

HOKKAIDO UNIVERSITY

Title	Saponins are responsible for the anti-obesogenic activity of Acacia concinna
Author(s)	Zhuoyue, Zhao; Ruangaram, Wijitrapha; Kato, Eisuke
Citation	Journal of natural medicines, 75, 1005-1013 https://doi.org/10.1007/s11418-021-01530-0
Issue Date	2021-09
Doc URL	http://hdl.handle.net/2115/86646
Rights	This is a post-peer-review, pre-copyedit version of an article published in Journal of natural medicines. The final authenticated version is available online at: http://dx.doi.org/10.1007/s11418-021-01530-0
Туре	article (author version)
Additional Information	There are other files related to this item in HUSCAP. Check the above URL.
File Information	Eikato_JNatProd_2021_Supplementary material.pdf

Supplementary material

Saponins are responsible for the anti-obesogenic activity of Acacia concinna

Zhao Zhuoyue¹, Wijitrapha Ruangaram¹, Eisuke Kato^{2*}

1 Division of Applied Bioscience, Graduate School of Agriculture, Hokkaido University, Kita-ku,

Sapporo, Hokkaido 060-8589, Japan

2 Division of Fundamental AgriScience and Research, Research Faculty of Agriculture, Hokkaido

University, Kita-ku, Sapporo, Hokkaido 060-8589, Japan

*Tel: +81-11-706-2496, E-mail: eikato@chem.agr.hokudai.ac.jp

Contents

Supplementary Figure S2. ESI-MS spectrum of the AC saponin 4
Supplementary Table S1. Comparation of ¹ H-NMR data of compound 1-4 with
literature data
Supplementary Figure S3. ¹ H-NMR spectrum of compound 1 (500 MHz, CD ₃ OD) 6
Supplementary Figure S4. ¹ H-NMR spectrum of compound 2 (500 MHz, CD ₃ OD) 7
Supplementary Figure S5. ¹ H-NMR spectrum of compound 3 (500 MHz, CD ₃ OD) 8
Supplementary Figure S6. ¹ H-NMR spectrum of compound 4 (500 MHz, CD ₃ OD) 9
Supplementary Figure S7. ¹ H-NMR spectrum of compound 5 (500 MHz, Acetone- <i>d</i> ₆)10
Supplementary Figure S8. ¹³ C-NMR spectrum of compound 5 (500 MHz, Acetone- <i>d</i> ₆)
Supplementary Figure S9. COSY spectrum of compound 5 (500 MHz, Acetone- <i>d</i> ₆). 12
Supplementary Figure S10. HSQC spectrum of compound 5 (500 MHz, Acetone-d ₆) 13
Supplementary Figure S11. HMBC spectrum of compound 5 (500 MHz, Acetone-d ₆) 14
Supplementary Figure S12. ¹ H-NMR spectrum of compound 6 (500 MHz, Acetone- <i>d</i> ₆)

Supplementary Figure S13. ¹³C-NMR spectrum of compound **6** (500 MHz, Acetone- d_6) Supplementary Figure S14. COSY spectrum of compound 6 (500 MHz, Acetone- d_6) 17 Supplementary Figure S15. HSQC spectrum of compound 6 (500 MHz, Acetone- d_6) 18 Supplementary Figure S16. HMBC spectrum of compound 6 (500 MHz, Acetone- d_6) 19 Supplementary Figure S19. MS spectrum of the peak presumed as a [M+NH₄]⁺ ion of Glc-Ara attached acacic acid lactone (m/z 782.4) 22 Supplementary Figure S20. MS spectrum of the peak presumed as a [M+NH₄]⁺ ion of Glc-Rha attached acacic acid lactone (m/z 796.4) 22 Supplementary Figure S21. MS spectrum of the peak presumed as a [M+NH₄]⁺ ion of Ara-Rha attached acacic acid lactone (m/z 766.4)..... 23 Supplementary Figure S22. MS spectrum of the peak presumed as a [M+NH₄]⁺ ion of Supplementary Figure S23. MS spectrum of the peak presumed as a [M+NH₄]⁺ ion of Supplementary Figure S24. MS spectrum of the peak presumed as a [M+NH₄]⁺ ion of Glc-Glc-Rha attached acacic acid lactone (m/z 958.5) 24 Supplementary Figure S25. MS spectrum of the peak presumed as a [M+NH₄]⁺ ion of Glc-Ara-Rha attached acacic acid lactone (m/z 928.5) 25

