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Abstract

An observation point as well as a line source of P or & wave have been considered
respectively in each layer, a superficial one and a half space. Any displacement consists
of three factors: the first is related to the condition of the source, the second does to
that of the observation and the third is independent of the source and observation
conditions but shows purely the character of surface waves. The reciprocal relation
between an observation point and a source point has been pointed out on the result
obtained.

1. A general expression for displacement potentials

In the present paper, such two dimentional two layers will be considered
as that shown in Figs. 1 and 2 where velocities of P and S waves are taken as

vpi = {0 + 2m)o;}*? and vy = (plp))"? . (L1
Taking angular frequency and angular wave number in x-direction as » and
£, we will use following notations:

hj = w/’uﬁj R kj == (J)/‘US]' , aj = (h]2 — 82)1/2 ) /3]' = (ka -— 62)1/2 (1 2)

where the subscript 7 is 1 or 2 and means the quantity relating to the j th layer.
Taking up a line source

¢o» = Bpuexp {£ i a,(z — E)} or Vo, = Do, exp {1 B, (2 — E))
for 2= E (1.3)

at 2=E, we can write secondary diplacement potentials generated from z=0
and H as follows:

by = A, F + By, Ay — C,e*P1® + D e P, (1.4)
¢y = By einar, Yy = D, e~ ’

in which the common coefficient exp {i(wf—Ex)} is omitted. The subscript »
means that any source is lain in the » th layer. In response to that notation,
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o) 0
E | ?
1:‘ “E tst layer ! l Ist layer
4 $i, Ay, py, Vo, TR
£2, A2, p2, ! e $2.h2, p2,
L 2nd layer / 2nd layer
Z Z
Fig. 1. A source lies in the first layer. Fig. 2. A source lies in the sccond layer.
¢, 4;, .., D;in (1.4) must be written in detail as ¢; and so on. But subscript

v will sometimes be omitted for simplicity.
Further, we use more notations:

L=afE, mi=BiE, m=m®—1, X=psp, (1.5)
"y — Wy 21y 2m, 0 0
21 21 — 7y 0 0
Al - gl H o-ie myeBH e 1 -
ll eile Zl e—ile giﬁlH — e—iﬁlH l2 —1 s
7, glay H —n, egrid 9 ", et Zmle-iﬂlll —XHy 2%1’”2
20 et 20 g7 mH — B et 200, am,
A, — ny e ™E — 2m,y e~ hE
—B, — 210, e E 1y e PE
A]— C, gﬂ: e’:"ﬁ (E-H) [Si}=| m, eiB1(E-H)
J ~D, Bot lleml(E—H) Dy — giB (E-H) |>
B, e-iwall — ny et (E~H) 2 1y etP1 (1)
D, ei8atl 21, gl (B-H) 1y ¥P1(E=H)
0 0
0 0
Ezj: — ¢i¥g(H-E) [Si: i, gifa (H-E) (1 6)
By, Ly giag (H-E) | Doz eiPa(H-E) |- Y
% 1y "% (H-E) 2 % my ¢iPa(H-E)
2% lz gieg (H-E) — Xy e'Ba (H-E)

The boundary conditions tell that st

resses must be zero on z=0 and

stresses as well as displacements must be continuous on z=H. Then the
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following simultaneous equation written by the above matrices should be
satisfied,

AfA]=1[Py] (1.7)

in which [P»] represents [Pv] or [Sv] in (1.6).
Every coefficient on the right hand side of (1.4) will be easily expressed by
the above matrices as follows:

A, = det da,/det 4, — B, = det 4g,/det 4, C; = det dc,/det 4,
—D, = det 4p,/det 4, Byexp (— 4 ay H) = det 4p,/det 4, (1.8)
D, exp (— i f§y H) = det dp,/det 4

in which det 4,,, for instance, is the determinant of the matrix where the
first column of 4 is replaced by matrix [P1].

