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A B S T R A C T

A versatile and accurate treatment for the highly forward-peaked phase func-
tion in the three-dimensional (3D) radiative transfer equation (RTE) based on
the discrete ordinates method (DOM) is crucial for biomedical optics. Our
first objective was to compare the delta-Eddington (dE) and Galerkin quadra-
ture (GQ) methods. The dE method decomposes the phase function into a
purely forward-peaked component and the other component, and expands the
other component by Legendre polynomials as well as the finite order Legen-
dre expansion (FL) method does. The GQ method conducts the weighting
procedure in addition to the Legendre expansion. Although it was reported
that both methods can provide the accurate results for calculations of the RTE,
the versatility of both methods is still unclear.

The second objective was to examine a possibility of a conjunction of the
GQ method with the dE method, called as the GQ-dE method, which has the
advantages of both methods. We examined numerical errors in the moment
conditions of the phase function using the FL, dE, GQ, and GQ-dE methods
at various types and orders of the quadrature sets, mainly in the region of the
errors induced by the angular discretization using the DOM. The errors were
reduced by the dE method from those by the FL method, however the error
reduction depended on the types and orders of the quadrature sets. Mean-
while, the errors were significantly reduced by the GQ and GQ-dE methods,
regardless of the quadrature sets. We also verified the numerical calculations
of the time-dependent 3D RTE by the analytical solution of the RTE for homo-
geneous media in the region of the scattering length scale, where the highly
forward-peaked phase function strongly influences the RTE-results. The er-
rors in the RTE-results were similar to those in the moment conditions. Our
results suggest the higher versatility and accuracy of the GQ and GQ-dE meth-
ods than those of the FL and dE methods.

c⃝ 2020 Elsevier Inc. All rights reserved.
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1. Introduction1

Various kinds of random media such as biological tissue volumes and agricultural products scatter photons2

strongly in the highly forward direction (Cheong et al., 1990; Baranyai and Zude, 2009). Clarification of the highly3

forward-peaked scattering of photons is crucial in application fields of biomedical imaging and postharvest technol-4

ogy (Gibson et al., 2005; Okawa et al., 2011; Kannan and Przekwas, 2011; Yamada and Okawa, 2014; Hoshi and5

Yamada, 2016). Photon transport in the random media is governed by the radiative transfer equation (RTE) and the6

highly forward-peaked scattering of photons is expressed by a phase function in the scattering integral term of the7

RTE. There exist three kinds of characteristic length scales on photon transport: the ballistic, scattering, and diffusive8

length scales corresponding to short, medium, and long source-detector (SD) distances, respectively. In the region9

of the scattering length scale, photon transport is strongly influenced by the highly forward-peaked phase function,10

while in the regions of the other two length scales, the shape of the phase function little influences photon transport.11

In this paper, we mainly consider photon transport in the region of the scattering length scale.12

Usually, the RTE is solved numerically rather than analytically because the random media are generally hetero-13

geneous, while the analytical solutions of the RTE are obtained mainly for homogeneous media. For angular dis-14

cretization in numerical calculations of the RTE, the discrete ordinates method (DOM) is one of the gold standards,15

which calculates the scattering integral as a quadrature sum with a quadrature set: discrete angular directions and their16

weights. Despite the success of the DOM for isotropic or weakly anisotropic scattering, accurate and efficient cal-17

culations of the RTE for highly forward-peaked scattering are still challenging. Because for highly forward-peaked18

scattering, the phase function changes exponentially as a function of the scattering angle, numerical errors of the19

moment conditions of the phase function become larger than those for isotropic or weakly anisotropic scattering.20

The numerical errors of the moment conditions lead to large numerical errors of the RTE-calculations for highly21

forward-peaked scattering.22

To overcome the difficulty, various kinds of numerical treatments of the highly forward-peaked phase function23

based on the DOM have been extensively developed in the different research fields (Joseph et al., 1976; Welch and van24

Gemert, 1995; Klose et al., 2005; Liu et al., 2002; Hunter and Guo, 2012; Long et al., 2016; Fujii et al., 2016; Morel,25

1989; Morel et al., 2017; Fujii et al., 2018), which are roughly categorized into the two types. The first type is based26

on an expansion of the phase function by a finite series of Legendre polynomials, such as the finite order Legendre27

expansion (FL) and the delta-Eddington (dE) methods (Joseph et al., 1976; Welch and van Gemert, 1995). Here, we28

define the FL method as a method which simply expands the phase function, while the dE method decomposes the29

phase function into purely forward-peaked and other components, and then expands the other component. Thanks30

to the orthogonality of the polynomials, the numerical errors of the moment conditions are reduced. The dE method31

has been widely used in the field of biomedical optics (Klose et al., 2005; Jia et al., 2015) since the introduction32

∗Corresponding author. He partially conducted this research while he was a visiting scholar at University of Michigan.
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by Klose and coworkers (Klose and Hielscher, 2003) from the field of astrophysics. Nevertheless, the validity and33

versatility are still unclear. Klose et al. reported that the second order dE method can provide accurate calculations of34

the RTE for highly forward-peaked scattering although in the only one case of a quadrature set (Klose et al., 2005).35

Jia et al. stated the zeroth order is sufficient (Jia et al., 2015), however, they discussed in the region of the diffusive36

length scale, where the phase function little influences the RTE-calculations. Hence, it is still required to examine37

the dE method. The other type is based on a weighting procedure of the phase function so as to satisfy the moment38

conditions, such as the renormalization methods of the phase function (Liu et al., 2002; Hunter and Guo, 2012; Fujii39

et al., 2016). Although the first order renormalization method can provide accurate results of the RTE, a preliminary40

investigation for an adequate choice of the quadrature set is necessary because the accuracy of the RTE-calculations41

using the weighting procedure depends on the type and order of the quadrature sets.42

