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Energies of Elastic Surface-waves 

K yozi T AZIME 

(Received Sept. 30, 1964) 

Abstract 

Flow of energy density is conserved on reflection and refraction of SH-waves. 
Energy flow of LOVE waves is equal to the product of energy and so-called "group 
velocity". This relation is satisfied also by dispersive RAYLEIGH waves. It has 
been found, however, that definition U = dw/d~ does not directly mean group velocity 
but does energy velocity. 

1. Conservation of energy flow on reflection and refraction. 

Considering reflection and refraction of SH-waves shown in Fig. 1, we see 
that displacements within the first and second layers are expressed respectively 

as follows: 

where 

'h = Al cos (w t - Ex - '1')1 z) + Bl cos (ro t - Ex + '1')1 z) , 

""'2 = A 2 cos (w t - Ex - '1')2 z) 

ki = E2 + 7Ji, k~ = E2 + 'I')~, kl =ro/v1 , k2 = ro/v2 ' 

VI = ({lI!Pl)1/2 and V2 = ({l2/pz)1/2. 

Since the boundary conditions on z=O are 

'h = ""'2 and {l1 0 'h/oz = {l2 0 ""'2/0 z , 

the reflection and refraction coefficients are given by 

o 

2 

Fig. 1. Reflection and refraction of SH-wavcs. 

} (1.1) 

} (1.2) 

(1.3) 
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K12 == E1/A1 = {1 - (fl2 7]2)/(fll 7]1)) {1 + (fl2 7]2)/(fll 7]1) )-1, 

1 + K12 == A2/A1 = 2 {1 + (fl2 7]2)/(fll 7]1) )-1. 

} (1.4) 

Substituting (1.4) into (1.1), we see that the incidence, reflection and 

refraction waves are expressed as follows: 

,yi = cos ((I) t - ~ x - 7]1 z) , 

,yt = K12 cos ((I) t - ~ x + 7]1 z) , 

'/rr = (1 + K 12) cos (ft) t - ~ X -7]2 z) 

where Al is taken as unity. 

} (1.5) 

The flow of energy density passing a plane of a unit area perpendicular 

to z-axis in a unit time is given by 

(1.6) 

Therefore, the flows of energy densities derived from (1.5) are respectively 

/i = - (0) fl1 7]1 sin2 (m t - ~ x - 7]1 z) , 

/; = (Ofl1 7]1 Ki2 sin2 (n> t - ~ x + 7]1 z) , 

/r = - (,) fl2 7]2 (1 + K12)2 sin2 (n> t - ,~ x - 7]2 z) 

where flow /t is opposite in z-direction to the others. 

Taking up mean values during one period, we have 

However, as we have seen, in (1.4), 

we can know 

} (1.7) 

(1.8) 

(1.9) 

which shows the flow of energy density must be conserved on reflection and 

refraction of SH-waves. 

Even if we consider the flow of energy density passing through a plane, as 

that shown by dotted lines in Fig. 2, perpendicular to x-axis in place of z-one, 

we are able to obtain the same result as (1.9). It must be remembered, 

however, that areas of the planes are to be adjusted by 7]1/f and 7]2/~ 

respectively. 
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z 

Fig. 2. The flow of energy den~ity. 

Energy density of SH-waves is given by 

W = ~ P (o..Jrjot) + ~ ft {(O..JrjoX)2 + (o..Jrjot)2}. (1.10) 

Substituting the first equation of (1.5) into (1.10) and taking (1.2) into 
account, we have 

Wi = PI (V 2 sin2 (rv t - (; x - 7]1 z) , 

resulting in the average value during a period 

- 1 2 
Wi = -Z- PI (t) 

Therefore we have, from (1.8) and (1.11), 

J i sec OIjW, = VI . 

(1.11) 

(1.12) 

The numerator on the left hand side of (1.12) means the flow of energy 

density iri the progressive direction of incident waves. As to the other waves, 

we have also 

II sec OIjWI = VI and Ir sec 02jW, = V2 . 

Substituting (1.12) and (1.13) into (1.9), we have 

Wi = WI + w, (sin 2 (j2/sin 2 ( 1) 

which shows that the energy density should not be conserved. 

