

Title	Suitability of pepper mild mottle virus as a human enteric virus surrogate for assessing the efficacy of thermal or free- chlorine disinfection processes by using infectivity assays and enhanced viability PCR
Author(s)	Shirasaki, N.; Matsushita, T.; Matsui, Y.; Koriki, S.
Citation	Water research, 186, 116409 https://doi.org/10.1016/j.watres.2020.116409
Issue Date	2020-11-01
Doc URL	http://hdl.handle.net/2115/86715
Rights	© 2020. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/
Rights(URL)	http://creativecommons.org/licenses/by-nc-nd/4.0/
Туре	article (author version)
Additional Information	There are other files related to this item in HUSCAP. Check the above URL.
File Information	shirasaki_clean revised manuscript.pdf

1	Suitability of pepper mild mottle virus as a human enteric virus surrogate for assessing the
2	efficacy of thermal or free-chlorine disinfection processes by using infectivity assays and
3	enhanced viability PCR
4	
5	
6	N. Shirasaki*, T. Matsushita, Y. Matsui, S. Koriki
7	
8	Division of Environmental Engineering, Faculty of Engineering, Hokkaido University, N13W8,
9	Sapporo, 060-8628, Japan
10	
11	*Corresponding author. Tel.: +81-11-706-7282; fax: +81-11-706-7282; e-mail address:
12	nobutaka@eng.hokudai.ac.jp
13	
14	
15	Abstract
16	Evaluating the efficacy of disinfection processes to inactivate human enteric viruses is important for
17	the prevention and control of waterborne diseases caused by exposure to those viruses via drinking
18	water. Here, we evaluated the inactivation of two representative human enteric viruses (adenovirus
19	type 40 [AdV] and coxsackievirus B5 [CV]) by thermal or free-chlorine disinfection. In addition,
20	we compared the infectivity reduction ratio of a plant virus (pepper mild mottle virus [PMMoV], a

21	recently proposed novel surrogate for human enteric viruses for the assessment of virus removal by
22	coagulation-rapid sand filtration and membrane filtration) with that of the two human enteric
23	viruses to assess the suitability of PMMoV as a human enteric virus surrogate for use in thermal and
24	free-chlorine disinfection processes. Finally, we examined whether conventional or enhanced
25	viability polymerase chain reaction (PCR) analysis using propidium monoazide (PMA) or improved
26	PMA (PMAxx) with or without an enhancer could be used as alternatives to infectivity assays (i.e.,
27	plaque-forming unit method for AdV and CV; local lesion count assay for PMMoV) for evaluating
28	virus inactivation by disinfection processes. We found that PMMoV was more resistant to heat
29	treatment than AdV and CV, suggesting that PMMoV is a potential surrogate for these two enteric
30	viruses with regard to thermal disinfection processes. However, PMMoV was much more resistant
31	to chlorine treatment compared with AdV and CV (which is chlorine-resistant) (CT value for 4-log10
32	inactivation: PMMoV, 84.5 mg-Cl ₂ ·min/L; CV, 1.15–1.19 mg-Cl ₂ ·min/L), suggesting that PMMoV
33	is not useful as a surrogate for these enteric viruses with regard to free-chlorine disinfection
34	processes. For thermal disinfection, the magnitude of the signal reduction observed with
35	PMAxx-Enhancer-PCR was comparable with the magnitude of reduction in infectivity, indicating
36	that PMAxx-Enhancer-PCR is a potential alternative to infectivity assay. However, for free-chlorine
37	disinfection, the magnitude of the signal reduction observed with PMAxx-Enhancer-PCR was
38	smaller than the magnitude of the reduction in infectivity, indicating that PMAxx-Enhancer-PCR
39	underestimated the efficacy of virus inactivation (i.e., overestimated the infectious virus
40	concentration) by chlorine treatment. Nevertheless, among the PCR approaches examined in the