Supplementary Figure S1. ¹H-NMR of the AC saponin

Supplementary Figure S2. ESI-MS spectrum of the AC saponin

	Compound 1		Compound 2		Compound 3		Compound 4	
No.	literature data[1]	Isolated	literature data[1]	Isolated	literature data[2]	Isolated	literature data[2]	Isolated
3	6.85 (br t, 6.6)	6.91 (br t)	6.85 (br t, 6.6)	6.90 (1H, t)	6.76 (1H, br t, 6.8)	6.76 (1H, t)	6.77 (1H, tq, 7.8, 1.5)	6.79 (1H, tq)
4	2.40 (m)	2.44 (2H_m)	2.40 (m)	2.39 (2H m)	2.30 (2H m)	2.27 (2H m)	2.32 (2H m)	2.30 (2H,
5	1.73	1.76	1.73	1.70	1.71	(211, III) 1.70	(211, III) 1.73 (2H, t,	1.75
7	(m) 6.03	(2H, m)	(m) 5.94	(2H, m)	(2H, m) 6.01	(2H, m)	8.3) 6.03	(2H, m)
8	(dd, 17.3, 11.0) 5.16	6.01 (1H, dd)	(dd, 17.3, 11.0) 5.22	5.91 (1H, dd)	(1H, dd, 17.6, 10.7) 5.17	6.01 (1H, dd)	(1H, dd, 17.8, 11.2) 5.17	6.03 (1H, dd)
	(br d, 11.0) 5.22 (br d, 17.3)	5.15 (2H, dd)	(br d, 10.7) 5.28 (br d, 17.1)	5.20 (2H, dd)	(1H, dd, 10.7, 1.0) 5.23 (1H, dd, 17.6, 1.0)	5.17 (2H, dd)	(1H, dd, 11.2, 1.0) 5.23 (1H, dd, 17.8, 1.0)	5.18 (2H, dd)
9	4.31 (br s)	4.31 (2H, s)	4.31 (s)	4.30 (1H, s)	1.80 (3H, s)	1.80 (2H, s)	1.80 (3H, d, 1.5)	1.82 (2H, s)
10	1.34 (s)	1.33 (6H, s)	1.37 (s)	1.37 (2H, s)	1.33 (3H, s)	1.33 (3H, s)	1.33 (3H, s)	1.36 (3H, s)
1	Qui		Qui		Xyl		Qui	
1	4.31 (d, 7.8)	4.31 (1H, d)	4.35 (d, 7.8)	4.33 (1H, d)	4.28 (1H, d, 7.3)	4.29 (1H, d)	4.51 (1H, d, 7.8)	4.31 (1H, d)
2	3.16 (dd, 9.1, 7.8)	3.19 (m)	3.16 (dd, 9.1, 7.8)	3.14 (1H, dd)	3.14 (1H, dd, 9.3, 7.8)	3.16 (1H, dd)	3.16 (1H, dd, 9.3, 7.8)	3.16 (1H, dd)
3	3.28 (t, 9.1)	3.27 (1H, t)	3.28 (t, 9.1)	3.27 (1H, t)	3.28 (1H, t, 9.0)	3.28 (1H, t)	3.27 (1H, t, 9.3)	3.27 (1H, t)
4	2.98 (t. 9.1)	2.95 (1H, t)	2.98 (t. 9.1)	2.97 (1H, t)	3.46 (1H. m)	3.46 (1H. m)	2.97 (1H, t, 9.3)	2.97 (1H, t)
5	3.18 (m)	3.19 (m)	3.18 (m)	3.23 (1H, m)	3.08 (1H. t, 11.0) 3.76	3.08 (1H, t)	3.19 (1H, dq, 9.3, 5.9)	3.19 (1H, dq)
6					(1H, dd, 11.5, 5.6)	3.76 (1H, dd)	1.00	
6	1.23 (d, 5.9)	1.22 (3H, d)	1.22 (d, 5.3)	1.23 (3H, d)			1.22 (3H, d, 5.9)	1.24 (2H, d)

Supplementary Table S1. Comparation of ¹H-NMR data of compound 1-4 with literature data

