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Nonlinear nonreciprocal transport in antiferromagnets free from spin-orbit coupling
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We theoretically propose a realization of nonlinear nonreciprocal transport in antiferromagnets without relying
on the relativistic spin-orbit coupling. Through symmetry and microscopic model analyses, we show that a local
spin scalar chirality inducing an asymmetric band modulation becomes a source of a Drude-type nonlinear
transport, while an electric polarization induced by a collinear spin configuration in a triangle unit leads to a
Berry-curvature-dipole-type nonlinear transport. We demonstrate 120◦ antiferromagnetic ordering on a triangular
lattice and a breathing kagome lattice in an external magnetic field as typical examples. Our results open
another direction for the design and engineering of functional materials to show rich parity-violating transport
phenomena induced by spontaneous magnetic phase transitions even without the spin-orbit coupling.
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I. INTRODUCTION

The study of magnetism has long been the subject of con-
siderable theoretical and experimental interest in condensed
matter physics. Once a spontaneous magnetic phase tran-
sition occurs, a variety of intriguing physical phenomena
appear as a consequence of the interplay between charge
and spin degrees of freedom in electrons, such as the
magnetoelectric effect irrespective of metals and insulators
[1–11]. In addition, the topological aspect of magnetic or-
derings has been extensively studied in recent years since
the discovery of magnetic skyrmions [12–15] and magnetic
topological insulators [16–19]. These diverse physical prop-
erties in magnetic systems provide us a promising possibility
for potential applications to functional spintronics devices
[20–22].

Toward applications, it is significant to elucidate the condi-
tions to induce physical phenomena at the fundamental level.
The symmetry aspect provides their macroscopic conditions.
Meanwhile, fundamental understanding of the microscopic
origins is important to realize an efficient bottom-up design of
functional magnetic materials. One of the successes has been
achieved in the anomalous Hall effect in magnetic materials
[23,24]. Although it was originally discussed in ferromagnets
with the relativistic spin-orbit coupling (SOC) [25–30], un-
conventional mechanisms in collinear [31–36], noncollinear
[37–42], and noncoplanar [43–47] antiferromagnets (AFMs)
have been clarified based on the Berry curvature [48–52] and
multipoles [36,40]. Among them, noncoplanar spin textures
give rise to the anomalous (topological) Hall effect even with-
out either SOC or uniform magnetic moments, which results
in broadening the scope of materials [44,46,53,54].

The rich physics brought about by the anomalous Hall
effect leads to a natural extension to a nonlinear nonreciprocal
transport beyond the linear response. Although the framework
and the symmetry argument for the nonreciprocal transport
have been developed [55–63], few studies have focused on
the microscopic mechanisms in magnetic systems [64–72].

Especially, the effect of SOC can be incorporated in most
cases, which narrows down candidate materials.

In this paper, we explore another mechanism of the non-
linear nonreciprocal transport in AFMs without relying on the
SOC. Based on the symmetry and model analyses, we derive a
microscopic essence for nonlinear nonreciprocal transports of
Drude type and of Berry curvature dipole (BCD) type, which
appear under different conditions: Drude-type nonlinear trans-
port is induced by a noncoplanar spin configuration with the
local spin scalar chirality, while BCD-type nonlinear transport
is induced by a collinear spin configuration in a triangle unit
with electric polarization. The results are demonstrated by
examining three-sublattice 120◦ AFM orderings on a trian-
gular lattice (TL) and a breathing kagome lattice (BKL) in an
external magnetic field. We also discuss necessary conditions
for model parameters to cause these nonlinear conductivities
from the microscopic viewpoint. Our results indicate that
noncollinear and noncoplanar magnetic orderings in frustrated
and itinerant magnets with negligibly small SOC are also
potential candidates to bring about rich parity-violating trans-
port phenomena, which will stimulate further exploration of
functional magnetic materials.

The rest of this paper is organized as follows. In Sec. II,
we present a tight-binding model without the SOC on the TL
and BKL, which consists of the hopping, the site-dependent
AFM mean field, and an external magnetic field. We show
the numerical results of the nonreciprocal transport for both
lattice systems in Sec. III. We also discuss the important
model parameters to induce the Drude-type and BCD-type
nonlinear transports. Section IV is devoted to a summary.