41	present study (PCR alone, PMA-PCR or PMAxx-PCR either with or without enhancer),
42	PMAxx-Enhancer-PCR provided the most accurate assessment of the efficacy of virus inactivation
43	by thermal or free chlorine disinfection processes.
44	
45	
46	Keywords: Chlorine treatment, Heat treatment, Infectivity assay, Pepper mild mottle virus,
47	Propidium monoazide, Quantitative real-time PCR
48	
49	
50	1. Introduction
51	Viruses associated with waterborne transmission are mainly those that can infect the gastrointestinal
52	tract of humans or animals, which are known as enteric viruses (WHO, 2011). More than 140
53	enteric virus serotypes are known to infect humans, and the main health effect associated with
54	human enteric virus infection is gastrointestinal illness (Health Canada, 2017). In addition to
55	gastrointestinal disease, human enteric viruses can cause serious acute illnesses, such as meningitis,
56	poliomyelitis, and hepatitis (Health Canada, 2017). Human enteric viruses are excreted in very high
57	numbers in the feces of infected persons, even from those who are asymptomatic, and can persist in

58 water environments for prolonged periods (WHO, 2011). In fact, drinking water sources often 59 become contaminated with those viruses through a variety of routes, such as wastewater treatment

60 plant effluent and disposal of sanitary sewage or sludge on land (Bosch, 2007; Health Canada,

61 2017). Measures to reduce the risk of infection by human enteric viruses focus not only on the 62 prevention of water source contamination but also on the detection of contamination and subsequent 63 disinfection of contaminated water (WHO, 2011). Thus, methods for the accurate validation of 64 disinfection processes are an essential part of these measures.

Historically, cell culture is the most widely used method for the detection and quantification of 65 infectious viruses in water. Consequently, because this approach detects only infectious viruses, it is 66 67 an important means of obtaining data regarding the potential risk of infection from contaminated 68 water (Health Canada, 2017). However, cell culture is labor intensive, time consuming, and 69 nonspecific for several enteric viruses. In addition, some enteric viruses cannot be cultured by using 70 current cell culture technology; a universal cell line that can be used to culture and detect all human 71 enteric viruses is unavailable at present; and some viruses do not produce a detectable cytopathogenic effect, which is necessary for the visual detection of infectivity (Bosch, 2007; 72 73 Health Canada, 2017).

Recently, molecular methods targeting viral DNA or RNA, such as polymerase chain reaction (PCR) and quantitative real-time PCR, have become a common means of detecting and quantifying viruses in drinking water sources (Varughese *et al.*, 2018; Miura *et al.*, 2019). These methods have also been used to evaluate the efficacy of drinking water treatment processes (Albinana-Gimenez *et al.*, 2006, 2009). Compared with common cell-culture-based infectivity assays (e.g., plaque-forming unit [PFU] assay, median tissue culture infectious dose [TCID₅₀] assay), PCR-based methods are fast, highly sensitive, highly specific, and are able to detect and quantify any virus for which the

81	nucleotide sequence is known, including nonculturable and difficult-to-culture viruses (Bosch,
82	2007). However, PCR potentially overestimates the amount of infectious viruses because this
83	method detects the viral DNA/RNA of both infectious and inactivated viruses, unless the target part
84	of the DNA/RNA is damaged or lost (Parshionikar et al., 2010; Leifels et al., 2015; Fuster et al.,
85	2016; Prevost et al., 2016; Lee et al., 2018). This means that if the effectiveness of a disinfection
86	process is evaluated by a PCR-based method, the results likely lead to underestimation of the
87	efficacy of the disinfection process. Therefore, assessment methods that accurately discriminate
88	infectious from inactivated viruses are highly desired.
89	One advanced approach that has been used to distinguish between infectious and inactivated
90	viruses is viability PCR using the photoreactive intercalating dye propidium monoazide (PMA)
91	(Parshionikar et al., 2010; Karim et al., 2015; Leifels et al., 2015; Fuster et al., 2016; Randazzo et
92	al., 2016; Lee et al., 2018). In this approach, a sample is treated with PMA and then exposed to
93	intense visible light, which converts the azide group of the dye into a highly reactive nitrene radical
94	that then reacts with viral DNA or RNA and inhibits its subsequent amplification by PCR (Fittipaldi
95	et al., 2012; Randazzo et al., 2016). Because the dye cannot enter viruses with intact capsids, only
96	inactivated viruses with damaged capsids are targeted; thus, the DNA or RNA of inactivated viruses
97	is not amplified during PCR.
98	Several research groups have examined the suitability of PMA-PCR for evaluation of the

