-
loop and closed-loop is different. This is because initial input/output data are different 
between open-loop and closed-loop tests. We consider that multiple candidates exist for 
the controlled variable to be close to the reference. In Section 4, we used the position as 
one of the scheduler parameters, and another was velocity and acceleration for system 1 
and system 2, respectively. Contrary to the above cases, it was confirmed that the same 
performance can be obtained when acceleration and velocity are used as scheduler 
parameters for system 1 and system 2, respectively. 

 

5. Conclusion 

In this paper, we proposed a design method of a data-driven gain-scheduled PID 
controller that considers sparseness without system identification for two types of 
nonlinear systems. In this method, to reduce the tuning parameters, a polynomial was 
used as the scheduling function, and the weight coefficients of the scheduling function, 
which are the tuning parameters, were obtained based on the data-driven control. By 
applying the VRFT, a gain-scheduled PID controller could be directly designed from a 
set of input/output data without system identification. Furthermore, in the optimization, 
LASSO was used to further reduce the controller parameters. The effectiveness of this 
method was examined by simulation for two types of nonlinear systems. As a result, it 
was revealed that a controller with high sparse can be obtained without knowing the 
characteristics of the controlled object for a large number of control parameters of the 
gain scheduler. In summary, it was possible to realize gain-scheduled PID control with a 
low computational calculation cost and ROM area and without trial and error parameter 
tuning. We consider that the proposed control law and tuning method can easily be 
accepted in many industries. In the future, we plan to apply it to industrial systems with 
strong nonlinearity, such as internal combustion engines and automatic transmissions. 
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