(1.13) 

(1.14) 

We have easily arrived at principle of conservation as to energy flow from 

the two conditions stated in (1.3). Speaking about physical conceptions, 
however, we may expect that principle of conservation concerning energy 

must be superior to any other condition. 

Substituting 
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and 

into the relation 
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""'i = cos (M t - ~ x - "71 z) , 

""'I = Bl COS (M t - ~ x + "71 z) , 

""', = A 2 cos (flJt - ~X - "7 2 Z) 

(l.lS) 

fil (a 'fr,ja z) (a 'hla t) = fil (a ""'Ila z) (a "",;/a t) + fi2 (a 'frrla z) (0 'fr,la t) 
( l.l6) 

which is equivalent to (1.9), we have 

1 = Bi + (fi27]2) (fil 7]1)-1 A ~ . (l.l7) 

We cannot obtain (1.3) from (1.17) alone. Anyone of (1.3), however, may 
be obtained by combining (l.l7) with the other condition of it. 

Adopting the first condition in (1.3), for instance, we have from (1.16) 

1 + Bl = A2 

which makes (l.l7) as follows: 

1- Bl = (fi27]2) (fil 7]1)-IA 2 (1.18) 

in which Bl = (1 - (fi27]2) (fil 7]1)-1} (1 + (fi27]2) (fil "71)-1} . 

Equation (1.18) is nothing but the second condition of (l.3). If we adopt 

the other condition on z=o than the second of (1.3), flow of energy density 

cannot be conserved. 

2. Energy of Love waves 

Physical meaning of (l.l2) tells 

(energy flow) = (energy) (energy velocity) (2.1) 

which may be compared with the similar relation for water flow. Equation 
(2.1) is also explained by RAYLEIGH1) as well as by BRILLOUIN 2) as to waves in 

dispersive media. BRILLOUIN describes that energy velocity might coincide 
with group velocity, if the former is real and positive. 

Let us consider LOVE waves in a layer overlying a half space, we have the 

characteristic equation 

M(Ct),~)=O 

in which 

M (Ct),~) = tan 7]1 H - (fi2IfiI) (7]2/7]1)' TJ2 = i 7]2 

, and H means the thickness of a superficial layer. 

(2.2) 

(2.3) 
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Displacements in each layer can be expressed as follows 3): 

'h=-27tA (f) cos 'l)1E cos '1)1 z exp {i(rtlt-fx)} , } 
(2.4) 

'h= -2 7t A (f) cos '1)1 E cos '1)1 H exp {-TJ2 (z- H) } exp {i (w t-~ x) l 
where 

Dealing with real roots in equation (2.2), we see 

r = - 2 7t A (f) cos '1)1 E 

(2.5) 

(2.6) 

is also real. Therefore real parts on the right hand side of (2.4) may be 

expressed by 

(R, VI = r cos '1)1 z cos (w t - f x) , 

(R, V2 = r cos '1)1 H exp { - TJ2 (z - H) J cos (rtl t - f x) . 
} (2.7) 

From now on, notation (R, will be omitted, no confusion being expected. 

Of course, equation of motion 

(2.8) 

is satisfied by (2.7). Moreover, we see the relation concerning principle of 
energy conservation4 ) 

a w/a t + a (w Ux)/ax+a(wUz)/a z = 0 (2.9) 

in which Ux and U; mean respectively components of energy velocity in x 

and z-directions. But waves given by (2.7) do not propagate in z-direction, 

so the third term on the left hand side of (2.9) will be neglected. 
We have from (1.10) and (2.8) 

a w/a t = a {ft (a vIa x) (a v/a t)} /0 x . (2.10) 

Comparing this with (2.9), we see 

a {w Ux + ft (a v/a x) (av/at) }/ax = 0, 

resulting in 

w Ux + ft (ov/ax) (av/at) = C (t, z). 