Putting
9m (—1  wmy 1 My
n J—
(10):(1 ) and (1= b 1 b I (1.9)
21 7, Ny 2my — Ahg 21my|’

2L —ny 221, xmy
the present author!) has shown
det 4 = det (10) - det (12) - M (1.10)

and all determinants det 4,,, .... are also proportional to det (10)-det (12).
Therefore this common coefficient will be omitted hereafter.
Taking PP, PS, SP and SS reflection coefficients?) on z=0 and H in the
first layer as
' 4,B,C,D and A’ B, C,6 D,
the present author has expressed M in (1.10) as
M=¢?+ Je?—A(A'é?+ D' e —2BC (L.11)
in which
p=(+p)H, g=—(;—pB)H and J=A'D'-BC. (112
In the previous papers!).®.9), M was multiplied by exp {i(a,+f,)H } No
confusion will occur by omitting the common coefficient exp {i(a,+f,)H} from
the previous M, det 44, and so on.
Following the above process, 44, By,..., D, in (1.4) can be determined by
(1.7). Therefore general expressions for displacement potentials may be obtain-
ed by the following operations:
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| = d S
q)jpu = j_oo(d)m + ¢4) —5_ ’ q/H’V = ‘I._oo‘l'l,‘j (lf ’ l
, (1.13)
o d g d
Djsy =I b; —ﬁvé ) Ve = I_ (o, -+ ) 73% : [

WhEI'e ¢ma = ‘l’(jv = 0 fOf .7 Fr.

Among various waves contained in integral expression (1.13), the waves
which satisfy the characteristic equation

M (0,E) =0 (1.14)

will be called dispersive RAYLEIGH waves. Equation (1.14) makes the right
hand side of (1.11) zero.

Displacement potentials of dispersive RAYLEIGH waves are to be derived
from poles in the integral of (1.13) and may be calculated as follows:

[451];:0 =1 (av Mg)—l [(det AAl) e - (___det ABI) E“iwlz i;=0 ,

[¥ 1y = 78 (0 M) [(det dcy) €17 + (—det dp) =],

(1.15)
(0,15 = 73 (B Me)~ [(det duy) a7 + (—det dg,) o], _
1)y mg = 76 (B M) [(det o) v + (—det dpy) e
and
[@,)7,_, =i (a, Mg [(det dpy) e=a],,_
Wl =i (o, Me)[(det dpy) e=%a]lr_
(1.16)

[@3]%_, = i (8, Me)™ [(det day) e,

M=0"’

(V3]s = i (B, Me)™ [(det dpg) e~y o

where v is 1 or 2 and M means oM (w, £)}/oF.
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2. Displacement potentials in the first layer generated from a line
source of P wave in the first layer

Putting
OQ=A"e¢t1~AJeit, @=ce?— Je? +t AA 1 — AD ¥,
2.1
@®=Ae?t D e¥ @1)

~ we have, from (1.5), (1.6), (1.7) and (1.14),

B;ll (det 4,,) 1;;=0 =@ enE 4 _é_ @ emE

B} (—det dy)yy | = 4 @ eF + @ emE
(2.2)
Byt (det do)p_, = CH{( 5@ — 0 4)e + (@— @A )einr),
B;ll (—det ADl)I;Wl:n =C1 {<é_@ A — @) ¢E | (@A _ _é_@)e—iml E} .
However, if (1.14) is satisfied, the next relation will be found,
exp(~2i0) =0 (5 ®) = ; BI®. (2.3
Therefore (2.2) may. be rewritten as follows:
B;f (det AAl)Zl,O =@ cos (q E — ) - e,
B} (—det dg)"l = @cos (m E —6) - ¢,
(2.4)

B;ll (det AC])§;=0 —@cos (4, E—6) - C-1(e — A =),

B;: (—det ADl)§;=0 =@cos (q E — ) - C1{A ¢ — e71%)
resulting in

Bgll [(det 4a;) es” + (—det dg)) e—"‘”xz]i;o =2@cos (a, E —6) - cos (a, 2 — 6),
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B! [(det 4g,) v + (—det dpy) 7))} =i 2@ cos (i, E — 6) - C

X {sin (B2 + 6) — A sin (B, z — 6)} .
At last, the first and the second equations in (1.15) become

B [@)°" =i (2 7/My) (@]ay) cos (a, E — 6) cos (a,z — ) , l

o1 M=0

(2.5
B ¥ 1]1;;0 = — 2 n/My) (@]ay) cos (¢, E — 6) - C1 &9

01

X {sin (B2 + 6) — Asin (8,2 —6)}.
On the other hand, the present author® has obtained the relation,
(Mg (0,8)}'=— EH) (c U= 1) (0, @ + B, @) (2.6)

in which ¢ and U mean respectively phase velocity and de/d£ and
w=c?— Je'? — (A A" et — AD ). (2.7)
If we compare (2.1) with (2.7), refering to (1.11), we find @ will become

m by replacing o, by p; and A’ by D’. When the same replacements as those
for @ are made for @ and @), we have