99 effectiveness of disinfection processes (Parshionikar et al., 2010; Karim et al., 2015; Lee et al.,

100 2018). However, these studies have shown that the ability of PMA-PCR to discriminate between

101	infectious and inactivated viruses varies depending on the target virus and disinfection process. For
102	example, Karim et al. (2015) reported that PMA-PCR was able to selectively differentiate between
103	infectious and inactivated poliovirus in water samples exposed to heat and chlorine treatment but
104	could not differentiate when poliovirus was inactivated by ultraviolet irradiation or when human
105	norovirus was treated with any disinfection process. Therefore, the suitability of PMA-PCR for the
106	assessment of disinfection processes with regard to virus inactivation remains under debate.
107	Recently, PMAxx, a newly improved version of PMA, and PMA Enhancer for Gram Negative
108	Bacteria, a product originally designed to improve PMA- or PMAxx-mediated discrimination
109	between live and dead gram-negative bacteria, have successfully been used for the assessment of
110	virus infectivity in the field of food safety (Randazzo et al., 2016, 2018). Randazzo et al. (2016)
111	reported that the addition of PMA Enhancer to PMAxx-PCR (PMAxx-Enhancer-PCR) was more
112	effective than PMA-PCR or PMAxx-PCR at distinguishing between infectious and heat-inactivated
113	human norovirus, for which a cell culture-based infectivity assay is not routinely available (Oka et
114	al., 2018). Thus, PMAxx-Enhancer-PCR may be a suitable approach for evaluation of the efficacy
115	of disinfection processes. However, Kim and Ko (2012) have reported that the bacteriophage MS2
116	was inactivated after exposure to PMA at high concentration, even without any disinfection process,
117	meaning that PMA itself, and by extension PMAxx, may cause virus inactivation. Therefore,
118	comparison of data obtained by using PMAxx-Enhancer-PCR with that obtained by infectivity
119	assay is necessary to determine whether PMAxx-Enhancer-PCR is a suitable alternative to
120	infectivity assay for evaluating the efficacy of disinfection processes to inactivate viruses.

121	A plant virus, pepper mild mottle virus (PMMoV; genus Tobamovirus, family Virgaviridae,
122	single-stranded RNA virus), which infects bell, hot, and ornamental peppers, has been proposed as a
123	novel surrogate for human enteric viruses for the assessment of the efficacy of physical and
124	physicochemical water treatment processes (Kitajima et al., 2018; Symonds et al., 2018). The
125	removal ratios of PMMoV, as evaluated by PCR, have been shown to be similar to or smaller than
126	those of human enteric viruses in laboratory-scale coagulation-rapid sand filtration or membrane
127	filtration processes (Shirasaki et al., 2017a; Kato et al., 2018; Shirasaki et al., 2018). Also, virus
128	removal efficiencies in actual drinking water treatment plants have successfully been determined by
129	targeting indigenous PMMoV due to its high concentration in drinking water sources (Kato et al.,
130	2018; Canh et al., 2019). Therefore, if the inactivation efficiencies of PMMoV and human enteric
131	viruses are comparable, PMMoV could be a useful surrogate for evaluating the efficacy of
132	disinfection processes for the inactivation of human enteric viruses. However, the efficacies of
133	disinfection processes against PMMoV have not yet been investigated, possibly because of the
134	difficulty of infectivity assays. Thus, it remains unclear in what contexts PMMoV is a suitable
135	surrogate for human enteric viruses.