II. MODEL

Let us start with a tight-binding model on the TL, which is
given by

HTL = −t
∑
〈i j〉σ

c†
iσ c jσ +

∑
iσσ ′

(hi + H ) · c†
iσ σσσ ′ciσ ′ , (1)
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FIG. 1. (a) 120◦-AFM structure on the TL. Here, + or − on the
triangle represents the sign of the local spin scalar chirality χsc under
Hz. (b) Fermi surfaces at 1/10 filling for several h and Hz. (c) and
(d) Contour plots of χsc (c) and σ D

x;xx (d) in the plane of h and Hz at
1/10 filling. (e) and (f) Hz dependences of χsc (e) and σ D

x;xx (f) for
several h.

where c†
iσ (ciσ ) is the creation (annihilation) operator for site

i and spin σ = ↑,↓. The first term represents the hoppings
between the nearest-neighbor sites. The second term consists
of the site-dependent AFM mean-field term hi that originates
from the Coulomb interaction U and an external magnetic
field H = (0, Hy, Hz ) in the yz plane, where σ is the vector
of the Pauli matrices; the magnitude of hi is roughly given by
Umi within the mean-field approximation in the single-band
Hubbard model, where mi represents the expectation value
of the spins (0 < mi � 0.5). For the former, we assume the
noncollinear three-sublattice 120◦-AFM structure consisting
of hA = h(−1/2,

√
3/2, 0), hB = h(−1/2,−√

3/2, 0), and
hC = h(1, 0, 0) shown in Fig. 1(a), with amplitude h, to fo-
cus on the emergence of the nonreciprocal transport under
noncollinear magnetic orderings. Such a noncollinear order-
ing is stabilized in the competing exchange interactions with
the triangle unit in the itinerant electron models including
not only the Hubbard model but also the periodic Anderson
model and the classical Kondo lattice model [73–77] or in
the magnetic anisotropy. We set t = 1 as the energy unit,
take the lattice constant as unity, and consider the low 1/10
filling so that the Fermi surfaces consisting of two almost
energetically degenerate bands become a simple shape, as
shown in Fig. 1(b). In addition, to cover the situation from
a weak-correlation regime (U/t 	 1) to a strong-correlation
regime (U/t ∼ 10), h is changed from 0 to 5, as discussed in
Sec. III A.

FIG. 2. (a) 120◦-AFM structure in the BKL system. (b) Fermi
surfaces at 1/10 filling for several Hz at h = 3. (c) and (d) Contour
plots of χsc (c) and σ D

x;xx (d) in the plane of h and Hz at 1/10 filling. (e)
and (f) Hz dependences of χsc (e) and σ D

x;xx (f) for h = 2. In (b) and
(f), band 1 and band 2 represent the contributions from the lowest
and second-lowest bands, respectively.

In the BKL system, the Hamiltonian is given by

HBKL = −
(

ta

∈�∑
〈i j〉σ

+ tb

∈�∑
〈i j〉σ

)
c†

iσ c jσ

+
∑
iσσ ′

(hi + H ) · c†
iσ σσσ ′ciσ ′ , (2)

where ta (tb) represents the hopping within upward (down-
ward) triangles. Similar to the TL system, we consider the
noncollinear three-sublattice 120◦-AFM structure consisting
of hA = h(−1/2,

√
3/2, 0), hB = h(−1/2,−√

3/2, 0), and
hC = h(1, 0, 0) shown in Fig. 2(a). We take the length of
both triangles as unity, whose difference is expressed as the
different hoppings; ta = 1 and tb = 0.5. The results are shown
in Sec. III B.

III. RESULTS

We show the results of the TL system in Sec. III A and
those of the BKL system in Sec. III B. We also discuss the
essential model parameters for the Drude-type and BCD-type
nonlinear transports in Sec. III C.

A. Triangular-lattice system

The 120◦-AFM structure on the TL breaks the spatial in-
version symmetry. Then, the antisymmetric spin polarization
appears in the band structure in the model in Eq. (1) [78–80].
When the magnetic moments are on the xy plane under
H = 0, the antisymmetric z-spin polarization satisfying
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threefold rotational symmetry occurs in the form of kx(k2
x −

3k2
y )σz (k is the wave vector). In such a situation, the product

symmetry of the sixfold rotation and the space-time-inversion
operation remains, which results in the sixfold-symmetric
Fermi surface. When introducing the magnetic field along σz,
the asymmetry in terms of +k and −k appears [78,79]; the
sixfold rotational symmetry of the Fermi surface is lost, as
shown for several values of h and Hz in Fig. 1(b), where one of
the two bands is away from the Fermi level while increasing
Hz. Such an asymmetric band structure becomes the micro-
scopic key ingredient to cause the Drude-type nonreciprocal
nonlinear transport discussed below.