The Galerkin quadrature (GQ) method, originally developed in the field of charged-particle transport (Morel,43

1989; Morel et al., 2017), takes the advantages of both types: this method expands the phase function by Legendre44

polynomials and conducts the weighting procedure consistently in Galerkin’s way, which is popular for the finite45

element method. The GQ method ensures that the discrete scattering integral is accurate, regardless of the convergence46

of the truncated expansion of the phase function by Legendre polynomials. Recently, the GQ method was firstly47

employed in the field of biomedical optics and compared with the first order renormalization method (Fujii et al.,48

2018). It was shown that this method can provide accurate calculations of the RTE as well as the renormalization49

method can, although the comparison study was investigated in the only one case of a quadrature set. For the GQ50

method, the accuracy of the RTE-solution only depends on the adequacy of the quadrature set for representing the51

light intensity. Hence, it is necessary to examine the dependence of the numerical calculations of the RTE using the52

GQ method on the quadrature sets.53

One of our objectives was to numerically examine the versatility and accuracy of the dE and GQ methods for the54

RTE-calculations for highly forward-peaked scattering with various kinds and orders of quadrature sets by comparing55

with the FL method as a reference. The comparison study of the three methods allows us to examine the effects of56

two types of treatments separately; one is the Legendre expansion of the phase function and the other is the weighting57

procedure for highly forward-peaked scattering.58

The other objective was to examine a possibility of a conjunction of the Galerkin method with the dE method,59

called as the GQ-dE method, which probably has advantages of both the methods. Firstly, we investigated the numer-60

ical errors in the moment conditions of the phase function using the four methods (FL, dE, GQ, and GQ-dE methods).61

Then, we investigated the numerical calculations of the time-dependent RTE using the four methods in the region of62

the scattering length scale for three-dimensional (3D) random media.63

The following section describes the RTE as a photon transport model in 3D random media. Sections 3 and 464

provide the numerical treatments of highly forward-peaked phase function based on the DOM, and the numerical65

schemes and conditions for the RTE-calculations. Section 5 provides the numerical results of the moment conditions66

of the phase function and the RTE-calculations for highly forward-peaked scattering, and examine the versatility and67

accuracy of the FL, dE, GQ, and GQ-dE methods. Finally, conclusions are described.68
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2. Photon transport model69

2.1. Radiative transfer equation (RTE)70

The time-dependent RTE is formulated for 3D random media (Chandrasekhar, 1960) as71

[
∂

v∂t
+Ω · ∇ + µa(r) + µs(r)

]
I(r,Ω, t) = µs(r)

∫
S2

dΩ′p(Ω,Ω′)I(r,Ω′, t) + q(r,Ω, t), (1)

where I(r,Ω, t) in W cm−2 sr−1 represents the light intensity as a function of spatial position r = (x, y, z) ∈ R3 in cm;72

angular direction (unit direction vector) Ω = (Ωx,Ωy,Ωz) ∈ S2 in sr; and time t in ps. µa(r) and µs(r) in cm−1 are the73

absorption and scattering coefficients, respectively; v is the speed of light in the medium; p(Ω,Ω′) in sr−1 is the phase74

function with Ω and Ω′ denoting the scattered-in and -out directions, respectively; and q(r,Ω, t) in W cm−3 sr−1 is a75

source function. The first term of the right hand side of Eq. (1) is called as the scattering integral, which describes76

energy gain of photons by scattering.77

2.1.1. Henyey-Greenstein (HG) phase function and anisotropy factor78

For a formulation of p(Ω,Ω′), the Henyey-Greenstein (HG) phase function (Henyey and Greenstein, 1941) is79

widely employed in biomedical optics as a mathematical model (not as a physical model):80

pHG(Ω ·Ω′) = 1
4π

1 − g2(
1 + g2 − 2gΩ ·Ω′)3/2 , (2)

where g ∈[-1, 1] is the anisotropy factor, defined as the average cosine,Ω ·Ω′, over a whole solid angle. The g-values81

of biological tissue volumes are typically larger than 0.8 (Cheong et al., 1990), meaning the highly forward-peaked82

scattering. In Fig. 1, the HG phase functions (Eq. (2)) at several g-values are plotted as a function of Ω ·Ω′ ∈ [−1, 1]83

in a logarithmic scale. As the g-value approaches to unity, the exponential change of pHG with respect to Ω · Ω′84

becomes enhanced and the peak of pHG around Ω · Ω′ = 1.0 becomes sharp. In this paper, we mainly consider the85

g-value to be 0.9.86

The HG phase function can be expanded in the infinite series of (unassociated) Legendre polynomials, PL (L =87

0, 1, · · · ,∞):88
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Fig. 1. HG phase function, pHG (Eq. (2)), as a function of Ω ·Ω′ in a logarithmic scale at several g-values. (For interpretation of the colors
in the figure(s), the reader is referred to the web version of this article.)
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pHG(Ω ·Ω′) =
∞∑

L=0

2L + 1
4π
σL, HGPL(Ω ·Ω′). (3)

The expansion coefficient, σL, HG, is given by89

σL, HG :=
∫
S2

dΩ′pHG(Ω ·Ω′)PL(Ω ·Ω′) = gL. (4)

The above equation is also called as the L-th order moment condition of the phase function. The case of L = 090

corresponds to the normalization condition of the phase function:
∫
S2 dΩ′pHG(Ω ·Ω′) = 1.91

3. Numerical treatments of the highly forward-peaked scattering92

3.1. Discrete ordinates method (DOM)93

For angular discretization, we employed the DOM, which approximates the scattering integral as a quadrature94

sum:95

µs(r)
∫
S2

dΩ′p(Ω ·Ω′)I(r,Ω′, t) ∼ µs(r)
NΩ∑
l′=1

wl′ pll′ Il′ (r, t), (5)

where subscripts l and l′ ∈ [1, 2, · · ·NΩ] denote the indices of the discrete angular directions,Ωl andΩl′ , respectively;96

