

HOKKAIDO UNIVERSITY

Title	Reversible Redox Control of Optoelectronic Properties of Hexagonal Tungsten Oxide Epitaxial Films Grown on YSZ Solid Electrolyte
Author(s)	Kim, Gowoon; Cho, Hai Jun; Ohta, Hiromichi
Citation	ACS Applied Electronic Materials, 3(8), 3619-3624 https://doi.org/10.1021/acsaelm.1c00522
Issue Date	2021-08-24
Doc URL	http://hdl.handle.net/2115/86608
Rights	This document is the Accepted Manuscript version of a Published Work that appeared in final form in [ACS Applied Electronic Materials], copyright © American Chemical Society after peer review and technical editing by the publisher. To access the final edited and published work see [https://pubs.acs.org/articlesonrequest/AOR-SUGYQND5WHTBWYVHUQPS].
Rights(URL)	https://pubs.acs.org/articlesonrequest/AOR-SUGYQND5WHTBWYVHUQPS
Туре	article (author version)
Additional Information	There are other files related to this item in HUSCAP. Check the above URL.
File Information	Supporting Information.pdf (Supporting Information)

Supporting Information

Reversible Redox Control of Optoelectronic Properties of Hexagonal Tungsten Oxide Epitaxial Films Grown on YSZ Solid Electrolyte

Gowoon Kim*, Hai jun Cho, and Hiromichi Ohta*

¹Graduate School of Information Science and Technology, Hokkaido University, N14W9, Kita, Sapporo 060-0814, Japan
²Research Institute for Electronic Science, Hokkaido University, N20W10, Kita, Sapporo 001-0020, Japan

*To whom correspondence should be addressed: G.K. (woom93@gmail.com), H.O. (hiromichi.ohta@es.hokudai.ac.jp)

Table S1. Transmission at 1.5 μ m (*Trans.*) and the activation energy (E_a) of the electrochemically reduced/oxidized h-WO_x films. The E_a was extracted by assuming the Arrhenius-type thermal actication of σ as $\sigma = \sigma_0 \exp(-E_a/k_BT)$, where σ_0 , k_B and T are pre-exponential factor, Boltzmann constant, and absolute temperature, respectively.

Sample	x in WO _x	<i>Trans</i> . at 1.5 μm (%)	Ea (meV)
Α	2.987	49.8	212.3
В	2.986	52.0	203.7
С	2.981	46.7	108.5
D	2.960	44.2	74.0
Ε	2.954	43.4	68.1
F	2.935	41.8	71.7
G	2.933	38.3	35.8
Η	2.931	35.4	33.3
Oxi 1	2.993	69.3	ND
Oxi 2	2.988	61.9	ND

Table S2. *Trans.* and *E*_a of the PLD-grown h-WO_x films.

Sample	x in WO _x	<i>Trans</i> . at 1.5 μm (%)	E _a (meV)
6 Pa	2.993	54.9	223.5
5 Pa	2.984	51.6	99.5
4 Pa	2.980	45.2	74.4
3 Pa	2.957	35.5	41.6
2 Pa	2.938	34.4	18.1

Figure S1. Time dependence of the current density during the electrochemical reduction treatment by applying +3 V to YSZ substrate.

Figure S2. XPS spectra around W 4f peaks of the electrochemically redox treated h-WO_x epitaxial films.

Figure S3. Change in the out-of-plane XRD patterns of PLD-grown h-WO_x epitaxial films under various oxygen pressure from 2 to 6 Pa during the film growth.

Figure S4. Comparison of the crystallographic feature of the PLD-grown h-WO_x epitaxial films under oxygen pressure of 6 Pa and 2Pa. (from left to right: out-of-plane XRD patterns, RHEED patterns, and topographic AFM images)

Figure S5. XPS spectra around W 4f peaks of PLD-grown h-WO_x epitaxial films under various oxygen pressure from 2 to 6 Pa during the film growth.

Figure S6. Optical transmission and photographs of PLD-grown h-WO_x epitaxial films under various oxygen pressure from 2 to 6 Pa during the film growth.

Figure S7. Changes in the optical transmission spectra of the h-WO_x epitaxial film after repeated electrochemical redox treatment. (From left to right: as-grown, 1^{st} oxidized, 1^{st} reduced, and 2^{nd} oxidized)

Figure S8. Surface morphology of the h-WO_{*x*} epitaxial film after repeated electrochemical redox treatment. (From left to right: as-grown, 1^{st} oxidized, 1^{st} reduced, and 2^{nd} oxidized)