GO=D¢e¢"—AJe? and ®=Ae? - A’ 9. (2.8)
Since (1.14) is again satisfied, we have the similar relation to (2.3),

exp(~2i0)=0(4®) = B®. (2.9)

3. Displacement potentials in the first layer generated from a line
source of S wave in the first layer

Using notations given by (2.7) and (2.8), we have, through the same
process as that obtaining (2.2},

Dyl (det 4)3)_, = Bt (@-0a)er 4 (@—F@A)e™E],
D;ll (—det ABI);no =B~ Sl(_é_ wA— @> B E (@A—%-@) e-iplE} ’

D;II (det Acl)i;=0 . @ eiBIE + _%_ @ e_,'ﬁlE ,
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Dy} (—det dpy)5r_, = o @ P + @ ek

When (1.14) is satisfied, these equations may be rewritten by the use of
(2.9):

D;: (det AAl)jLO =@cos (B E —8) - B (" — A ),

D} (—det dgy) 5y = @cos (B E —0') - B (A & — &),

3.1
D;ll (det ACI)SALO =@mcos(fLE—6) e,
D! (—det dpy)_ =@ cos (B, E —6') &'
‘Therefore the third and the fourth equations in (1.15) become
D [@JM - = — (27|My) (@®]) cos (B E - B71
X {sin (@, z + 6') — A sin (@, 2 — 0"}, (3.2)
D;ll [%] 1 (27[Me) (®]f,) cos (L E — @) cos (B2 — ') .
However, we can see
1 _ 1 _ 1 I O |
'2—@“@14-—7@ @A, 7@/1 @—‘@ —Q—@A» l .
(3.3)
D FBA=gWA—V, DA— S B=BDA— 5@, J
resulting in
»-—O=w—-0. (3.4)

As we have from (2.3) and (2.9)

1—4e% =(@— O)/@ and 1 -4 =@ — Q)@ ,
we can know with the aid of (3.4),

Sin26/sin 26’ = @ ¥ (@ ) — @/@ . (3.5)
Moreover, we have from (2.3), (2.9) and (3.3)

ttan @ = (1 — e~29)/(1 + ¢7219)



~{@4-18)-(ze4-0){(@41-38)+(304-0)"
~{@4-38)-(e-zo4)}{(@4-38)+ (0 -e4)|

-1

=(A-1 A+ @+ 7®) (@- F®) =(tano) (A —1)(A+ D

tanftand’ = (1 — 4) (1 + 4)™L. (3.6)
Using (3.5) and (3.6), we arrive at the following relations:
sin (B2 +6) — Asin(f,z2—8) = (1 + A) (sinf[cos 6') cos (fyz — ') .
sin (a,z + 8") — Asin (a; z — 0') = (@|@®) (1 + A4) (sin B/cos ") cos (ayz — b) ,}
®/fy = (@[a) {(1 + A)|C12 (sin Ocos 6')2 .
3.7)
Putting
X =27@/(a; M) and Y = {(1 + A)/C} (sinB[cos§'), (3.8
we see Y2=(a,/;) (®/@) and we can rewrite (2.5) and (3.2) as follows:
B [#,]3)_ =iX cos (a, E — 6) cos (a, z — 6)
3.9)
B ¥y =—XYcos(a, E—6)cos (fyz—0),
Dl (@05, =X Ycos (B, E — 6) cos (a, z — 6),
(3.10)
D} ¥4y, =1 X Y2cos (B, E — &) cos (B z— ) .

Even if we exchange E for z, the right hand sides of the first equation in
{3.9) and the second equation in (3.10) remain as they were. On the other
hand, the second equation in (3.9) changes the sign of the first equation in
(3.10) by exchanging E for z. In the latter case, the source of P wave is
changed for that of S wave and the wave observed does from S to P. It may
be due to the relation between reflection coefficients, B=—(a,/8,)C and B'=—(a,
/B1)C’ that the second equation in (3.9) has a different sign from the first equation
in (3.10). Following the above considerations, we see that E and z are reciprocal
in (3.9) and (3.10).