The Drude-type nonlinear conductivity σ D
η;μν in Jη =

σ D
η;μνEμEν for η,μ, ν = x, y, z is derived from the second-

order Kubo formula as

σ D
η;μν = − e3τ 2

2h̄3Nk

∑
k,n

fnk∂η∂μ∂νεnk, (3)

where e, τ , h̄, and Nk are the electron charge, the relaxation
time, the reduced Planck constant, and the number of super-
cells, respectively; we take e = τ = h̄ = 1. εnk and fnk are
the eigenenergy and the Fermi distribution function with the
band index n, respectively. σ D

η;μν arises for nonzero ∂η∂μ∂νεnk,
i.e., for an asymmetrically deformed energy band. In the
present 120◦ AFM in the two-dimensional TL system, σ D

x;xx =
−σ D

x;yy = −σ D
y;xy from the symmetry under Hz. Hereinafter, we

fix the temperature T = 0.01 and Nk = 48002.
Figures 1(c) and 1(d) show the color plots of χsc and

σ D
x;xx while changing h and Hz at Hy = 0, respectively. The

local scalar chirality χsc is defined by χsc = 〈si〉 · (〈s j〉 × 〈sk〉)
where 〈si〉 = (1/2)〈∑σσ ′ c†

iσ σσσ ′ciσ ′ 〉, 〈· · · 〉 is the expectation
value, and i, j, and k are the sites in the triangle in the coun-
terclockwise order. Comparing χsc in Fig. 1(c) with |σ D

x;xx| in
Fig. 1(d), one finds that there is a correlation between them in
the wide range of h and Hz; both quantities increase while
increasing h at fixed Hz, while they become the largest at
intermediate Hz at fixed h [Figs. 1(e) and 1(f)]. This indicates
that large |σ D

x;xx| in AFMs without SOC can be realized when
the noncoplanarity of the spin configuration becomes large.

Let us discuss the relationship between the nonreciprocal
transport, the local scalar chirality, and the asymmetric band
structure for an intuitive understanding. The microscopic ori-
gin of the nonzero σ D

x;xx is understood from the distribution of
the local spin scalar χsc. As shown in Fig. 1(a), the 120◦ AFM
under Hz leads to the staggered alignment of ±χsc so that the
sixfold rotational symmetry of the system is broken in the
real-space picture. Accordingly, the sixfold symmetry of the
Fermi surfaces is also broken, which leads to the asymmetric
band deformation. The important point is that the uniform
component of χsc is not necessary to induce nonreciprocal
transport; the essence lies in its spatial distribution breaking
the sixfold rotational symmetry. Thus the relationship be-
tween χsc and σ D

x;xx is qualitatively different from that between
χsc and the linear topological Hall effect, the latter of which
requires the uniform alignment of χsc.

B. Breathing-kagome-lattice system

A similar correlation between χsc and σ D
x;xx also occurs in

other noncollinear AFMs. To demonstrate that, we investigate
the 120◦ AFM ordering in the BKL structure in Fig. 2(a),
where the model Hamiltonian is given by Eq. (2). The 120◦
AFM ordering in Fig. 2(a) exhibits the asymmetric band de-
formation in the form of kx(k2

x − 3k2
y ) when χsc is present

under Hz, as shown by the Fermi surfaces at 1/10 filling and
h = 3 in Fig. 2(b); two bands denoted as bands 1 and 2 form
the Fermi surfaces for small Hz, and band 2 is away from the
Fermi level while increasing Hz.

The asymmetric band deformation under nonzero χsc leads
to nonzero σ D

x;xx. Similar to the TL case in Sec. III A, the
behaviors of σ D

x;xx against h and Hz in Fig. 2(d) have a cor-
respondence to χsc in Fig. 2(c) except for the small-Hz region
[see also the case at h = 2 in Figs. 2(e) and 2(f)]. The devia-
tion for small Hz is owing to the opposite-sign contributions
from the two Fermi surfaces, where the negative contribution
from band 2 is larger than the positive one from band 1, as
shown in Fig. 2(f).