NΩ is a total number of the discrete angular directions; wl′ is a weight for numerical integration; and pll′ = p(Ωl ·Ωl′ )97

is a discrete form of the phase function. The L-th order moment condition of the phase function (Eq. (4)) is also98

discretized as99

∫
S2

dΩ′pHG(Ω ·Ω′)PL(Ω ·Ω′) ∼
NΩ∑
l′=1

wl′ pll′PL(Ωl ·Ωl′ ). (6)

A quadrature set of {wl,Ωl} requires selecting for the DOM, so that many kinds of quadrature sets have been developed100

to satisfy a certain symmetry (Fiveland, 1991; Carlson, 1971; Balsara, 2001; Endo and Yamamoto, 2007; Lebedev,101

1975, 1977). Among them, we used the level symmetric even (LSE) quadrature set (Fiveland, 1991), and the even102

and odd (EO) quadrature set (Endo and Yamamoto, 2007) because their superiorities were reported by several papers103

(Gregersen and York, 2005; Sanchez, 2012; Long et al., 2016; Fujii et al., 2018). Table 1 lists several numbers104

of the order, Nn, and total numbers, NΩ, of both the quadrature sets, where Nn corresponds to the order of the105

Legendre polynomials for the LSE quadrature set and NΩ is given by Nn(Nn + 2) for both the sets. Hereafter , we use106

abbreviations of the two quadrature sets with the order of Nn, as LSENn and EONn, respectively, e.g., LSE6 means107

the LSE quadrature set with Nn = 6. The distributions of {wl,Ωl} vary with the type and order of the quadrature sets,108

and resultantly the numerical errors of the scattering integral (Eq. (5)) and moment conditions (Eq. (6)) depend on the109

quadrature sets. For highly forward-peaked scattering, the dependence of the numerical errors on the quadrature sets110

is enhanced due to the exponential increase in the phase function toward the forward direction (Ω ·Ω′ = 1.0) while the111

distribution of {wl,Ωl} is independent of the form of the phase function, p(Ω ·Ω′), or the anisotropy factor, g. Hence,112

an appropriate numerical treatment of the highly forward-peaked phase function is crucial for accurate calculations of113

the RTE.114
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Table 1. List of the orders, Nn, and the total number of discrete angular directions, NΩ, of the LSE (Fiveland, 1991) and EO (Endo and
Yamamoto, 2007) quadrature sets. NΩ is given by Nn(Nn + 2).

(wl,Ωl) Nn(NΩ)
LSE 6(48) 8(80) 10(120) 12(168) 14(224) 16(288) 18(360)
EO 6(48) 8(80) 10(120) 12(168) 14(224) 16(288) -

3.2. Finite order Legendre expansion (FL) method115

For reduction of the numerical errors of the moment conditions (Eq. (6)), the expansion form of the phase function116

(Eq. (3)) is preferred to the original form (Eq. (2)) thanks to the orthogonality of the polynomials. The FL method117

approximates the phase function by a finite series of Legendre polynomials up to the order, N:118

pN
FL(Ω ·Ω′) =

N∑
n=0

2n + 1
4π
σn, HGPn(Ω ·Ω′). (7)

Clearly, the truncated expansion of the phase function, pN
FL(Ω ·Ω′) satisfies the L-th order moment conditions (Eq. (4))119

for 0 ≤ L ≤ N, while it does not for L > N. Figure 2(a) shows pN
FL(Ω · Ω′) as a function of Ω · Ω′ in a logarithmic120

scale with different expansion orders, N, for g = 0.9. As N increases, the profile of pN
FL(Ω ·Ω′) converges to that of121

pHG(Ω ·Ω′) (Eq. (2)). However, the convergence of pN
FL is slow for highly forward-peaked scattering when compared122

with that for isotropic scattering. Also, pN
FL(Ω · Ω′) has unphysical negative values due to the Legendre polynomial123

expansion. Such negative values do not appear in the renormalization methods, where the phase function is not124

expanded.125

It is noted that if the truncated expansion of the phase function is accurate, there is no need to use special techniques126

for highly forward-peaked scattering. Nonetheless, the convergence of the truncated expansion is not necessarily127

important. More important for highly forward-peaked scattering is the numerical accuracy of the discrete scattering128

integral (right hand side of Eq. (5)) with adequate discrete angular directions (Morel, 1979).129

For numerical calculations, the phase function is formulated in a matrix form, and the matrix in the case of the130

FL method is denoted as pN
FL with a size of NΩ × NΩ. In this paper, we employed the zeroth order renormalization131

method, developed by Liu and co-workers (Liu et al., 2002), to pN
FL, and it is denoted by p̂N

FL. By the zeroth order132

renormalization method, p̂N
FL includes the weights of the quadrature sets, wl.133

3.3. delta-Eddington (dE) method134

The dE method, also called as the delta-M method (“M” implies “moment”) or the extended transport correction135

, decomposes the highly forward-peaked phase function into a purely forward-peaked component, expressed by the136

delta function and other component (Joseph et al., 1976; Welch and van Gemert, 1995; Morel, 1979):137

pM
δ (Ω ·Ω′) = 1

2π
hδ(1 −Ω ·Ω′) + (1 − h)pM

δ2(Ω ·Ω′), (8)

where h is a coefficient of the decomposition. pM
δ2 is a phase function excluding the delta-function component and138

expanded in a finite series of Legendre polynomials up to the order of M:139
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Fig. 2. The phase functions for g = 0.9, (a) pN
FL (Eq. (7)) using the FL method at the expansion orders N = 30 and 50; and (b) pM

δ2 (Eq. (9))
using the dE method at M = 10 and 30. The negative values of the phase functions are replaced by 10−4. pHG (Eq. (2)) is plotted as a
reference.