Here, we examined whether PMMoV is a suitable surrogate for two human enteric viruses (one adenovirus [AdV; genus *Mastadenovirus*, family *Adenoviridae*, double-stranded DNA virus] and one coxsackievirus [CV; genus *Enterovirus*, family *Picornaviridae*, single-stranded RNA virus]) for evaluation of the effectiveness of thermal or free-chlorine disinfection processes. Thermal and free-chlorine disinfection processes were targeted because thermal disinfection is a point-of-use

141	technology (WHO, 2011) used in situations when other control measures have failed or cannot be
142	implemented, such as during emergencies or disasters, leading to inadequate sanitation, hygiene,
143	and protection of water sources. In addition, free-chlorine disinfection is currently widely used in
144	actual drinking water treatment plants to ensure drinking water safety. We then used the three
145	viruses to examine the ability of conventional and enhanced viability PCR approaches to distinguish
146	between infectious and inactivated viruses and to determine whether these approaches can be used
147	as alternatives to infectivity assays for validation of the two target disinfection processes.
148	
149	
150	2. Materials and methods
151	2.1. PBS and chlorine
152	Chlorine demand-free phosphate-buffered saline (PBS) (0.01 M, pH 7) was prepared by dissolving
153	Na2HPO4 and NaH2PO4 in Milli-Q water (Milli-Q Advantage, Millipore Corp., Billerica, MA,
154	USA). In the chlorine treatment experiments, sodium hypochlorite (Fujifilm Wako Pure Chemical
155	Corporation, Osaka, Japan) was used immediately after dilution with Milli-Q water.
156	
157	2.2. Human enteric viruses and PMMoV
158	For our study, we chose two types of human enteric viruses—AdV as a representative DNA virus
159	and CV as a representative RNA virus-because the efficacy of disinfection processes for virus
160	inactivation can vary by type of viral genetic material (Health Canada, 2017). AdV type 40 Dugan

161	strain (ATCC VR-931) and CV B5 Faulkner strain (ATCC VR-185) were specifically chosen
162	because they are highly resistant to ultraviolet disinfection (Nwachuku et al., 2005) and chlorine
163	disinfection (Cromeans et al., 2010), respectively. The two strains were obtained from American
164	Type Culture Collection (ATCC, Manassas, VA, USA) and propagated in human lung carcinoma
165	epithelial cells (A549 cells) and buffalo green monkey kidney epithelial cells (BGM cells),
166	respectively. The details of the propagation and purification of AdV and CV are described in our
167	previous reports (Shirasaki et al., 2016, 2017b). The concentrations of AdV and CV in the purified
168	solutions were approximately 10^{5-6} and 10^7 PFU/mL, respectively, as evaluated by means of plaque
169	assay (Shirasaki et al., 2016, 2017b).
170	PMMoV pepIwateHachiman1 strain (MAFF 104099) was obtained from the National Institute of
171	Agrobiological Sciences Genebank (Tsukuba, Japan) and propagated by using a plant host,
172	Nicotiana benthamiana. The details of the propagation of PMMoV are described in our previous
173	report (Shirasaki et al., 2018). The concentration of PMMoV in the stock solution was
174	approximately 107 lesions/mL, as evaluated by using a local lesion count assay with Nicotiana
175	tabacum cv. Xanthi-nc (see section 2.7).

177 2.3. Naked DNA and RNA

The ability of PMA-PCR, PMA-Enhancer-PCR, PMAxx-PCR, and PMAxx-Enhancer-PCR to discriminate between infectious and inactivated viruses was evaluated by using naked DNA and RNA. The details of the preparation of the naked DNA and RNA samples are provided in

183 2.4. Heat treatment experiments

184 Heat treatment experiments were conducted with 1 mL of virus-spiked PBS in a sterile microtube and a thermoblock (ND-S01, Nissinrika Corp., Tokyo, Japan). Purified solution of AdV or CV, or 185 stock solution of PMMoV, was added to PBS at an initial infectious virus concentration of 10²⁻³ 186 PFU/mL for AdV, 10³⁻⁴ PFU/mL for CV, or 10⁴⁻⁵ lesions/mL for PMMoV. Because the purified 187 188 solution or stock solution of virus was diluted by their addition to the PBS, virus addition 189 contributed less than 0.2 mg/L of unintentional carry-over of dissolved organic carbon. The 190 virus-spiked PBS (N₀) was incubated in the thermoblock at 45, 50, 55, 60, 70, 80, or 90 °C for 5 191 min, and then immediately cooled in a refrigerator set at 4 °C for 10 min to stop the disinfection 192 process. After cooling, the virus concentration (N_h) in the samples was determined by infectivity 193 assay (i.e., plaque assays for AdV and CV; local lesion count assay for PMMoV).