Because this must be satisfied by any x, C(t, z) should be zero. Therefore 
we reach 

or 

w U x + P, (0 '¥r/o x) (0 v/a t) = 0 

Ux = - ft (a v/a x) (0 v/at)/w . (2.11) 

This is the similar relation to that shown by BULLEN 4 ) who treated one 
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dimensional problems. 
Substituting the first expression of (2.7) into (1.6) and (1.10), we have 

11 = - f-ll (0 'h/a x) (0 'h/o t) = P f-lll; (ll cos2 7)1 z sin2 (w t -I; x) , 

WI = (1'2/2) PI 1;2 {(c2 + vi) cos2 7)1 z sin2 (w t - I; x) 

+ (c 2 - vi) sin2 7)1 z cos2 ((d t -I; x)) 

where 

Adopting mean values during a period, we have 

II = (r2/2) f-lll; w cos2 7)1 Z , 

WI = (r2/4) PI 1;2 (c2 + vi cos 2 7)1 z) . 

These must be integrated through the superficial layer, 

H 

J II d z = (P/4) f-lll; (d {H + (sin 7]1 H cos 7)1 H)/7)d ' 
o 

{' WI d z = (P/4) f-ld 2 {H (C/V1)2 + (sin 7]1 H cos 7]1 H)/7)d . 
o 

Likewise we have 

r I2 d z = (P/4) f-l21; [,) cos2 
7)1 H/fJ2' 

H r W2 d z = (P/4) f-l21;2 cos2 7)1 H/fJ2 . 
H 

Therefore the total quantities are given by 

H 00 

F == J II d z + J I2 d z = (r2/4) f-lll; {() (H + (sin 7]1 H cos 7)1 H)/7]1 
o H 

+ (f-l2/f-ll) cos2 
7)1 H/fJ2) , 

H 00 

W == J WI d z + J w2 d z = (r2/4) f-ll1;2 {H (C/Vl)2 + (sin 7]1 H cos 7]1 H)/7)1 
o H 

+ (f-l2/f-ll) cos2 7)I H /fJ2)· 

However, we see from (2.2) and (2.3) 

(sin 7)1 H cos 7]1 H)/7)1 + (f-l2/f-ll) cos2 7]1 H/fJ2 

= (C/V1 )2 {(sin 7]1 H cos 7)1 H)/7)l + (P2/Pl) cos2 7]1 H/fJ2) , 

so we have at last 
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F = (fll/4) (r COS 7]1 H)2 1; (,) [H sec2 7]1 H + (tan 7)1 H)/7]1 + (fl2/fll)/~2} , } 

W = (fld4) (r COS 7]1 H)2 (W/V1)2 {H sec2 7]1 H + (tan 7]1 H)/7]1 + (P2/ Pl)/~2} . 
(2.12) 

Substituting these into (2.11), we have 

U" = (v~/c) {H sec2 
7]1 H + (tan 7]1 H)/7]1 + (fl2/fll)/~2} 

X [H sec2 7]1 H + (tan 7]1 H)/7]1 + (P2/Pl)/~2}-1 (2.13) 

which shows that energy velocity is always real and positive when wave 

number 1; is real and positive. 

If group velocity U may be defined by 

U = dw/d1;, (2.14) 

this can be expressed by 

dw/d!; = - M~ (w, !;)/M w (ft), 1;) 

in which M~ and M ware able to be calculated from (2.2) and (2.3); 

M~ == 0 M/o 1; = - (1;/1)1) (H sec2 7]1 H + (tan 1)1 H)I1)1 + (fl2Ifll)/fJ2} , 

AC == 0 M 10 (v = (l/vi) ((,'/7]1) (H sec2 7]1 H + (tan 7]1 H)/7]l + (P2/ Pl)/fJ2} . 
(2.15) 

} 
Substituting these into the right hand side of (2.14) and comparing the 

result with the right hand side of (2.13), we find 

energy velocity Ux=group velocity U. 

Using (2.15), we can rewrite (2.12) as follows: 

F = - (fll/4) (r cos 1)1 H)2 7]1 W M~ , 

W = (fll/4) (T cos 7]1 H)2 7]1 W M w . 

On the other hand, we have from (2.13) and (2.16) 

(2.16) 

1 (2.17) 

H sec2 7]1 H + (tan 7]1 H)/7]1 + (fl2/fll)/fJ2 = (7)1/1;)2 H (sec2 7]1 H) (c U-l - 1)-1. 