Equations (3.9) and (8.10) can be arranged in a somewhat compact form
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(D05 =@y + [Pl =5 Zy X cos (a2 — 6)
(3.11)
, va= y P
[V = P ilygg + [Filyy_y = — Z1 X Ycos (B2 — 0
in which
Zy=DBycos(a, E—0) —iY Dycos(f, E—8). (3.12)

4. Displacements in the first layer generated from a line source in
the first layer

Taking components of displacement in x- and z-directions as «; and w;, we
can express them as

#j =0¢;f0x +0vY;foz and w; =0¢;/02—3Y;fox. 4.1)

When P and S waves are generated at the same time from a line source

in the first layer, every component of displacement consists of two parts:
v=1 P1 o os1 v=1 P1 s1
w, =u, +u > and w ~=w +w . 4.2)

Substituting (3.11) into (4.1), we have

T =EZ,XU; and w7 = —4EZ; XW, (4.3)
in which
U, =cos (a2 — 8) + (/) Ysin (f,z — 6'),
(4.4)
W, = (a,/E)sin (a, 2 — 6) + Y cos {f,2 — ') .

In (4.4) Z, is related to conditions of the source and U,; or W, does to
those of observation. On the other hand, X does not depend on conditions
of the source as well as on those of observation, but shows purely the character

of surface waves.
As we had the next boundary conditions:

- - - -
w '=u™ and w]'=w,' on z=H, (4.5)

we have, from (4.3) and (4.5),

[By sy Zg = {1+ (eaf8) ﬁzlf} P4 X (iUt (BofE) Wa)omn l

Dy — (1 4 () (BufE)) 2, X (i(afE) Uy — Wy)ocr ]
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Displacement potentials in the second layer will be easily obtained, from
(4.6), as follows:

(D)7 = oG (1 1 (agfE) (BofE)} Z0 X (3 Uyt (BofE) Wy)mir l

(4.7)
["Ve]VMiln = ¢ P =) {1 + (wfE) (BofE)) 1 24 X {1 (az/E) U1*VV1}2=H . J

5. Displacement in the second layer generated from a line source
in the first layer

By a different process from that described at the end of the previous
section, we can get B, and D, directly from (1.6) and (1.7):

B;ll (B, e_mzHL;:O =[{E el (¢? — A D' ¢~ BC') + G e H (A’ B et
+ A B’)} gmE 4 [E’ gl (4 et — D' ) 4. G e
X (B + B)) e B M,

Byl [Dy e syl = [[F/ il (¢f — A D' ¢t — BC') 4 H' ¢~ (A" B et
+ A B')} gl E {F' e (4 gt — D' e ) 4 H emiiH
X (B et + B')) e-mE)|M

where E’, F', G’ and H' are PP, PS, SP and SS refraction coefficients on z=H
from the first to the second layer?)

If condition (1.14) is satisfied, the above equations can be rewritten by
the use of (2.1) and (2.3) as follows:

B [Bye ) =i (w[My) (@fay) cos (a, E — 6)

% {E' e H-0) | (G' 6_,.311{) ! (A el — 6—1'9)} i

B, Dy e =i ([My) (@fa,) cos (a, E — 6)

X {F' e~ (2 H~0) + (H' e—iﬂlH) Cc-1 (A et — e—ie)} .

The equivalent expression to (5.1) can be also obtained by ray theoretical
considerations: .
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B, [Bye )Pt = E' (e (E-1) 1 B, =i} 4 (G' ) D, I
| (5.2)

Substituting (1.8) and (2.2) into (5.2), we see this will coincide with (5.1).
‘When S wave is generated from the origin, we have, by the similar process
to that arriving at (5.1),

D, [Bye=at]5;_ =i (x| M) (@]B,) cos (B, E — 6)

X {(E' g—ile) B (A et _ 6—1‘9) + G 6-1‘(9111—9')} ,
(5.3)

D} [Dye 2]y =i (x[My) (@]By) cos (p E — 6')

X {(F' e—ile) B1 (A eie' _ e—ia) + H e—i(eﬁl—@‘)} .
At any rate, displacement potentials in the second layer may be expressed
as follows:

Byl (3] = 1 (/M) (@]ay) (B e eil=0) 4 (G ety €1

1

X (4 e — e—"")} cos (alE —0) g-iwg C—H) |

(5.4)
Bo_ll {%];1:0 =i (7|Me) (@]ay) {F' e~ =)  (H' e=*4H) -
X (A e — e7)] cos (o, E — @) em'ea¢-H)
DI [0, = i ([ M) (@]By) {(E' i) B (A & — %)
+ G e G1H=) ) cos (B, E — 6') e ¢-H)
(5.5)