pM
δ2(Ω ·Ω′) =

M∑
n=0

2n + 1
4π
σn, dE Pn(Ω ·Ω′). (9)

In the case of the HG phase function, the expansion coefficient, σn, dE , is determined so as to satisfy the moment140

conditions up to the order of M + 1:141

σn, dE :=
∫
S2

dΩ′pM
δ2(Ω ·Ω′)Pn(Ω ·Ω′) = gn − h

1 − h
, h = gM+1. (10)

It is noted that determination of h is arbitrary when the moment conditions are satisfied up to the order of M, although142

we determined h from the (M+1)-th order moment condition. The case of n = 0 in Eq. (10) corresponds to the143

normalization condition of pM
δ2:
∫
S2 dΩ′pM

δ2(Ω ·Ω′) = 1. By using pM
δ (Eq. (8)), the RTE (Eq. (1)) is approximated to144

[
∂

v∂t
+Ω · ∇ + µa(r) + µM

s (r)
]

I(r,Ω, t) = µM
s (r)
∫
S2

dΩ′pM
δ2(Ω ·Ω′)I(r,Ω′, t) + q(r,Ω, t), (11)

where µM
s (r) = (1 − h)µs(r) = (1 − gM+1)µs(r). Equation (11) means that µs is modified to µM

s by the delta-function145

component and that the phase function is replaced by pM
δ2. Hence, we investigated mainly pM

δ2 rather than pM
δ for146

the dE method. Figure 2(b) shows that pM
δ2 converges to pHG faster than pN

FL with the increase in the order M or N.147

Similarly to the case of the FL method, we renormalized the phase function for the dE method, denoted by p̂M
δ2 in a148

matrix form.149

3.4. Galerkin quadrature (GQ) method150

The GQ method expands the phase function in a finite series of Legendre polynomials, as well as the FL method151

does. In addition, this method conducts the weighting procedure to the highly forward-peaked phase function by152

requiring that the residual of the scattering integral is orthogonal to the weighting space, spanned by the spherical153

harmonics. Because the spherical harmonics are eigenfunctions of the analytic scattering operator, the GQ method can154

construct accurately the discrete scattering integral corresponding to the interpolation of the discrete light intensities155

with a given quadrature set by the spherical harmonics. Here, the analytic scattering operator, Ls, is defined as156
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LsI(r,Ω, t) = µs(r)
∫
S2 dΩ′p(Ω ·Ω′)I(r,Ω′, t); and the eigenvalue for the spherical harmonics of degree n and order157

m, Ym
n , is the expansion coefficient σn for the phase function in the Legendre polynomial of degree n. Hence, if a158

quadrature set is adequately chosen to represent the discrete light intensity, the GQ method can provide the accurate159

solution of the RTE, regardless of the convergence of the truncated expansion of the phase function by Legendre160

polynomials. For the details, please refer the original papers (Morel, 1989; Morel et al., 2017). In the GQ method, the161

phase function matrix, p̂G, with a size of NΩ × NΩ, is formulated as162

p̂G = MΣD, (12)

where M is the moment-to-direction matrix, Σ the cross section matrix, and D the direction-to-moment matrix,163

respectively. We numerically calculated p̂G based on the numerical code developed in our previous paper (Fujii et al.,164

2018). Element of M, Mld, in 3D is given by the spherical harmonics:165

Mld = Ym
n (Ωl), l = 1, 2, · · · ,NΩ, d = 0, 1, · · · ,NΩ − 1, (13)

whereΩl denotes the l-th discrete angular direction; and d corresponds to a combination of indices of n and m, sorted166

in an arbitrary numbering order, e.g., d = 0 for (n,m) = (0, 0), d = 1 for (n,m) = (1,−1), and so on. The maximum167

degree of the spherical harmonics depends on the quadrature order, Nn. For LSENn and EONn, the maximum degree168

is determined as Nn + 1 to interpolate the weighting space. This is because that the quadrature set in 3D, LSENn169

or EONn, has more directions than the number of the spherical harmonics of degree Nn − 1, requiring the certain170

additional spherical harmonics of degrees Nn and Nn + 1, and the exclusion of all other spherical harmonics. D is171

calculated by inversion of M based on the requirement of the GQ method, M D = E, with the unit matrix, E. Σ is a172

diagonal matrix consisting of the expansion coefficients of the phase function, σn,HG, at the degree n ∈ [0, 1, · · ·Nn+1]173

(Eq. (4)). The components of Σ are sorted so that the degree, n, of σn,HG is equivalent to the degree, n, of the spherical174

harmonics in M and D.175

3.5. Conjunction of the GQ method with the dE method: the GQ-dE method176

We considered the conjunction of the GQ method with the dE method, called as the GQ-dE method, by the simple177

modification of the cross section matrix, Σ, in Eq. (12). In the GQ-dE method, the phase function matrix, p̂Gd, with a178

size of NΩ × NΩ, is formulated as179

p̂Gd = MΣdE D, (14)

where M and D are the same as those in p̂G (Eq. (12)), and ΣdE consists of the expansion coefficients based on the180

dE method, σn,dE , at the degree n ∈ [0, 1, · · ·Nn + 1] (Eq. (10)) with h = gNn+2. The RTE using the GQ-dE method in181

angular discretization is given as182

[
∂

v∂t
+Ωl · ∇ + µa(r) + µNn+1

s (r)
]

Il(r, t) = µNn+1
s (r)

NΩ∑
l′=1

( p̂Gd)ll′ Il′ (r, t) + ql(r, t). (15)
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3.6. Numerical errors of the L-th order moment conditions of the phase function183

We examined the four kinds of methods for the highly forward-peaked phase function by the mean absolute184

percentage errors, eL, of the L-th order moment condition: σL,HG = gL of Eq. (4) or σL,dE = (gL − h)/(1 − h) of185

Eq. (10). For the FL and GQ methods, eL is defined as186

eL = N−1
Ω

NΩ∑
l=1

|S l
L − 1| × 100, S l

L = σ
−1
L,HG

NΩ∑
l′=1

p̂ll′PL(Ωl ·Ωl′ ), (16)

p̂ll′ =


(
p̂N

FL

)
ll′

for the FL method

( p̂G)ll′ for the GQ method
.

