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This study proposes a method for wireless power transfer systems to identify the existence of foreign metal objects and simultaneously 

predict the misalignment distance between the primary and secondary coils. The proposed method is based on a neural network (NN) 

trained using electromagnetic field simulations. The training data for the NN consist of the differential voltages in the detection coils, 

together with the input voltage of the primary coil. Although the metallic objects and coil misalignment induce confusing voltages, the 

trained NN exhibits over 90% accuracy for the validation dataset, and mean prediction errors of less than 1 mm for the misalignment 

distance and ground clearance variance. 

 
Index Terms— Wireless power transmission, Object detection, Neural networks.  

 

I. INTRODUCTION 

ecently, the attention paid to electric vehicles (EVs) has 

been increasing due to environmental concerns about 

global warming. This has promoted the intensive study of 

wireless power transfer (WPT), which allows reliable charging 

of EVs. Until now, many studies on the design of coils and 

magnetic cores for WPT have been performed with the goal of 

increasing transfer efficiency [1]-[2]. 

In addition to performance, safety is an important 

consideration for WPT. Many studies have focused on reducing 

the leakage flux of WPT [3] to mitigate the magnetic flux 

exposure to human bodies, the safe limit for which is stipulated 

by ICNIRP as 27 μT for frequency bands ranging from 3 kHz 

to 10 MHz [4]. 

Another possible risk for WPT systems is caused by foreign 

metal objects, which may lead to dangerous electric discharge 

and fire accidents when exposed in the strong alternative 

magnetic field of a WPT system. For this reason, metal object 

detection (MOD) has been studied. Differential voltage coils 

[5]-[6] have been introduced to detect the voltage induced by a 

metal object. However, detection coils might not work well 

when there is misalignment in the primary and secondary coils, 

which generates confusing voltages. MOD without additional 

sensors or detection coils has also been proposed [7]-[8], but 

the validity of this approach is unclear when magnetic cores are 

introduced to a WPT system, because an increase in the 

magnetic flux complicates the field distribution. Robust and 

accurate MOD is required that will work effectively even if 

confusing voltages are generated owing to coil misalignment or 

magnetic cores. 

Moreover, misalignment between the transmitting coils also 

influences the performance of WPT systems, including the 

transfer efficiency and leakage magnetic field. In [9], the 

misalignment was predicted from the voltage induced in the 

sensor coils near the winding on the primary coil, where the 

extreme gradient boost algorithm was employed for the 

prediction. Similar sensor coils were used for MOD [10].  

In summary, coil misalignment and metal object can be threat 

to the performance and safety of WPT system. It would become 

worse when the two problems coexist. However, it is unclear 

whether MOD and prediction of the misalignment distance can 

be performed simultaneously. If this is possible, the 

performance and safety of WPT can be improved significantly. 

In this study, we propose a method based on a neural network 

(NN) that simultaneously performs MOD and prediction of the 

misalignment and clearance variance in the WPT system. We 

train the NN using repeated electromagnetic field simulations, 

though it can also be trained using measured data. 

II. SIMULATION MODEL 

A WPT system driven by a 1 A current source was 

considered in the analysis. The capacitors were connected to the 

primary and secondary coils in series, and the capacitance was 

adjusted so that the WPT system had resonance at 85 kHz. The 

load of the system is assumed to be a 20 Ω resistor connected 

to the secondary coil. 

The WPT device consists of the transfer coils as shown in 

Fig. 1, in which we arrange bar-shaped magnetic cores with a 

design according to [11], with a relative permeability of 3300, 

to increase the coupling between the primary and secondary 

coils. The transfer coils have 15 and 10 turns of coils, 4.5 mm 

in diameter, as shown in Fig. 2, where 𝑟𝑖𝑛  and 𝑟𝑜𝑢𝑡  which 

denote the inner and outer radius of coils are 77.5 and 145 mm 

for 15 turns, while they are 100 and 145 mm for 10 turns. The 

self-inductances are approximately 86.9 μH and 52.1 μH. We 

verified the proposed method using these different models. 
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Fig. 1. WPT model. 