Substituting this into the first equation of (2.12) and using (2.5) and 

(2.6), we arrive at 

F = (7t2/H) #1 Cos2 1)1 E ((;/1)1)2 C (c U-l - 1) , 

W = (7t2/H) fl1 cos2 7]1 E (1;/7]1)2 C U-l (c U-l - 1) 
} (2.18) 

which shows that energy flow F and energy W have respectively a peak when 
group velocity has the minimum value. The sharpness of the peak of 
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energy flow is equivalent to that of amplitude function a) 271A(E), but the peak 
of energy must be sharper than that of amplitude function. 

3. Energy of dispersive RAYLEIGH waves in a layer overlying 
a half space absolutely rigid 

3.1 Expression of group velocity 

Characteristic equation may be expressed by 5) 

M (w, f) = cos2P - A A' cos2 q - B C = O. (3.1.1) 

N ow we see the following relations: 

a (a, P)/al; = - f/a, - l;/P , 

o (a, P)/aw = - (l/e) (e/vp)2 (aa/al;), - (l/e) (e/v,)2 (0 P/al;) , 

a (a/l;, P/l;)/al; = - (l/a) (elvp)2, - (l/P) (e/vs)2, 

a (a/l;, P/l;)/aw = - (l/e) a (a/l;)/al;, - (l/e) a (P/l;)/al;. 

} (3.1.2) 

1 } (3.1.3) 

Because reflection and refraction coefficients, for instance A, are fUl}ctions 

of all; and Pf!; alone, 

a Ala f = a A/a (a/f) . a (am/a l; + a A/a (PIl;) . a (P/f)/a!; 

and we have, owing to the second relation of (3.1.3), 

a A/a (V = a A/a (a/f) . a (a/f)/o w + a A/a (P/!;) . a (P/f)/a w 
= - (l/e) (0 A/a f) . (3.1.4) 

Therefore we reach, from (3.1.1), (3.1.2) and (3.1.4), 

M ~ = f H {(sin 2 p + A A' sin 2 q) / a + (sin 2 p - A A' sin 2 q) / P} 

- [(A A'h cos2 q + (B Ch} , (3.1.5) 

M w = - (f H/e) [(e/vp)2 (sin 2 P + A A' sin 2 q)/a + (ejv,)2 (sin 2 P 

-AA'sin2q)/p} + (l/e) {(A A'hcos2q+ (BC)d. (3.1.6) 

On the other hand, employing the following notations, 

we see that 
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and in case of #2=00 

'0 A'/a ~ = (B' C'/~) @, a B'/ol; = (B'/~) [@ A - {- [(~/a)2 - (~/ fJ)2lJ ' 

oC'/ol; = (C'/~) [@A ' + {- {(l;la)2 - (l;/,B)2}]. 

Using these expressions with that of (3.1.1), we obtain 

(A A 'h cos 2 q + (B C'h = l;-1 {@ (A cos 2 P - A I cos 2 q) 

+ @ (A I cos 2 P - A cos 2 q) I . (3.1.8) 

Substituting (3.1.8) into (3.1.S) and (3.1.6), we have the explicit expression. 
of group velocity 

u = - M~ (co, 1;)/M., (w, 1;) . (3.1.9) 

If anyone or either of a and ,B might be purely imaginary, the ahove 
calculations have no requirement of repetition from the beginning. It will be 
enough for getti-;i new results to put imaginary values, in place of real ones, 
into the result already obtained. 

3.2 Energy in the superficial layer 

Displacement potentials of elastic surface-waves may be expressed In 

general as follows 5): 

q, = (a cos a z + b sin a z) cos (w t - l; x) , 

1JI" = (c cos ,B z + d sin f3 z)siU (w t -l; x) . 