For the dE and GQ-dE methods, we need to define eL in the following two cases because of σL,dE = 0 at L = M + 1187

for the dE method and at L = Nn + 2 for the GQ-dE method, respectively:188

eL =

N−1
Ω

∑NΩ
l=1 |S l

L| × 100, S l
L =
∑NΩ

l′=1 p̂ll′PL(Ωl ·Ωl′ ) (L = M + 1 or L = Nn + 2)
N−1
Ω

∑NΩ
l=1 |S l

L − 1| × 100, S l
L = σ

−1
L,dE
∑NΩ

l′=1 p̂ll′PL(Ωl ·Ωl′ ) (otherwise)
, (17)

p̂ll′ =


(
p̂M
δ2

)
ll′

for the dE method

( p̂Gd)ll′ for the GQ − dE method
.

4. Numerical schemes and conditions for the RTE-calculations189

4.1. Finite difference method190

In numerical calculations of the RTE based on the FL, dE, GQ, and GQ-dE methods, we employed the finite191

difference method: the 3rd order weighted essentially non oscillatory scheme (Jiang and Shu, 1996; Henrick et al.,192

2005) for spatial discretization and the 3rd order total variation diminishing-Runge-Kutta method (Gottlieb and Shu,193

1998) for temporal discretization, respectively. For the details, refer to (Fujii et al., 2018).194

4.2. Numerical phantom modeling biological tissue volumes195

As a first step toward the numerical calculations of the RTE in heterogeneous biological tissue volumes, we196

consider a homogeneous numerical phantom because analytical solutions of the RTE are available for homogeneous197

media. The phantom is a cubic medium with a side of 2.2 cm as shown in Fig. 3. The source and detector are located198

inside the medium at rs = (1.10 cm, 1.10 cm, 0.88 cm) and rd = rs + ρêz, respectively, with the source-detector (SD)199

distance of ρ; and the unit vector of z-axis of êz for the purpose of suppressing boundary effects because we compare200

the numerical calculations for finite media with the analytical solution for infinite media. At the boundary of a201

medium, the non-reentry boundary condition is employed for simplicity. It was confirmed that the boundary condition202

little influences the numerical calculation of the RTE at the detector inside the medium. The optical properties of the203

phantom were given as µs = 100 cm−1, µa = 0.2 cm−1, g = 0.9, and the refractive index n = 1.4. These values are204

typical for biological tissues in the near-infrared wavelength range.205
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4.3. Numerical conditions and computational loads206

We calculated temporal profiles of the fluence rate, Φ(rd, t) =
∫
S2 dΩI(rd,Ω, t) from the RTE solution using the207

FL, dE, GQ, and GQ-dE methods in the time range from 0 to 350 ps. In the numerical calculation of Φ ∼ ∑NΩ
l=1 wlIl208

using the GQ and GQ-dE methods, we have two choices of the weight, wl; the weight for the quadrature set or209

the companion weight, which corresponds to the first row components of D (Morel et al., 2017). We preliminarily210

confirmed that the Φ-results were almost the same between the two cases for the weights. The spatial and temporal211

step sizes were uniformly given as ∆r = 0.02 cm and ∆t = 0.5 ps, respectively. The preliminary study showed212

that Φ was little changed when the step sizes were finer than the current values. The source code for the numerical213

calculation was written in the C++ programming language, and all the matrices were compressed to vectors in the214

compressed row storage format. Also, parallel CPU programming was implemented with 48 thread computers (Intel215

Xeon E5-2690v3@ 2GHz) by using OpenMP. The numerical code for the RTE-calculations is available as an open216

source (Fujii, 2020). In this work, the total numbers of spatial nodes and time steps, Nr and Nt, were the same217

among the four numerical treatments of the highly forward-peaked phase function. Hence, the memory requirements218

and computational loads were directly related to the NΩ-values, which ranges from 48 to 288 for the LSE and EO219

quadrature sets as listed in Table 1. In the case of NΩ = 48(Nn = 6), the operator matrix size (NrNΩ × NrNΩ) of220

2.5×1015 and CPU times of 5.2 hours were the smallest among the NΩ-range (Nn-range) listed in Table 1. Meanwhile,221

in the case of NΩ = 288(Nn = 16), they were the largest as 1.4×1017 and 34.9 hours, respectively. Resultantly, LSE6 is222

computationally more efficient than LSE16: the computation time of the RTE calculation with LSE6 was one-seventh223

of that with LSE16. Dependency of the computational times and costs of the RTE-calculations on the spatial and224

temporal resolutions, ∆r and ∆t, will be discussed elsewhere by changing the values of ∆r and ∆t.225

4.4. Numerical errors of the fluence rate for the time-dependent RTE226

We investigated the accuracy of the numerical calculations of the time-dependent RTE using the FL, dE, GQ,227

and GQ-dE methods by comparing with the analytical solution of the RTE for infinite homogeneous media with228

the highly forward-peaked scattering (Liemert and Kienle, 2012). The differences in Φ between the numerical and229

analytical solutions were evaluated by the mean absolute percentage error, eΦ, of the fluence rate normalized by its230

peak value, Φ̂ = Φ/max(Φ):231

 [cm]

! [cm]
" [cm]

#

Source

Detector

$[cm]

Fig. 3. Source and detector positions in the homogeneous cubic phantom
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eΦ =
1

M2 − M1

M2∑
m=M1

∣∣∣∣∣∣ Φ̂m − Φ̂RT E(tm)
Φ̂RT E(tm)