  
(a) 15 turns (L ≈ 86.9 μH) (b) 10 turns (L ≈ 52.1 μH) 

Fig. 2. Primary coil. 

 
Fig. 3. Differential coils. 

 

Four one-turn square detection coils were placed on the 

transmitter. The diagonal coil pairs, 𝑝1(𝑑1, 𝑑2) and 𝑝2(𝑑3, 𝑑4), 

are wound in opposite directions to detect the differential  

voltage. The concept of differential voltage is simple. For 

example, as shown in Fig. 3, when a metal object is placed 

above coil 𝑑2, the induced voltages of 𝑝1(𝑑1, 𝑑2) cannot be 

canceled and the differential voltage will not be zero, while that 

of 𝑝2(𝑑3, 𝑑4) is still zero. Therefore, the existence of metal 

objects can be recognized. The misalignment in the two coils 

causes confusing voltages in the detection coils. In this study, 

we predict the existence of metals and the misalignment 

distance from the detected signals, which would be difficult for 

humans because of the complexity and high dimensionality of 

the signals. 

Neglecting the fine wire structures, we assume pancake-

shaped coils for WPT with a uniform current of 1 A. An 

aluminum cylinder with a diameter of 35 mm and height of 35 

mm is assumed as the foreign metal object. This object has 

similar or smaller size in comparison with a can and bar listed 

in IEC 61980-3 [12]. The eddy current in the aluminum cylinder 

is considered in the field computation using JMAG®. 

III. PROPOSED METHOD BASED ON NN 

A. Data preparation 

We assume that the distance between the primal and 

secondary coils ranges from 50 to 100 mm, namely the distance 

assumed to be 75 ±25 mm，while the coil misalignment on the 

x-y plane ranges from -70 to 70 mm. The metal object is 

assumed to have a random position within the space covered by 

the detection coils. 

 

 
(a) marked according to the existence of a metal object 

 
(b) marked according to misalignment in the x direction 

 
(c) marked according to variance on clearance in z direction 

Fig. 4. Visualization of {𝑉𝑝} through SVD 

 

In total we built 1500 cases, half with and half without a 

foreign metal object. For each case, we computed and stored the 

differential voltages of the detection coil pairs and the input 

voltage of the primary coil at 85 kHz. 

From these data, we constructed two vectors 

𝑽𝑖𝑛 = [𝑢1
𝑟, 𝑢1

𝑖 , 𝑢2
𝑟 , 𝑢2

𝑖 , … ]           (1) 

𝑽𝑝 = [𝑣11
𝑟 , 𝑣11

𝑖 , 𝑣12
𝑟 , 𝑣12

𝑖 , 𝑣21
𝑟 , 𝑣21

𝑖 , 𝑣22
𝑟 , 𝑣22

𝑖 , … ]    (2) 

where the quantities with indexes r and i denote the real and 

imaginary components, 𝑽𝑖𝑛 is composed of the input voltages 

𝑢𝑘 = 𝑢𝑘
𝑟 + 𝑗𝑢𝑘

𝑖   of the primary coil, while 𝑽𝑝  consists of the 

differential voltages 𝑣𝑘𝑙 = 𝑣𝑘𝑙
𝑟 + 𝑗𝑣𝑘𝑙

𝑖   of the l-th pair for the 

cases 𝑘 = 1,2, ….  

To understand the data properties, the vectors 𝑽𝑝 for the 15 

turns model are mapped on the two-dimensional plane by 

singular value decomposition (SVD) as shown in Fig. 4. Fig. 4 

(a) shows the distribution of cases with and without the metal 

object, where a point corresponds to a case. Fig. 4 (b) and (c) 

show the distribution of the data with different misalignment 

distances in the x direction, and clearance variation in z 

direction, respectively. The figures show a clear correlation 

between the misalignment and variation, but not for the 

existence of metal objects, at least in the two-dimensional plane.  

B. Neural network 

We implemented an NN using Tensorflow® [13] and Python. 