Putting x and z-components of displacement 

u=0q,/ox+01Jl"/oz and w=oq,/oz-01fT/ox, 

we have the next expression for energy density 6) 

w =}p {(oU/ot)2 + (oW/ot)2} + } [(A. + 2",,) (au/ox + a w/oZ)2 

} (3.2.1) 

(3.2.2) 

+ "" {(o wlo x + a ufo Z)2 - 4 (0 ufo x) (a w/o z)}] . (3.2.3) 

As we know 

'\72 q, = a ufo x + ow/a z and '\721J1" = au/a z - ow/o.r , 

we can rewrite (3.2.3) to 
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w/(p ( 2) = ~ [(1/w2) 1(0 ulo t)2 + (0 wlo t)2) + h2 tfJ2 + k2 1Jf2 

+ (4Ik2) {(o wlo x) (0 ulo z) - (0 ulo x) (0 wlo z))J , (3.2.4) 

lIsing 

(v 2 + h2) if> = 0 and (V2 + k2) 1Jf = 0 

in case of stationary motion as that given by (3.2.1). 

(3.2.5) 

The same notation w is employed for z-component of displacement as well 

as for energy density, but no confusion will occur because the dimention differs 

each other. 
Putting 

cp = a cos a z + b sin a z and '0/ = c cos {3 z + d sin {3 z (3.2.6) 

and snbstituting (3.2.1) and (3.2.3) into (3.2.4), we have 

wl(p (V 2) = ~ [(h2 + f2 - 4 f2 a2 k-2) cp2 + 2 f (1 + 2 (~2 - a2) k-2j cp (0 '0/10 z) 

+ (1 + 4 ~2 k-2) (0 '0//0 Z)2] cos2 (IV t - ~ x) + ~ [(k2 + ~2 - 4 f2 (32 k-2) 

X '0/2 + 2 f [1 + 2 (f2 - (32) k-2 } '0/ (0 cp/oz) + (1 + 4 f2 k-2) 

X (0 cp/o Z)2] sin2 (w t - f x) 

=~ {[1J+[2Jcos2(wt-fx)j. (3.2.7) 

When we take account of the mean value w of energy density during a 

period, the second term on the right hand side of (3.2.7) is to disappear. 
In this case, we have ., 

2 w/(p ( 2
) = [IJ == [llJ + [12J + [13J (3.2.8) 

in which 

= ~ [k2 (c2 + d2) + f2 (1 - 4 (32 k-2) {(c2 - d2) cos 2 {3 z + 2 c d sin 2 {3 z}J, 
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[13J == f[{l + 2 (f2 - a2) k-2 ) 1> (0 +/0 z) + {1 + 2 (~2 -f32) k-2 ) + (o1>/oz)] 

= (~/2) [(ad+bc) {1 + 2 (f2_al1) k-2} (a + 11) cos(a+fJ) z + (ad-bc)} 

X {I +2 (~2+a ~) k-2! (~-a) cos (~-a) z- (a c-b d) \ 1+2 (~2-a ~) k-2 } 

X (a+ 11) sin (a+ 11) z-(a c+ b d) (1 +2 (;2+a 11) k-2 } (l1-a) sin (l1-a) zJ . 

Denoting thickness of the superficial layer by H and putting 

2 P = (a + fJ) Hand . 2 q = (11- a) H, (3.2.9) 
we have 

H H J [lIJdz = ~ (a2 + b2) h2H + J [112J dz 
o 0 

(3.2.10) 

in which [112J is the second term on the right hand side of [llJ and 

H J [112J d z = i (f2/a) (1-4 a2 k-2) [(a2-b2)sin 2(P-q) +2ab[1 -cos 2(P-q)}J . 
~ 

Likewise we have 

in which 
H 

H H 

J [12J dz = ~ (c2 + (12) k2 H + J [122J d z 
o \) 

(3.2.11) 

J [122J dz =} (~2( 11) (1-4112 k-2) [(c2-d2) sin 2 (P+q) +2cd{ I-cos 2 (P+q)}] 
o 

and 
H 

J [13Jdz = (f/2) (1 + 2 (;2 - am k-2 ) {(ad + be) sin 2p + (ac - bd) cos2p} 
o 

+ (f(2) {I + 2 (;2 + a 11) k-2} {(ad - bc) sin 2 q + (ac + bd) cos2q} 

- f ( (1 + 2 f2 k-2
) ac + 2 a ~ k-2 bd j . (3.2.12) 