DI W5, =4 (2| My) (@]B,) ((F ea™) B (4 ¢ — o9

+ H' e '1f=0)} cos (B, E — 0') e#a6H)
However, we know the next relation from (3.5), (3.6) and (3.8)
Cl({Ae? —e™®) =1C1(1 + A) (sinffcos 0') e =1 Y ',
B (A6 — e ) =i (/@) B (1 + A) (sinf/cos 0) &% (5.8)
= — i (fifo) (@|B) Y e
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Therefore we have

D)5y + [Pl _y = 12, X - (B /=0 i Y G gmiaifizt) | grivacot),

[Walyey + el =121 X - %{F' g0 1 Y | ¢~ (iH=t)] gmifycH) ]

- {5.7)
Physically, (4.7) should coincide with (5.7) by the next equations:
[Py = [Py g + [Palyy_, and  [Wo)30 = [Woli_, + [l _,
that is
‘lg {El et (@ H=3) Y G e_i("{lﬂ—a’)} — {1 + (ag/f) (ﬂz/E)}_l .
X {Ul —1 (62/5) Wl}z=li ’
(5.8)

LR o f @l 0 B O] < (1 (wff) (BafE))
X [(afE) Uy + i Wifoe .

6. Displacement potentials generated from a source
in the second layer

- Denoting PP and PS refraction coefficients on z=H from the second to
the first layer by E” and F"V), we may arrive at, from (1.6), (1.7) and (1.8),

B, [y, = e [E” emieutl (¢ — A D' e — B C)
+F e ®mH (4 C' 1 CA' e} M,

B [Bylyr, = %) (E” gminl (4 &7 — D' e7¥) + F" e (C e — C')} M,

B [C,I2, = e~ [ ¢l (BD' ¢4 4 A B)

2

+ F" e (¢t — A A" — BC)) M,

Bl [Dy]yr, = emialE-M) (B gmimtl (B it 4 B') 4 F” e~ (A &' — A’ 69)| /M .

11 =0

When condition (1.14) is satisfied, the above equations can be rewritten,
by the use of (2.3) and (2.9), as follows:
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3;21 [Aﬂpz 1 (M) (]ay) - ‘é‘ {E” g H=0) | R gmitiH

M=0

% B-1 (A e e—ie)] e iog(E-H) o—i6

By (Bl =1 (r]M) (@]ay) - 5 {E" 7ot 4 [7 o=

X B-1 (A eie _ e—ie)} g—iwz(E—H) eie ,

B;; [C1]§f=0 =i (z|My) (@®)ay) - 'i12' [E" eimt . C-1 (4 ¢ — ¢i#)

+F" e-i(slﬁ—e‘)] g~y (E~H) g—i8’ ,
By DLy =i ([Me) (Bag) - [E" i - CH (A o — o)
+ F7 gi(3H-0 )} ity (E-H) g6
Refering to the previous paper?), we see

E" = (ps/py) (agfay) E*,  F" = — (pafp1) (a/B) G } (6.1)
G" = — (pslp) (Befa) F',  H" = (paloy) (BalBr) H'

where G’ and H ' are SP and SS refraction coefficients on z=H from the
second to the first layer.
Therefore we reach

B (pofps) [Py = i (w|Me) (@) (E' emitai=)
+ Gl g—iBIH (A 61'0 . g—-t'O) C—l} . 6—;}12(5;}1) cos (alz o 0) )

B (pofps) Wiy = — 1 (/M) (@) (E e (4 &

— ) B 4 G ¢ B0 L g B-t) cos (B 2 — 6')

If E is exchanged for z, the right hand side of the first equation in (6.2)
coincides with that in (5.4), but the right hand side of the second equation in
(6.2) does with negative expression of the first equation in (5.5). These
reciprocities have been expected at (6.1).

Utilizing these reciprocal relations, we can easily obtain, from the
second equations in (5.4) and (5.5), displacement potentials in the first layer
generated from a source of S wave in the second layer:
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D, (04fpy) (@115, = — i (7[My) (@]ay) {F' e =)

+ H o=i8:H (4 0% — %) C—l} - e~#3(E-H) cos (a, 7 — 6)
(6.3)

D, (pafoo) 115y =i (2[My) (@]fy) {F' e (A ¢ — ¢7®') B
+ H' oG- . =2 (E-H) cos (B2 — 0') .