On the other hand, the 120◦ AFM ordering in the BKL
structure exhibits another nonreciprocal transport, which is
referred to as the nonlinear Hall effect. The nonlinear Hall
conductivity is calculated by

σ BCD
η;μν = e3τ

2h̄2Nk

∑
k,n

fnkεημλDνλ
n (k) + [μ ↔ ν], (4)

where Dμν
n (k) represents the BCD derived from the Berry

curvature �ν
n(k); Dμν

n (k) = ∂μ�ν
n(k) [56]. In contrast to σ D

η;μν ,
σ BCD

η;μν does not require the breaking of the time-reversal sym-
metry; the breakings of the spatial inversion symmetry and
threefold rotational or mirror symmetry to activate the rank-1
electric dipole and rank-2 electric toroidal quadrupole are im-
portant [56,62,63,81]. Although there is no finite component
of σ BCD

η;μν in the TL system under any magnetic fields since such
multipole degrees of freedom are not activated, it becomes
finite in the BKL system owing to the active electric dipoles
under the in-plane field, as discussed below. For example, in
the case of Hy, nonzero components of σ BCD

η;μν are given by
2σ BCD

x;yy = −σ BCD
y;xy and 2σ BCD

y;xx = −σ BCD
x;xy from the symmetry

viewpoint.
The numerical results of two components, σ BCD

y;xx and σ BCD
x;yy ,

while changing h and Hy at Hz = 0, are shown by the color
maps in Figs. 3(a) and 3(b), respectively. The overall feature
in both cases seems to be similar; there is a sign change
while changing Hy for fixed h, and their absolute values are
enhanced in the vicinity of the region where their sign change
occurs, as shown in the inset of Fig. 3(b) at h = 5.

The enhancement of σ BCD
y;xx is attributed to the change in

the Fermi-surface topology by the band crossing. Figure 3(c)
shows the change in the Fermi surfaces while increasing Hy

at h = 5. We also plot the k-resolved σ BCD
y;xx (k) defined by

σ BCD
y;xx = ∑

k σ BCD
y;xx (k) to represent the dominant contribution

to σ BCD
y;xx in momentum space. There are two Fermi surfaces

in the low field, as shown in the case of Hy = 0.06. While
increasing Hy, the two Fermi surfaces tend to merge at two
k points, where σ BCD

y;xx (k) is critically enhanced as shown at
Hy = 0.14. Further increase in Hy leads to the decrease in
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FIG. 3. (a) and (b) Contour plots of σ BCD
y;xx (a) and σ BCD

x;yy (b) in
the plane of h and Hy at 1/10 filling. The inset of (b) represents the
Hy dependence at h = 5 in (a) and (b). (c) Contour plots of σ BCD

y;xx (k)
projected onto the Fermi surfaces for several Hy at h = 5.

σ BCD
y;xx , as the lowest band is separated from the others. A

similar discussion holds for σ BCD
x;yy .

The origin of σ BCD
x;yy and σ BCD

y;xx is due to the emergence of
the electric polarization induced by spin-dependent kinetic
motion of electrons under the spin arrangement in the triangle
unit, where the electric polarization P = (Px, Py ) in each up-
ward triangle is given by Px ∼ 〈sC〉 · (〈sA〉 − 〈sB〉) and Py ∼
〈sC〉 · (〈sA〉 + 〈sB〉) − 2〈sA〉 · 〈sB〉. As the effective hopping
amplitudes are different depending on the bonds connected
by the parallel or antiparallel spin pairs, the induced spin mo-
ments become inequivalent, which results in P. It is noted that
a similar electric polarization in the triangle unit has also been
discussed in Mott insulators [82]. When Hz �= 0 but Hy = 0
under the 120◦ spin configuration, both Px and Py become
zero, which results in σ BCD

η;μν = 0. Meanwhile, the in-plane
magnetic field Hy deforms the 120◦ spin configuration to have
nonzero Px and Py. As Px and Py have the same symmetry as
σ BCD

x;yy and σ BCD
y;xx , respectively, a nonzero nonlinear Hall effect

appears. It is noted that the nonlinear Hall effect does not
appear in the TL system, since both Px and Py are canceled out
by considering the contributions from upward and downward
triangles.