∣∣∣∣∣∣ × 100, (18)

where Φ̂m and Φ̂RT E(tm) represent the values of Φ̂ at the m-th time step, tm, in the numerical and analytical solutions,232

respectively; and the summation with respect to m is over the time period from the time when Φ̂RT E rises to 10−0.5 ⋍233

0.316 (m = M1) before the peak to the time when Φ̂RT E falls to 10−1.5 ⋍ 0.032 (m = M2) after the peak. For the234

details of the time period, please refer to (Fujii et al., 2018).235

4.5. Determination of the source-detector (SD) distance236

As mentioned in Introduction, we examined the RTE-calculations using the FL, dE, GQ, and GQ-dE methods237

in the region of the scattering length scale, where the highly forward-peaked phase function strongly influences the238

results for the RTE. Under the current conditions of the optical properties, we determined the SD distance, ρ, as 0.40239

cm by our preliminary study using three kinds of analytical solutions: (1) the RTE (Liemert and Kienle, 2012) with240

appropriate treatments of the highly forward-peaked phase function; (2) the RTE using the zeroth order dE method241

(Eq. (11) at M = 0, denoted by dE0), which approximates the phase function as the delta-function and isotropic242

scattering components; and (3) the diffusion equation (DE) (Chandrasekhar, 1943) which assumes isotropic scattering243

under the diffusion approximation.244

Figures 4(a) and (b) show the temporal profiles of the three kinds of analytical solutions: the RTE, dE0, and DE.245

At the short SD distance, ρ = 0.40 cm, the profiles of the dE0 and DE disagreed with that of the RTE, meaning the246

strong influences of the highly forward-peaked phase function. At the long SD distance, ρ = 1.55 cm, meanwhile,247

the profiles of the dE0 and DE almost agreed with that of the RTE, suggesting the validity of the isotopic scattering248

approximation to the highly forward-peaked phase function. From the results, the ρ-value of 0.40 cm is in the region249

of the scattering length scale, while the value of 1.55 cm in the region of the diffusive length scale. Although not250

shown here, our preliminary study showed that in the region of the scattering length scale, the temporal profiles of251

the analytical solutions of the RTE, dE0, and DE differed each other around the peak time if normalization by its252

maximum value is not employed. On the other hand, in the region of the diffusive length scale, the three profiles253

almost agreed even without the normalization.254

5. Numerical results255

5.1. Moment conditions of the highly forward-peaked phase function256

This subsection discusses the numerical errors, eL, of the L-th order moment conditions of the highly forward-257

peaked phase function (Eqs. (16) and (17)) for the FL, dE, GQ, and GQ-dE methods with the LSE and EO quadrature258

sets. For the FL and dE methods, the expansion orders, N and M, are given independently of the quadrature orders, Nn.259

Hence, their parameter spaces are given as {L,Nn,N} and {L,Nn,M}, respectively. For the GQ and GQ-dE methods,260

meanwhile, the expansion order of the phase function is consistently determined according to the quadrature order.261

Hence, the parameter space is reduced to {L,Nn} for the GQ and GQ-dE methods. Since the eL-value of 1% is262

sufficiently small, we assume that the L-th order moment condition is satisfied when the eL-value is less than 1% here.263
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Fig. 4. Analytical solutions of the RTE, dE0 (Eq. (11) with M = 0), and DE at the short and long SD distances: (a) ρ = 0.40 cm and (b)
ρ = 1.55 cm.
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Fig. 5. Mapping of the mean absolute percentage errors, e1, of the first order moment condition (Eqs. (16) and (17) with L = 1) for the (a)
FL and (b) dE methods on the Nn − N and Nn − M planes with the LSE (left) and EO (right) quadrature sets in the case of g = 0.9. Nn
represents the quadrature order; and N and M the expansion orders of the phase function. The e1-values larger than 102% were replaced
by 102%, and the e1-values less than 10−4% were replaced by 10−4%.

We discuss the eL-results at the range of 1 ≤ L ≤ 5 for all the combinations of the treatments of the highly forward-264

peaked scattering (FL, dE, GQ, and GQ-dE methods), quadrature sets (LSE and EO sets), and the expansion orders.265

For most of the combinations, the errors are induced by the angular discretization using the DOM at the L-range. We266

preliminarily confirmed that the numerical errors at L = 0, e0, were less than 1% for the FL and dE methods at all267

the combinations of the quadrature sets and expansion orders because the zeroth order renormalization method was268

employed. We mainly examined the numerical errors at L = 1, e1, because a strong correlation between e1 and eΦ has269

been reported for the renormalization method (Fujii et al., 2018). Meanwhile, we do not discuss the eL-values at the270

higher order L ≥ 6 because these eL-values are little correlated to the RTE-results.271

5.1.1. First order moment condition of the phase function272

Figures 5(a) and (b) show the maps of the e1-results (L = 1) on the Nn-N and Nn-M planes for the FL and dE273

methods, respectively, where Nn varied from 6 to 18 for the LSE quadrature sets and from 6 to 16 with the EO274

quadrature sets as listed in Table 1; and both N and M varied from 0 to Nn + 2. For simplicity, the e1-values larger275

than 102% were replaced by 102% and those smaller than 10−4% by 10−4%.276
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As shown in Fig. 5(a), the e1-values at N = 0 for the FL method were quite large with the LSE and EO quadrature277

sets because the phase function using the FL method at N = 0, p0
FL, theoretically does not satisfy the first order278

moment condition:
∫
S2 dΩ′Ω ·Ω′p0

FL = 0 , σ1,HG = g. At N > 0, the e1-values for the FL method depended on both279

Nn and N, and the e1-values did not decrease monotonically with the increase in N. For example, in the case of LSE6280

(Nn = 6), the e1-values were less than 1% at 0 < N ≤ 6, while those were larger than 1% at N > 6. This is probably281

because the quadrature order, Nn, represents the maximum order of the Legendre expansion with the quadrature set.282