Therefore we arrive at 
H 

2 W/(p w2) == J {2 w((p (0 2)} d z = (H(2) {(a2 + b 2) h2 + (c2 + (12) k2 ) 

o 
H 

+ J {[1I2J + [122J + [13]} d z . (3.2.13) 
o 

3.3 Energy flow through the superficial layer 

Putting stress components as 

x, == A, (au/ox + ow/oz) + 2ft (au/ox), x: = Zx ==ft (ow/ox: + a u/o z) 
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and 

Z, == A. (au/ax + aw/oz) + 2{t(ow/az) , 

we have a compact expression for time variation of energy density 

'Ow/at = a (Xx (au/at) + X" (ow/ot)l/ax + a (Z" (au/at) + Zz (ow/at)l/az, 
(3.3.1) 

differentiating (3.2.3) with respect to time. 
Comparing this with (2.10) for LOVE waves, we see that flows of energy 

densities are to be defined by the negative values in the braces of the first and 
the second terms on the right hand side of (3.3.1). 

Normal mode waves, however, calls the flow in x-direction 

(~.3.2) 

alone in question. 
Substituting (3.2.1) and (3.2.3) into (3.3.2), we have 

f/( pW3) = (~cfJ + a"t/r/az) ((1 - 2 a2 k-2) cfJ + 2 ~ k-2 (o"t/r/az)} cos2 (w t - ~ x) 

+ (~"t/r + a cfJ/a z) j(I - 2 (32 k-2) '0/ + 2 ~ k-2 (a cfJla z)} sin2 ((IJi - ~ x) 

= .} ([l'J + [2'J cos 2 (r.> t - ~ xl) . (3.3.3) 

When we take account of the mean value during a period, the second 
term on the right hand side of (3.3.3) is to disappear. In this case, we havO 

2J/(pw3
) = [1'J == [ll'J + [12'J + [13'J (3.3.4) 

in which 

[II'J ~-1 == (1 - 2 a 2 k-2) cfJ2 + 2 k-2 (a cfJ/aZ)2 = -} (a2 + b2) + ~-2 [II2J ' 

[I2'J ~-1 == (1 - 2 {32 k-2)"t/r2 + 2 k-2 (0 "t/r/aZ)2 = -} (c2 + d2) + ~-2 [I22J 

and [I3'J ~-l = ~-2 [I3J . 

Therefore we have 

[I'] = (~/2) (a2 + ])2 + c2 + d 2) + ~-l {[I 12J + [122] + [I3]} . 

3.4 A layer overlying a half space absolutely rigid 

Because, in this case, 

A 2 - B C = I and A'2 - B' C' = I I 
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the following relations are obtained from (3.1.1): 

B' (1 ± A) + B (cos 2 p ± A I cos 2 q) = (l/C) (A ± 1) (A cos 2 P - A I cos 2 q) , 
(3.4.1) 

B (1 ± A') + B' (cos 2 P ± A cos 2 q) = (l/C) (A I ± 1) (A I cos 2 P - A cos 2 q) , 
(3.4.2) 

(1 - A2) (sin22 P - A'2 sin2 2 q) = (A cos 2p - A' cos 2 q)2. (3.4.3) 

In the expressions for displacement potentials already obtained 5 ), putting 

the common coefficient 

r == - 7t/(a Md = - (7tIH) (m/a2) (U-l - c-1) {sin 2 p + A A' sin 2 q 

+ (11Ia) (sin 2 p - A A' sin 2 q) )-1, (3.4.4) 

we can express, a, b, c and d in (3.2.1) with use of (3.4.1) as follows: 

a r-1 = (1 + A) (sin 2 p + A' sin 2 q) cos a E - (A cos 2 P - A' cos 2 q) sin a E , 

b r-1 = - (A cos 2 p-A' cos 2 q) cos a E + (I-A) (sin 2p-A ' sin 2q) sin a E , 

c = - b (1 + A)/C and d = - a (1 - A)/C . 