194

195 2.5. Chlorine treatment experiments

196 Chlorine treatment experiments were conducted with 300 mL of virus-spiked PBS in a prepared 197 Erlenmeyer flask at 20 °C. The glass Erlenmeyer flask with stopper and magnetic stirrer were 198 soaked overnight in a solution containing 50 mg-Cl₂/L of free chlorine to eliminate the consumption 199 of chlorine by those items during the experiment. The soaked Erlenmeyer flask and magnetic stirrer 200 were rinsed carefully with Milli-Q water and then baked at 210 °C for 30 min prior to use. The

201	virus-spiked PBS (N_0) was continuously mixed with the prepared magnetic stirrer at 400 rpm during
202	the experiments. Sodium hypochlorite was added to the spiked PBS to obtain an initial free-chlorine
203	concentration of 0.1 or 0.5 mg-Cl ₂ /L, and then left for a contact time of 10 min for AdV, 10 min (0.5
204	mg-Cl ₂ /L) or 50 min (0.1 mg-Cl ₂ /L) for CV, and 1440 min for PMMoV. Periodically, a 10-mL
205	sample was taken from the flask, immediately added to a sterile tube containing sodium thiosulfate
206	(final concentration, 5 mg/L) to quench any residual free chlorine and stop the disinfection process,
207	and used for quantification of virus concentration (Nc). An additional 10 mL of sample was
208	collected at each time point for quantification of the residual free-chlorine concentration by using
209	the N,N'-diethyl-p-phenylenediamine method and a DR900 Multiparameter Portable Colorimeter
210	(Hach Company, Loveland, Co., USA).
211	
212	2.6. Quantification of infectious human enteric virus by plaque assay
213	Infectious AdV type 40 or CV B5 was quantified by using a plaque assay. The details of the plaque
214	assay are described in our previous reports (Shirasaki et al., 2016, 2017b).
215	

- 216 2.7. Quantification of infectious PMMoV by local lesion count assay
- 217 Infectious PMMoV was quantified by local lesion count assay based on the fact that PMMoV
- 218 infection results in local lesions on Nicotiana tabacum cv. Xanthi-nc, as reported by Colson et al.
- 219 (2010). Seeds and seedlings of Nicotiana tabacum cv. Xanthi-nc were grown in 200-mL pods filled
- 220 with gardening soil (Kumiai gardening soil; Hokusan Co., Kitahiroshima, Japan) and cultured in a

221	growth chamber at 25 °C under a long-day photoperiod (16-h light, 8-h dark) for approximately 1
222	month. Milli-Q water was added to the pods every 1 or 2 days during cultivation. After cultivation,
223	three leaves of each plant were covered with 600-mesh carborundum, and then 100 μ L of sample or
224	100 μ L of sample 10-fold serially diluted with PBS was rubbed into each leaf with a gloved finger
225	for virus inoculation. After inoculation, the plants were incubated at 20 °C for 5 min and then the
226	leaves were washed with Milli-Q water to remove the inoculum and carborundum. After washing,
227	the plants were incubated in the growth chamber at 25 °C under the long-day photoperiod for 4–5
228	days. At the end of incubation, the number of lesions on each leaf was counted and the average
229	lesion count of one or two plants (i.e., 3-6 leaves) for each sample was considered as the infectious
230	PMMoV concentration for that sample. The quantification limit of the local lesion count assay was
231	1 lesion/600 μ L (i.e., 10 lesions/6 mL) when six leaves were prepared.
232	
233	2.8. Quantification of viral DNA and RNA, and of artificially synthesized plasmid DNA, by
234	real-time PCR or real-time reverse-transcription PCR
235	Viral DNA of AdV and artificially synthesized plasmid DNA were quantified by real-time PCR, and
236	viral RNA of CV and PMMoV were quantified by real-time reverse-transcription PCR (real-time
237	RT-PCR). The quantitative real-time PCR and the quantitative real-time RT-PCR methods were
238	executed following the MIQE guidelines (Bustin et al., 2009). The details of the quantitative
239	real-time PCR and quantitative real-time RT-PCR methods are provided in Supplementary
240	Information.