Although the e1-results with the EO quadrature set were similar to those with the LSE quadrature set, the region of283

the e1-values less than 1% was narrower than that with the LSE quadrature set. These results suggest that the errors284

at N ≥ 1 are caused by the angular discretization based on the DOM.285

Figure 5(b) shows the maps of e1 on the Nn-M planes for the dE method with the LSE and EO quadrature sets.286

Unlike the results for the FL method, the e1-values at M = 0 are sufficiently small with both the quadrature sets287

because the phase function using the dE method at M = 0 theoretically satisfies the first order moment condition as288

given in Eq. (10). On the whole, the e1-values for the dE method were smaller than those for the FL method with289

both the quadrature sets. This is probably because the dE method weakens the highly forward-peaked scattering by290

removing the purely forward-peaked component from the original phase function. However, the regions of the e1-291

values less than 1% were almost the same between the FL and dE methods, because both the methods conduct the292

same weighting procedure of the zeroth order renormalization method.293

5.1.2. L-th order moment condition of the phase function294

Figures 6 (a) and (b) show the maps of e2 (L = 2) on the Nn-N and Nn-M planes for the FL and dE methods,295

respectively. The e2-values at N = 0 and 1 for the FL method and at M = 0 for the dE method were larger than296

102%, independently of the quadrature sets, because the phase functions using the FL and dE methods do not satisfy297

the second order moment conditions theoretically at the expansion orders. Similarly to the e1-results, the dE method298

reduced the e2-values from those for the FL method at N or M ≥ 2, dependently on the quadrature sets. Meanwhile,299

for the FL and dE methods, the regions of the e2-values less than 1% at both the quadrature sets were narrower than300

those of the e1-values. Although not shown here, we confirmed that as the order L is higher, the region of the eL-values301

less than 1% becomes narrower.302

We discuss the eL-results for the GQ method at 0 ≤ L ≤ 5 with the LSE and EO quadrature sets as shown in303

Fig. 7. The eL-values were sufficiently small as 10−4% for both the quadrature sets except the case of EO8 (Nn = 8) at304

L = 4 and 5. These results suggest that the GQ method effectively reduces the errors induced by angular discretization305

using the DOM from those for the FL method, almost regardless of the types and orders of the quadrature sets. We306

confirmed that for EO8, the diagonal elements of the M-matrix in Eq. (12) were so small that generating the D-matrix307

by inversion of the M-matrix was difficult.308

We investigated the eL-results for the GQ-dE method as shown in Fig. 8. The eL-values for the GQ-dE method309

were almost the same as those for the GQ method, meaning the high versatility and high accuracy of the GQ-dE310

method, although the components of the phase function matrices differed between the two methods. These results311
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Fig. 6. Evaluation of the numerical errors, e2, of the second order moment conditions (Eqs. (16) and (17) with L = 2) for the (a) FL and (b)
dE methods. The other details are the same as Fig. 5.
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Fig. 7. Evaluation of the numerical errors, eL, of the L-th order moment conditions (Eq. (16), 0 ≤ L ≤ 5) for the GQ method at the Nn-range
from 6 to 18 for the LSE quadrature set (left) and from 6 to 16 for the EO quadrature set (right). The other details are the same as in
Fig. 6.

suggest that the matrices of D and M are more effective for the reduction of the errors than the modification of the312

cross section matrices to ΣdE (Eq. (14)) from Σ (Eq. (12)).313

5.2. Fluence rate314

This subsection discusses the accuracy of the RTE-calculations using the FL, dE, GQ, and GQ-dE methods by315

the numerical errors, eΦ, of the fluence rate (Eq. (18)) for the numerical phantom with g = 0.9 at the SD-distance of316

ρ = 0.4 cm in the region of the scattering length scale. For the FL and dE methods, we focus on the numerical results317

for LSE6 and EO6 because these combinations of the type and order of the quadrature sets are computationally more318

efficient than the other combinations. Then, we compare the results for LSE6 and EO6 with those for LSE16, which319

is supposed to provide the most accurate results.320

Figure 9(a) shows the temporal profiles of Φ(rd, t) for the FL method with LSE6 at the expansion orders of the321

phase function: N = 0, 1, and 4. Although the numerical schemes and conditions for the spatial and temporal variables322

were the same in all the cases of the N-values, the RTE-results strongly depended on N. The top panel of Fig. 9(b)323

shows eΦ for the FL method with LSE6 and EO6 at N ranging from 0 to 10, where the line of eΦ = 2.18% obtained324

by LSE16 is plotted as a reference. It is confirmed that the eΦ-values with LSE16 were almost constant as 2.18%325

unless the RTE-results diverged. For LSE6, the eΦ-values were less than 3% at 2 ≤ N ≤ 5, and almost the same as the326
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Fig. 8. Evaluation of the numerical errors, eL, of the L-th order moment conditions (Eq. (16) for the GQ-dE method at LSENn (left) and
EONn (right). The other details are the same as in Fig. 7.

eΦ-value with LSE16. Meanwhile, the eΦ-values were larger than 3% at N = 0 and 1, and the RTE-results diverged at327

6 ≤ N ≤ 10. The divergence was probably caused by the fact that the phase function matrix using the FL method has328

many negative components. This behavior of the eΦ-results was similar to that of the e1-results shown in the bottom329

panel of Fig. 9(b).330

As shown in Figs. 10(a) and (b), the dE method improved the accuracy of the RTE-calculations from that for the331