Using (3.4.3), moreover, we easily arrive at the following results: 

a2 + b2 = 2 (sin 2 p + A A' sin 2 q) r 2 [a E] , 

where 

a2 - b2 = 2 (A sin2p + A' sin2q) r 2 [aE] , 

a b = - (A cos 2 P - A I cos 2 q) F2 [a E] , 

c2 + d2 = 2 (all1) (sin 2 p - A A' sin 2 q) r 2 [a E] , 

c2 - d 2 = 2 (0./11) (A sin 2 p - A I sin 2 q) r 2 [a E] , 

cd = - (alf3) (A cos 2 P - A' cos 2 q) F2 [a EJ, 

ad = - (l/C) (1 - A2) (sin 2p + A' sin 2 q) r 2 [aE] , 

be = - (l/C) (1 - A 2) (sin 2 p - A' sin 2 q) r 2 [a EJ ' 

ac = (l/C) (1 + A) (A cos2p - A' cos2q) r 2 [aE] , 

bd = (l/C) (1 - A) (A cos2P - A' cos 2 q) r 2 raE] 

[aE] == (ar-1)cosaE + (br-1)sinaE 

= {(I + A)1/2 (sin 2 p + A' sin 2 q)1/2 cos aE ± (1 - A)1/2 (sin 2p 

- A' sin 2 q)I/2 sin aEp, for A cos 2p - A' cos 2 q;;; o. 
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Substituting the above values into (3.2.13), we have 

(H/2) {(a2 + b2) h2 + (c2 + d 2) k2 J = aE2H {(C/Vp)2 (sin2p + A A'sin2q)/a 

+ (C/v s)2 (sin 2 p - A A' sin 2 q)/I1J (3.4.5) 

in which the common coefficient T2[aEJ is omitted. 
Likewise we have 

H 

J \[112J + [122J} d z = a E2 Ii (a- 2 + ~-2) - 4 k-2 } (A + A') (cos 2 q - cos 2 P) 
o 

and by help of (3.4.2) 

Ii 

J [13J dz= E[(B - B') [1 + 2 (E2 - a tJ) k-2 } (1 - cos2P) 

" 

11 

+ (A' B - A B') {1 + 2 (E2 + a 11) k-2 } (1 - cos 2 q)] 

= a {2 E2 (1 + 2 E2 k-2) (112 - E2)-l + (tJ2 - E2) k-2 } (A cos 2 P - A' cos 2 q) 

- a (1 + 4 E2 k-2) (A' cos 2 P - A cos 2 q) . 

Therefore, recalling (3.1.7) and (3.1.8) in minds, we have 

J {[lIZ] + l122J + [13J}dz=-a{@(A'cos2P-Acos2q) 
o 

+ @ (A cos 2 P - A' cos 2 q) = - a E {(A A'h cos 2 q + (B C'h} . 
(3.4.6) 

Substituting (3.4.5) and (3.4.6) into (3.2.13) and comparing the result 
with (3.1.6), we find 

and 

2 W / (p ( 3) = - a T2 [a EJ M w • 

Next, we have from (3.3.3) 

(E H/2) {(a2 + b2) + (c2 + d2)} = a ~ H {(sin 2 p + A A' sin 2 q)/a 

(3.4.7) 

+ (sin 2 p - A A' sin 2 q)/I1} (3.4.8) 

11 H J {[1I2'J + [122'J + [I3'J} dz = E-1 J {[1I2J + [122J + [13J} dz 
o 0 

= -at (A A'h cos 2 q + (B C'h} . (3.4.9) 

Substituting (3.4.8) and (3.4.9) into (3.3.3) and comparing the result with 

(3.1.5), we find 
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2Fj(pro3 ) = aT2 CaE] M~. (3.4.10) 
H 

in which F = J J dz. 
o 

4. Remarks 

4.1 Negative velocity of energy 

Using (3.1.9) and (3.4.4), we can rewrite (3.4.7) and (3.4.10) as follows: 

2 Wj(7t2 p ( 3) = (a Mjo)-1 [a E] U-l and 2 Fj(7t2 p (,)3) = (a Mt)-l [a EJ ' 
(4.1.1) 

resulting in 

F=WU (4.1.2) 

which tells the same meaning as (2.1). We see that U defined by (3.1.9) means 
energy velocity. 