The above consideration indicates that the nonlinear Hall
effect is induced even in the collinear spin configuration; it
does not require the noncollinear spin configuration. Indeed,
the x-spin (y-spin) component in hi in addition to the uniform
y-spin component from Hy is enough to induce Py (Px and
Py). In other words, σ BCD

y;xx still remains nonzero when drop-
ping either of the spin components, i.e., hx

A = hx
B = hx

C = 0 or
hy

A = hy
B = hy

C = 0, while σ BCD
x;yy becomes nonzero only when

hx
A = hx

B = hx
C = 0 [83]. Thus the collinear spin configuration

in the triangle unit is a minimal ingredient to induce the
nonlinear Hall effect in the absence of SOC.

FIG. 4. Schematics to represent the behaviors of (a) σ D
x;xx ,

(b) σ BCD
x;yy , and (c) σ BCD

y;xx when reversing the sign of the magnetic field
(Hz or Hy) or the order parameter h.

C. Essential model parameters

Finally, let us discuss the essential model parameters to
induce σ D

η;μν and σ BCD
η;μν from the microscopic viewpoint. Al-

though the above results indicate that both h and Hz (or Hy) are
important to induce the nonlinear conductivity, these depen-
dences differ from each other. To show this, we calculate the
essential model parameters based on the method in Ref. [63],
which is given by

∑
i jk Ci jk

∑
k Tr[vηkhi(k)vμkh j (k)vνkhk (k)]

for η,μ, ν = x, y, where Ci jk is the model-independent coeffi-
cient, hi(k) is the ith power of the Hamiltonian matrix at wave
vector k, and vηk is the η component of the velocity operator;
σ D

η;μν (σ BCD
η;μν ) is proportional to the real (imaginary) part of the

trace.
For the Drude-type nonlinear conductivity, the essential

factors of σ D
x;xx in the TL and BKL systems are extracted

as h2Hzt3 and h2Hz(ta − tb), respectively. This indicates that
the AFM domain formation is irrelevant to σ D

x;xx, while the
opposite field, Hz → −Hz, reverses the sign of σ D

x;xx, as shown
in Fig. 4(a). This means that the sign of χsc determines the
direction of the output current. In addition, nonzero σ D

x;xx is
induced by ta �= tb in the BKL system, since spatial inversion
symmetry is preserved when ta = tb. The BCD-type nonlinear
conductivities, σ BCD

x;yy and σ BCD
y;xx in the BKL system, show

different dependences regarding h and Hy; σ BCD
x;yy is propor-

tional to hHy(ta − tb), while σ BCD
y;xx is h2H2

y (ta − tb). In other
words, σ BCD

x;yy is reversed by reversing Hy or h, while σ BCD
y;xx is

invariant for such a change, as shown in Figs. 4(b) and 4(c),
respectively. The difference is accounted for by the odd-parity
cluster magnetic toroidal dipole in the 120◦-AFM structure
in Fig. 2(a) [84], which leads to a direct coupling of P × H
[85,86]. In the present case, Hy induces Px, which results in
nonzero σ BCD

x;yy . Meanwhile, σ BCD
y;xx is induced by a secondary

effect according to the symmetry lowering under Hy. Never-
theless, the magnitude of σ BCD

y;xx is comparable to that of σ BCD
x;yy

owing to the large enhancement by the band-crossing effect,
as discussed in Fig. 3.
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IV. SUMMARY

To summarize, we have investigated nonlinear nonrecip-
rocal transport in AFMs without SOC based on microscopic
model calculations. We clarified that the noncoplanar spin
configuration (local spin scalar chirality) causing the asym-
metric band modulation induces Drude-type nonlinear trans-
port, while the collinear spin configuration in the triangle
unit induces BCD-type nonlinear transport under an in-plane
magnetic field. We showed that the 120◦-AFM spin configura-
tions in the TL and BKL systems are promising candidates to
exhibit nonlinear nonreciprocal transport in the external mag-
netic field. We also presented the essential model parameters
in inducing each nonlinear conductivity.

The candidate materials in the present mechanism are
XMnO3 (X = Y, Sc, and Ho) [87–89], BaCoSiO4 [90], and
Ba3MnX ′

2O9 (X ′ = Sb and Nb) [91,92], where the non-
collinear or noncoplanar AFM structures without spatial
inversion symmetry were observed. In addition to the conven-

tional 120◦ AFM structures, it is expected that the Drude-type
nonlinear transport appears in other noncoplanar magnets
with the local spin scalar chirality degree of freedom, such
as the multiple-Q states [15,93,94]. The present results open
another route to realize nonlinear transport in magnetic ma-
terials, which will stimulate further exploration of functional
AFM materials irrespective of the SOC.
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