FL method, similarly to the e1-results. Especially, in the case of LSE6, the eΦ-values were less than 3% at 1 ≤ M ≤ 6,332

almost the same accuracy as those with LSE16 indicated by the horizontal line. This result is consistent with the333

previous work by Klose and coworkers (Klose et al., 2005). They stated that the dE method with the second order334

expansion (M = 2) provided the accurate results of the steady-state RTE, and the expansion order (M = 2) is within335

the above range of 1 ≤ M ≤ 6 with the small eΦ-values. At M = 0, the eΦ-value was as large as approximately 20%336

with LSE6 and EO6, although e1-values were as small as 10−4%. This is ascribed to the shape difference in the phase337

function between the zeroth order dE and the original HG form. The RTE-results for the dE method did not diverge338

with LSE6 and EO6 unlike the results for the FL method, although the e1-values for the dE method were as large339

as approximately 5% at 7 ≤ M ≤ 10. This is probably because the dE method reduces the number of the negative340

components of the phase function matrix.341

Figure 11(a) shows that the numerical results of Φ(rd, t) using the GQ method for LSE6, EO6, and LSE16 agreed342

well with the analytical solution of the RTE, indicating the high accuracy of the GQ method. As shown in the top343

panel of Fig. 11(b), all the results of eΦ for the GQ method were less than 3%, independently of the type and order344

of the quadrature sets, similarly to the e1-results shown in the bottom panel of Fig. 11(b). These results suggest the345

versatility and usefulness of the GQ method. We probably do not need preliminary investigations for the dependence346

of the RTE-results on the quadrature sets when we solve the RTE using the GQ method for other random media in347

future.348

As shown in Fig. 12(a) and (b), the GQ-dE method provided the very accurate results for the RTE-calculations,349

similarly to the GQ method. The eΦ-value with EO8 for the GQ-dE method was reduced from the value for the GQ350

method, probably because of the reduction of the scattering coefficient as seen in Eq. (15).351
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Fig. 9. (a) Temporal profiles of the fluence rate, Φ(rd , t), normalized by their peak values for the numerical phantom with g = 0.9 at ρ =0.40
cm; the numerical solutions of the RTE for the FL method with LSE6 at the expansion orders: N = 0, 1, and 4; and the analytical solution
(AS) (Liemert and Kienle, 2012). (b, top) Numerical errors, eΦ (Eq. (18)), for the FL method with LSE6 and EO6 at N ranging from 0
to 10 in a logarithmic scale. As a reference, the eΦ-value of 2.18% obtained with LSE16 is plotted as a horizontal solid line. When the
numerical solutions diverged or the eΦ-values were larger than 100%, their values were replaced by 100%. (b, bottom) The e1-results for
the FL method are plotted for comparison with the eΦ-results.
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Fig. 10. Numerical results for the dE method: (a) Φ(rd , t) for LSE6 at M = 0, 1, and 10; and (b) eΦ and e1 at the M-range from 0 to 10. The
other details are the same as in Fig. 9.

6. Conclusions352

We examined the versatility and accuracy of the FL, dE, GQ, and GQ-dE methods with various expansion orders353

of the phase function and quadrature orders of the LSE and EO quadrature sets for the numerical treatments of the354

highly forward-peaked phase function in the 3D RTE based on the DOM. Firstly, we investigated the numerical355

errors, eL, of the moment conditions of the highly forward-peaked phase function. We found that the dE method can356

reduce the eL-values from those for the FL method, especially in the region where the large errors were caused by357

the breakdown of the moment condition of the phase function. This is because the dE method decomposes the phase358

function into the purely forward-peaked and other components. However, the reduction by the dE method depends on359

the expansion orders of the phase function and a type and order of the quadrature sets. The GQ method significantly360

reduced the errors, eL, from those for the FL and dE methods in the region where the errors were caused by the angular361

discretization using the DOM. This large reduction by the GQ method is almost independent of a type and order of362
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Fig. 11. Numerical results for the GQ method: (a) Φ(rd , t) for LSE6, EO6, and LSE16; and (b) eΦ and e1 at the Nn-range from 6 to 18 for
the LSE quadrature set and from 6 to 16 for the EO quadrature set. The other details are the same as in Fig. 9.

(a)
0 50 100 150 200 250 300

t [ps]

0

0.2

0.4

0.6

0.8

1

/m
a

x
(

)

AS

LSE6

EO6

LSE16

(b)

0.5

1

2

5

10

20

50

100

e
 [

%
]

LSE

EO

6 8 10 12 14 16 18

N
n

10
-4

10
-1

10
2

e
1
 [

%
]

Fig. 12. Numerical results for the GQ-dE method. The other details are the same as in Fig. 11.

the quadrature sets because of the weighting procedure for the phase function according to the quadrature sets. The363

GQ-dE method provided the almost same accuracy as the GQ method. It suggests that the moment-to-direction and364

direction-to-moment matrices corresponding to the weighting procedure are more effective to the error reduction than365

the cross section matrices corresponding to the Legendre expansion of the phase function.366

Secondly, we investigated the numerical calculations of the RTE for the highly forward-peaked scattering by the367

errors of the fluence rate, eΦ, in the region of the scattering length scale, where the highly forward-peaked phase368

function strongly influences the RTE-results. When using the FL and dE methods, the eΦ-values with LSE6 were369

less than 3%, the same accuracy with LSE16 at 2 ≤ N ≤ 5 and 1 ≤ M ≤ 6, respectively. These results suggest the370

accuracies of the FL and dE methods depend on the expansion orders. When using the GQ and GQ-dE methods,371

meanwhile, the eΦ-values were less than 3% for all the types and orders of the quadrature sets investigated in this372

study, suggesting high versatility and usefulness of the GQ and GQ-dE methods.373

In this paper, influences of the requirement of M D = E for the GQ and GQ-dE methods on the numerical results374

have not been examined and will be discussed elsewhere. It is suggested that numerical errors in the eigenvalues375

of the scattering matrices would be correlated to the numerical accuracy of the discrete scattering integral or the376
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RTE-calculations for various kinds of treatments of the highly forward-peaked scattering, and the correlation will be377

discussed elsewhere.378
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