Energy velocity of LOVE waves is always real and positive, as we noticed 

in (2.12). On the other hand, energy velocity of dispersive RAYLEIGH waves may 
sometimes be negative, as that shown by dotted lines in Fig. 3. This dues to the 

reason why energy flow might sometimes be negative, although energy is certainly 
positive. To tell the truth, (3.1.9) does not define group velocity by itself but 
does energy velocity. It must be remembered that JEFFREYS'S definition7) tells 

if dro/df is equal to x/t, then this means group velocity. 
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~ 0 3 
~ 

r -0.4 
0 
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20 

Fig. 3. Dispersion curves for the first higher mode of RAYLEIGH waves when 
cr.=oo, being cr POISSON'S ratio and A wave-length. 

4.2 Leaking modes 

The characteristic equation, for example (2.2) or (3.1.1), has not only 

real roots but also complex ones which mean wave number in x-direc

tion is expressed by 
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(4.2.1) 

where land g are real. 
If m is real, therefore, 

c = m/~ = c + i c (4.2.2) 

becomes also complex. In the above expression, c has been taken as phase 
velocity. But complex value of c will bring some confusion. 

Let us consider 

we see 
1/1' (t, x) = exp {i (m t - ~ x)} , 

1/1' (t + 0 t, x + S x) = exp (i ((0 t - ~ x) + i ((00 t - ~ S x)} 

= 1/1' (t, x) exp {i ((0 S t - ~ 0 xl) . 

(4.2.3) 

(4.2.4) 

Therefore (4.2.4) must have the same wave form as that of (4.2.3), if 

S xiS t = (tl/~ , (4.2.5) 

being l; real. 
When f; is complex, we have 

'\fr (t + S t, x + S x) = 1/1' (t, x) exp (~x) exp {i (m 0 t - l S xl) (4.2.6) 

which cannot have the same wave form exactly as that of (4.2.3) but maintains 
the form 1/I'(t, x) exp (~ x), if 

S xiS t = mil. (4.2.7) 

It will be rather preferable to define phase velocity by 

c = 0 xiS t (4.2.8) 

than to do by (4.2.2). As x and t are always real, phase velocity c becomes 
always real. 

In order to distinguish this from one defined by (4.2.2), marking the 
latter with *, we have 

c* = w/~= c + i C (4.2.9) 
in which 

c = (wll) {I + (tll)2)-1 and c = (w;g) {1 + (~m2}-1 (4.2.10) 

are real quantities. 

On the other hand, we find 

c=c {I + (tll)2}. (4.2.11) 
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The above mentioned c* has no physical meaning but it is a benefit 
quantity for calculation. 

Following (4.2.9), if we define group velocity by 

u* = d w!d f , (4.2.12) 

u* will become complex when ,e, is complex. In this case we cannot define 
group velocity by U*, because we meet with a difficulty of interpreting U*. 
We ought to define group velocity by 

U = x!t, (4.2.13) 

following (4.2.8). In this case, the next expression will be suggested from 
(4.2.7) : 

U = x!t = d w!d t . 
Appendix 

Terms neglected in (3.2.7) and (3.3.3) will be written down: 

[2J = [21J + [22J + [23J 

in which 

(4.2.14) 

- } [f2 (e2 + d2) (1 - 4 ~2 k-2) + k2 {(c2 - d2) cos 2 ~ z + 2 c d sin 2 ~ z n ' 
[23J == f [{1 + 2 (f2 - a2 ) k-2 } 4> (0 V,/,a z) - {1 + 2 (f2 - ~2) k-2 } 1/r (04)/0 z)] 

= (f!2) [(ad - bc) (a + fJ) {1 + 2 (f2 - a fJ) k-2} cos (a + fJ) z + (ad + be) 

X {1 +2 (f2+a fJ) k-2} (fJ - a) cos (fJ-a) z- (ac+ bd) {1 +2 (f2_a fJ) k-2} 

X (a+fJ) sin (a+fJ) z-(ac-bd) {1+2 (f2+afJ) k-2} (~-a)sin(fJ-a)z]. 

[2'J = [21'J + [22'J + [23'J 

in which 

[21'Jf-1 =} {(a2 + b2) (1- 4a2 k-2 ) + (a2 - b2) cos2az + 2absin2az} 
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[22'J ~-l = - { {(C2 + d 2) (1 - 4/32 k-2) + (c2 - d 2) cos 2 Ii z + 2 c d sin 2 Ii z) , 

[23'J = [23J ~-l . 
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