242 2.9. Intercalating dye treatment

243 To investigate the effects of different intercalating dyes and the use of an intercalating dye enhancer 244 on the ability of viability PCR to discriminate between infectious and inactivated viruses, PMA, 245 PMAxx, and PMA enhancer were used in the present study. PMA or PMAxx solution (20 mM in H2O; Biotium, Inc., Fremont, CA, USA) was added to 200 µL of sample to achieve a final 246 concentration of 50, 100, 200, 500, or 1000 µM. In the cases of PMA-Enhancer-PCR and 247 248 PMAxx-Enhancer-PCR, PMA Enhancer for Gram Negative Bacteria (5× solution; Biotium, Inc.) 249 was added to the sample containing PMA or PMAxx to achieve a final concentration of 1×. The 250 sample was then mixed and incubated in the dark at 20 °C for 10 min with mild shaking to allow 251 the PMA or PMAxx to penetrate the viral capsid, after which the sample was exposed to intense 252 visible light (60 W, 465-475 nm, blue light) for 15 min by using a PMA-Lite LED Photolysis Device (Biotium, Inc.) to photoactivate the PMA or PMAxx. After treatment, viral DNA or RNA 253 254 was extracted and purified (naked DNA or RNA was also purified) with a QIAamp MinElute Virus 255 Spin Kit (Qiagen, Tokyo, Japan) and then quantified by using real-time (RT-)PCR.

256

257 2.10. Kinetic modeling and CT value calculation for chlorine treatment experiments

The efficiency factor Hom (EFH) model (Haas and Joffe, 1994), which is widely applied to calculate CT values (free-chlorine concentration [C] multiplied by contact time [T], i.e., the integration of the residual free-chlorine concentration until a given contact time) for non-linear

261	virus inactivation curves for chlorine treatments (Cromeans et al., 2010; Kahler et al., 2010), was
262	used for the CT value calculations. Details of the EFH model and CT value calculation are provided
263	in Supplementary Information.
264	
265	
266	3. Results and discussion
267	3.1. Virus inactivation by heat treatment
268	First, we determined infectivity reduction ratios (log10[N0/Nh]) for AdV, CV, and PMMoV after heat
269	treatment (pH 7 and 45–90 °C for 5 min) by means of infectivity assay (i.e., plaque assay for AdV
270	and CV; local lesion count assay for PMMoV) (Figure 1). For AdV and PMMoV, no or limited
271	inactivation (≤ 0.1 -log ₁₀) was observed at ≤ 55 °C. For CV, limited inactivation (0.3-log ₁₀) was
272	observed at 45 °C. However, inactivation of all three viruses markedly increased with increasing
273	temperature. At 60 °C, moderate inactivation was observed for AdV (2.4-log10) and PMMoV
274	(1.1-log10), and CV was completely inactivated (>3.6-log10; i.e., virus concentration was below the
275	limit of quantification). At 80 °C, AdV was also completely inactivated (>3.4-log10). In contrast,
276	PMMoV was not completely inactivated even after treatment at 90 °C. These results indicate that
277	PMMoV is more resistant to heat treatment compared with AdV and CV.
278	Hewitt et al. (2009) evaluated the efficiency of heat treatment for the inactivation of two other
279	viruses: hepatitis A virus IB, a human enteric virus, and murine norovirus type 1, a surrogate of
280	human caliciviruses, and reported that these viruses were completely inactivated (\geq 3.5-log ₁₀) after

281	treatment at 72 °C for 5 min. Taken together, these data show that PMMoV is more resistant to heat
282	treatment than the representative human enteric viruses. This suggests that PMMoV probably has a
283	more robust capsid structure compared with that of the representative human enteric viruses,
284	because the dominant mechanism that leads to virus inactivation by heat treatment is capsid damage
285	(Wigginton et al., 2012; Torrey et al., 2019). Because PMMoV has a rod-shaped capsid, which is
286	different from the round capsid of human enteric viruses (Kitajima et al., 2018), the high resistance
287	of PMMoV may partly be attributed to this difference in capsid morphology. Thus, PMMoV
288	appears to be a potential surrogate for human enteric viruses for the assessment of the efficacy of
289	disinfection by heat treatment.