Substituting (5.6) into (6.2) and (6.3), we can arrange them in

- ve= P SY 3
W]]M:O = [q)sz:O + [®1]A;=0 =1ZyX cos (a;z—0),

s =)y + Wil = — Z2 X Ycos (B2 — 0)
in which

Zy= _é— (P2/py) [Bog e~ 2B {E’ e84+ 7Y ¢ G_i(B‘H—G,)}
— Dy e~ o E-ID) [F' =44 H=0)  { Y H' 6_i(BlH_0’)}] . (6.5)
When we obtain B, and D, directly from (1.6), (1.7) and (1.8), it is
difficult to express them with reflection and refraction coefficients already
known. According to ray theoretical considerations, however, we seen on 2=H

B, i —— 47 By, gty (E-H) | F’ g=imH B, + G i1 H D,,
4 _ , : (6.6)
D, Bl — B By, gty (E-H) | [’ g~ioH B, + H e—iBrH D,

where A” and B” are PP and PS reflection coefficients on z=H from the second
to the first layer.
Picking up coefficients of exp (—ia,z) and exp (—if,2) in (6.4) which corres-
pond to B, and D;, and substituting them into (6.6), we have
[qf’z]vM::O =12, X - —% [E'emi@ali=0) o+ {Y G’ ¢ BiH=0N} gimgc-H) ]
(6.7)
[?lfz]';:‘) =iZ, X - _12 [F' et f=8) 1 { Y H' e (BiH-)} gmiPy-H) | l

If we exchange Z, for Z,, (6.7) becomes (5.7). Because (5.7) can be
expressed by the form of (4.7), as was already described, (6.4) and (6.7) can
also be expressed by the same notations as those were used in (4.7). Substitut-
ing (5.8) into Z, in (6.5), we have
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Zy = (ps/py) {1 + (aafF) (/32/'{:)}—1 [Byy e®a(E-1) {Ul — ¢ (ByE) W1}2=H
— Dyp e~ E-1) {(afE) U, + in}FH] ‘ (6.8)

7. A compact expression for displacement

Arranging various components of displacement in a compact form, we have

w=EZ XU, and  w'=—iEZ XW,,
(7.1)
wP=FZ,XU; and  w,P=—iEZ,XW,
when observations are made in the first layer;
uy Tt =EZ; XU, and w, =FZ, XW,,
(7.2)
uy P =82, X U, and w, 2 =EZ, X W,

when observations are made in the second layer. In (7.1) and (7.2), Z,, U,
and W, are given in (3.12) and (4.4) whereas Z, is given in (6.8) and

Us= {1 + (aafE) (BofE) | [e**a 7D {Uy — i (BofE) Wifeors
+ e~ (Bo[E) ({(ayfE) Uy + i Wy]ou] : ]
We = {1+ (@ff) (BfE) | [ (@f8) {Us — 3 (BufE) W) cn |
— e 8 CH) [(qn[E) Uy + i W, o]

In the above expressions amplitudes of Z, and Z, are respectively measured

(7.3)

in a unit of any displacement potential. If a unit is taken as any component
of displacement at an origin, B,, e¢fc must be replaced by #¥B , and so on.
Thus, (7.1) and (7.2) become

wTh=4Z/ XU, and @' =Z"XW,

(7.4)
w, =12, XU, and wTP=ZXW,
uy" =12y X U, and w, =12 XW,,

(7.5)
u, =142y X U, and  w,T =17y X W,
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where
Zy = By, 08 (4, E — 0) — Doy (By/E) Y sin (B, E — 0"), } 7.6)
Zy" = Bo, (&y[E) sin (o E — 6) + Doy Y cos (B, E —6'),

Zy = {1 + (afE) (52/5)}—1 [Bgp et~ {Ul — 1 {B/E) W1}:uH

+ Doy 72 EH) (B, [E) {(0afE) Uy + & Wi}.cn] ]
Zy" = {1 + (aafE) (BofE) | [Boz 6735~ (ayfE) {U;

— i (BofE) Wi}omn — Dyg 6732 E~1) {(agfE) Uy + i Wi}imii].

If £ is replaced by z in company with B,, and D,,, all components of
displacement are reciprocal by that exchange.

(7.7)

Factor X is common to all components of displacement and is expressed,
from (2.6) and (3.8), as '

X=—-2xaEH (U1 {(ozl/af)2 + (Bi/E)? Yz}“l . (7.8)

This is the most fundamental quantity for representing the relation between
amplitude and period of dispersive RAYLEIGH waves.
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