The hyperparameters are listed in Table I, and the structure of 

Transmitter
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the NN is shown in Fig. 5. The input data are either {𝑽𝑖𝑛, 𝑽𝑝} 

or {𝑽𝑝}, which are standardized before being provided to the 

NN. We configured four dense layers composed of 64 neurons 

whose activation function was set to ReLU. The NN has four 

outputs representing the existence possibility of the metal 

object, the misalignment distances and the clearance variance 

in z direciton. The loss functions and weighting coefficients for 

the losses are included in Table I. 

 
Fig. 5. NN structure. 

TABLE I 

HYPERPARAMETERS OF THE NN 

Batch size 20 

Epochs 750 

Optimizer Adam 

Learning rate 0.001 

Loss function (MOD) Binary cross entropy 

Loss function (position prediction) Huber loss 

Loss weights (MOD : position prediction) 1 : 0.01 

IV. TRAINING AND VALIDATION 

A. K-fold cross validation 

To evaluate the prediction accuracy, 5-fold cross validation 

was applied to NNs for the 15-turn model, which was trained 

using either the combined data {𝑽𝑖𝑛 , 𝑽𝑝}  or 𝑽𝑝 . All the data 

were divided into five subsets, and the NN was trained five 

times, with four subsets used for training while the remaining 

subset was used for the validation of prediction accuracy. The 

average performance over the five training sessions was treated 

as the final performance of the NN. K-fold cross-validation was 

implemented using Scikit-learn® [14]. The same procedure 

was applied to the 10-turn model. 

B. Training results 

The performance of the trained NNs is shown in Table II, 

which includes the accuracy of MOD and the mean absolute 

error in the prediction of misalignment distances (Error in x, y) 

and clearance variance (Error in z). For both result types, the 

accuracy of the 15-turn model is better than that of the 10-turn 

model. The accuracy of MOD for the former model is over 90% 

for both cases based on {𝑽𝑖𝑛 , 𝑽𝑝}  and 𝑽𝑝  while that for the 

latter is between 80% and 85%. This is because the 15-turn 

model has a larger inductance, so that a larger magnetic field is 

generated between the coils, causing a larger eddy current loss 

in the metal object. This results in a larger change in 𝑽𝑖𝑛 and 

𝑽𝑝 caused by the metal object. For this reason, MOD becomes 

easier. 

The prediction accuracy for the misalignment distance and 

clearance variance was clearly improved by adding 𝑽𝑖𝑛 to the 

input data. This tendency is more remarkable in the 10-turn 

model; the prediction error is reduced to less than 20% by using 

𝑽𝑖𝑛  in addition to 𝑽𝑝 . These results suggest that the use of 

{𝑽𝑖𝑛 , 𝑽𝑝} as the input data is preferable for our purpose. It is 

noted that the predicted misalignment and clearance variance 

error in z direction can be sent to the user of the WPT, who can 

make a fine alignment to improve the energy transfer efficiency. 

Next, we consider the dependence of performance on the 

amount of data. We randomly thin the data to create new data 

sets with sizes ranging from 300 to 1500 cases. NNs were 

trained and evaluated using the different numbers of cases. Fig. 

6 shows the dependence of the performance of the trained NN 

for the 15-turn model on the number of cases. The accuracy of 

the MOD increases, and the prediction error in the alignment 

distance decreases, with the number of cases. A similar 

tendency was observed for the 10-turn model. 

 
(a) Accuracy of MOD 

  
(b) prediction error in the x, y misalignment, and clearance variation in z. 

Fig. 6. Dependence of performance on number of cases for the 15-turn model 

 
Fig. 7. Dependence of misalignment distance error in the x, y, and clearance 

variation in z on the number of cases (15turns, without MOD). 

 
TABLE II 

MOD ACCURACY AND ERROR IN POSITION PREDICTION OF TRAINED NN 

 15-turn coil 10-turn coil 

Case I: 𝑽𝑝 

(4 dimensions) 

MOD: 93.54% MOD: 80.9% 
Error in x: 1.51 mm Error in x: 6.75 mm 

Error in y: 1.60 mm Error in y: 7.14 mm 
Error in z: 1.47 mm Error in z: 3.45 mm 

Case II: 

{𝑽𝑖𝑛 , 𝑽𝑝} 

(6 dimensions) 