291 3.2. Virus inactivation by chlorine treatment

292 Figure 2 shows the infectivity reduction ratios (log10[N0/Nc]) for AdV, CV, and PMMoV after 293 chlorine treatment (pH 7 and 20 °C), as evaluated by infectivity assay. In addition, Table 1 shows 294 the CT values required for 2-, 3-, and 4-log₁₀ inactivation calculated from the experimental data by 295 using the EFH model. AdV was completely inactivated (>3.4-log10 inactivation) within the first 5 s 296 of the disinfection process (initial free-chlorine concentration, 0.5 mg-Cl₂/L; Figure 2a). Although 297 the EFH model could not be applied to AdV because of the rapid inactivation of the virus, a CT 298 value of 0.04 mg-Cl₂·min/L was experimentally observed to provide at least 3-log10 inactivation 299 (Table 1). These results are consistent with those of Cromeans et al. (2010), who also reported that 300 AdV type 40 was readily inactivated by chlorine treatment (initial free-chlorine concentration, 0.2 301 mg-Cl₂/L, pH 7–8, 5 °C), with at least 3-log₁₀ inactivation within the first 5 s of the process (CT
302 value calculated by using the EFH model for 4-log₁₀ inactivation of AdV type 40: <0.04
303 mg-Cl₂·min/L).

304	CV required a longer contact time for inactivation compared with AdV (Figure 2b,c). When the
305	initial free-chlorine concentration was 0.1 or 0.5 mg-Cl ₂ /L, a contact time of 15–20 min or 2–3 min,
306	respectively, was required to achieve 4-log10 inactivation. These results indicate that CV is more
307	resistant than AdV to chlorine treatment. Other researchers have also reported that CV B5 is more
308	resistant to chlorine disinfection than other serotypes of CV (i.e., CV B3 and CV B4) and other
309	viruses (e.g., AdV type 2, type 40, and type 41; poliovirus type 1, type 2, and type 3; and echovirus
310	type 1 and type 11 [Payment et al., 1985; Cromeans et al., 2010; Kahler et al., 2010]). The
311	calculated CT values for 2-, 3-, and 4-log10 inactivation of CV B5 in the present study were
312	comparable between the two initial free-chlorine concentrations and were in the range of 0.71–0.73,
313	0.95-0.97, and 1.15-1.19 mg-Cl ₂ ·min/L, respectively (Table 1). Kahler et al. (2010) conducted
314	chlorine treatment with an initial free-chlorine concentration of 0.2 mg-Cl ₂ /L in three types of
315	natural water at pH 7 and 15 °C and reported CT values calculated by using the EFH model for
316	3-log10 inactivation of CV B5 in the range of 1.0-2.0 mg-Cl ₂ ·min/L. Our results roughly agree with
317	those of Kahler et al. (2010), although the efficacy of virus inactivation by chlorination is
318	dependent on the water type and temperature, and these factors differed between our study and
319	theirs (PBS vs. natural water, 20 °C vs. 15 °C).

320 PMMoV required an even longer contact time for inactivation compared with AdV and CV

321	(Figure 2d). At a contact time of 30 min (initial free-chlorine concentration, 0.5 mg-Cl ₂ /L), only
322	<1-log10 inactivation was observed. PMMoV did not achieve >4-log10 inactivation until a contact
323	time of 240 min. These results indicate that PMMoV has very high resistance to chlorine treatment
324	compared with AdV and CV. As with heat treatment, this high resistance can probably be attributed
325	to PMMoV's robust capsid structure compared with that of the two representative human enteric
326	viruses. The calculated CT values for 2-, 3-, and 4-log ₁₀ inactivation of PMMoV were 51.2, 71.4,
327	and 84.5 mg-Cl ₂ ·min/L, respectively (Table 1).
328	Other research groups have found that the resistance of CV B5 to chlorine treatment varies
329	depending on the strain, reporting that some environmental isolates of CV B5 are more resistant
330	than the commercially available laboratory strain used in the present study (Payment et al., 1985;
331	Meister et al., 2018). Although Meister et al. (2018) reported a CT value for 4-log ₁₀ inactivation of
332	an environmental isolate of CV B5 of 11.2 mg-Cl ₂ ·min/L, this CT value is still well below the CT
333	value needed for 4-log ₁₀ inactivation of PMMoV. Because the resistance of PMMoV to chlorine
334	treatment is much higher than that of the representative human enteric viruses, if the virus
335	inactivation efficacy of chlorine treatment is evaluated by using PMMoV as a surrogate, it could
336	lead to marked underestimation of the effectiveness of the disinfection process. Thus, PMMoV does
337	not appear to be useful as a surrogate for human enteric viruses for assessment of the efficacy of
338	disinfection by chlorine treatment. Taken together, our present heat- and chlorine-treatment results
339	suggest that the high resistance of PMMoV to temperature and chlorine treatment may be one of the
340	reasons for the virus's widespread presence in drinking water sources that receive sewage