Supplementary Figure S3. ¹H-NMR spectrum of compound 1 (500 MHz, CD₃OD)

Supplementary Figure S4. ¹H-NMR spectrum of compound 2 (500 MHz, CD₃OD)

Supplementary Figure S5. ¹H-NMR spectrum of compound **3** (500 MHz, CD₃OD)

Supplementary Figure S6. ¹H-NMR spectrum of compound 4 (500 MHz, CD₃OD)

Supplementary Figure S7. ¹H-NMR spectrum of compound **5** (500 MHz, Acetone-*d*₆)

Supplementary Figure S8. ¹³C-NMR spectrum of compound **5** (500 MHz, Acetone-*d*₆)

Supplementary Figure S9. COSY spectrum of compound 5 (500 MHz, Acetone-d₆)

Supplementary Figure S10. HSQC spectrum of compound 5 (500 MHz, Acetone-d₆)

Supplementary Figure S11. HMBC spectrum of compound 5 (500 MHz, Acetone-d₆)

Supplementary Figure S12. ¹H-NMR spectrum of compound **6** (500 MHz, Acetone-*d*₆)

Supplementary Figure S13. ¹³C-NMR spectrum of compound **6** (500 MHz, Acetone-*d*₆)

Supplementary Figure S14. COSY spectrum of compound 6 (500 MHz, Acetone- d_6)

Supplementary Figure S15. HSQC spectrum of compound 6 (500 MHz, Acetone- d_6)

Supplementary Figure S16. HMBC spectrum of compound 6 (500 MHz, Acetone-d₆)

Supplementary Figure S17. GC-MS analysis of the sugars in AC saponin.

From top to bottom: D-glucose, L-rhamnose, D-quinovose, D-xylose, D-arabinose, acid hydrolyzed AC saponin

Supplementary Figure S18. LC-MS analysis of alkaline hydrolysis product.

From top to bottom: Extracted ion chromatograms presumed to correspond to [M+NH₄]⁺ of Glc-Ara: m/z 782.4, Glc-Rha: m/z 796.4, Ara-Rha: m/z 766.4, Glc-Glc-Glc: m/z 974.5, Glc-Glc-Ara: m/z 944.5, Glc-Glc-Rha: m/z 958.5, or Glc-Rra-Rha: m/z 928.5 attached to acacic acid lactone and total ion chromatogram.

Supplementary Figure S19. MS spectrum of the peak presumed as a $[M+NH_4]^+$ ion of Glc-Ara attached acacic acid lactone (m/z 782.4)

Supplementary Figure S20. MS spectrum of the peak presumed as a $[M+NH_4]^+$ ion of Glc-Rha attached acacic acid lactone (m/z 796.4)

Supplementary Figure S21. MS spectrum of the peak presumed as a $[M+NH_4]^+$ ion of Ara-Rha attached acacic acid lactone (m/z 766.4)

Supplementary Figure S22. MS spectrum of the peak presumed as a $[M+NH_4]^+$ ion of Glc-Glc-Glc attached acacic acid lactone (m/z 974.5)

Supplementary Figure S23. MS spectrum of the peak presumed as a $[M+NH_4]^+$ ion of Glc-Glc-Ara attached acacic acid lactone (m/z 944.5)

Supplementary Figure S24. MS spectrum of the peak presumed as a $[M+NH_4]^+$ ion of Glc-Glc-Rha attached acacic acid lactone (m/z 958.5)

Supplementary Figure S25. MS spectrum of the peak presumed as a $[M+NH_4]^+$ ion of Glc-Ara-Rha attached acacic acid lactone (m/z 928.5)

References

- Tezuka Y, Honda K, Banskota AH, et al (2000) Kinmoonosides A–C, Three New Cytotoxic Saponins from the Fruits of Acacia c oncinna, a Medicinal Plant Collected in Myanmar. J Nat Prod 63:1658–1664. https://doi.org/10.1021/np000347f
- Kiuchi F, Gafur MA, Obata T, et al (1997) Acacia concinna Saponins. II. Structures of Monoterpenoid Glycosides in the Alkaline Hydrolysate of the Saponin Fraction. Chem Pharm Bull (Tokyo) 45:807–812. https://doi.org/10.1248/cpb.45.807