MOD: 92.13% MOD: 84.39% 

Error in x: 0.93 mm Error in x: 1.00 mm 

Error in y: 0.96 mm Error in y: 1.07 mm 
Error in z: 0.73 mm Error in z: 0.69 mm 

C. Misalignment and clearance variance prediction 

In some scenarios, as in the case of WPT for factory robots, 
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there is little possibility of the existence of foreign metal objects 

in the WPT system. In such a case, the user would be interested 

only in misalignment and clearance variance prediction because 

it affects the transfer efficiency. For this reason, we trained and 

evaluated NNs only for the position prediction using the 

training data without metal objects. The hyperparameters and 

structure of the NN remained unchanged, except for setting the 

weight of loss of MOD to 0 to build an NN specialized in the 

position prediction. 

The results are summarized in Table III. Compared to the NN 

mentioned in the previous section, it has higher accuracy in the 

prediction of misalignment distances and clearance variance, 

especially when the combined data {𝑽𝑖𝑛 , 𝑽𝑝} are used for the 

input data to the NN. 

Fig. 7 shows the dependence of the error in the position 

prediction on the number of cases when using {𝑽𝑖𝑛 , 𝑽𝑝}. The 

accuracy depends on the number of turns. For the 15-turn model, 

the error can be reduced to 0.5 mm by increasing the number of 

training data cases. 

D. Effect of noise 

To know the effect of noise in the data on the performance of 

the trained NN, we added random noise to the original data. The 

noise level was mapped to the equivalent size variation in the 

foreign metal object, both of which cause the same change in 

the input and differential voltages. We considered the two 

different noise levels which are equivalent to the size variation 

ranging from 32 to 35 mm for the input voltage and 30 to 35 

mm for the differential voltage in Case A, and the size ranging 

from 25 to 35 mm for the input voltage and 20 to 35 mm for the 

differential voltage in Case B. It is assumed that there is no 

misalignment and the metal object is placed at a certain position. 

The results are summarized in Table VI. It can be seen that there 

is no significant differences in the accuracy of MOD, while that 

of the misalignment prediction clearly becomes worse with the 

noise level. However, the latter error is still lower than 4 mm. 

The prediction accuracy depends on the noise level in the real 

environment, which should be measured for the design of this 

detection system. 
TABLE III 

MOD ACCURACY AND ERROR IN POSITION PREDICTION OF THE TRAINED NN 

(WITHOUT MOD) 

 15-turn coil 10-turn coil 

Case I: 𝑽𝑝 

(4 dimensions) 

Error in x: 1.07 mm Error in x: 6.69 mm 

Error in y: 1.17 mm Error in y: 6.41 mm 
Error in z: 1.21 mm Error in z: 3.24 mm 

Case II: {𝑽𝑖𝑛 , 𝑽𝑝} 

(6 dimensions) 

Error in x: 0.46 mm Error in x: 0.74 mm 

Error in y: 0.40 mm Error in y: 0.88 mm 
Error in z: 0.34 mm Error in z: 0.53 mm 

 
TABLE IV 

ACCURACY FOR MOD AND POSITION PREDICTION UNDER NOISY 

ENVIRONMENT (15TURNS) 

 Original data Case A Case B 

MOD 92.13% 88.9% 94.1 % 

Error in x 0.93 mm 2.07 mm 3.51 mm 

Error in y 0.96 mm 2.13 mm 3.76 mm 

Error in z 0.73 mm 1.60 mm 2.21 mm 

V. CONCLUSION 

We proposed a new method that realizes MOD together with 

the prediction of misalignment distances for WPT systems 

consisting of magnetic cores. We performed approximately  

1500 field computations for different misalignment distances in 

three directions and a metal object with a random position to 

build the training data for the NN. Using the differential 

voltages of the detection coils and input voltage of the primary 

coil as input vectors, we trained the NN to predict the existence 

of a metal object and the misalignment distance between the 

two transmitting coils at the same time. In the best case, the 

trained NN has an accuracy of over 90% for MOD, and the 

mean absolute error in the misalignment distance is less than 1 

mm. By training the NN to predict only the misalignment 

distance, the error can be reduced to 0.5 mm at best. 
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