341 discharges (Kitajima *et al.*, 2018; Symonds *et al.*, 2018).

342

343 3.3. Effect of different intercalating dye treatments on naked viral DNA and RNA

344	To confirm the ability of viability PCR to discriminate between infectious and inactivated viruses,
345	we evaluated the inhibition of PCR amplification of naked viral DNA or RNA by two intercalating
346	dyes and an intercalating dye enhancer (Figure 3). In the absence of an intercalating dye, incubation
347	and subsequent photoactivation did not affect the PCR quantification of viral DNA extracted from
348	AdV or viral RNA extracted from CV or PMMoV, as determined by comparing the PCR signal
349	obtained by using PCR alone and PCR without intercalating dye but with incubation and
350	subsequent photoactivation (data not shown). In contrast, treatment with an intercalating dye (PMA
351	or PMAxx) reduced the PCR signal for each of the target viruses compared with PCR alone (Figure
352	3); for example, the signal reduction by PMA and PMAxx compared with PCR alone for AdV was
353	approximately 1-log10 and 2-log10, respectively. The signal reductions obtained with PMAxx
354	treatment without the enhancer were larger than those obtained with PMA treatment without the
355	enhancer for AdV and CV, regardless of intercalating dye concentration. When the intercalating dye
356	enhancer was used, it improved the performance of the intercalating dyes, with the combination of
357	PMAxx and Enhancer showing the greatest signal reduction (≥3-log ₁₀) for AdV and CV compared
358	with the other three treatments. These findings are consistent with those of Randazzo et al. (2016,
359	2018), although the virus type and condition differed between our study and theirs (AdV and CV vs.
360	human norovirus and hepatitis A virus, extracted viral DNA/RNA vs. heat-inactivated virus).

361	For PMMoV, approximately 2-log ₁₀ signal reductions were obtained for all of the treatments
362	(Figure 3c). In addition, the signal reduction performance was not improved even when the initial
363	concentration of the RNA extracted from PMMoV was reduced from 10^{9-10} to 10^{7-8} copies/mL,
364	which is the concentration corresponding to that of the RNA extracted from CV (data not shown).
365	When plasmid DNA containing the PCR target sequence of PMMoV was treated with 200 μ M of
366	intercalating dye, only a slight improvement of the signal reduction by PMAxx-Enhancer treatment
367	was observed compared with PMAxx treatment alone. In addition, the signal reduction obtained
368	with PMAxx-Enhancer treatment remained approximately 2-log10 regardless of the initial
369	concentration of the plasmid DNA (Figure S1c), which is comparable with the data obtained using
370	RNA extracted from PMMoV. In contrast, ≥ 3 -log ₁₀ signal reductions by PMAxx-Enhancer
371	treatment were observed for plasmid DNAs containing the PCR target sequence of AdV or CV
372	(Figure S1a,b); these findings are comparable to the data obtained with viral DNA and RNA
373	extracted from these viruses. These results indicate that the effectiveness of the intercalating dye
374	treatment depends on the virus type and, more specifically, on the nucleotide sequence targeted by
375	the PCR analysis; these differences may be more important than whether the genetic material is
376	DNA or RNA or the size of the nucleotide sequence, because the signal reduction performance of
377	PMAxx-Enhancer treatment was comparable between the viral DNA extracted from AdV and the
378	viral RNA extracted from CV, as described above, and no marked difference in the size of the viral
379	RNA and the PCR target between CV and PMMoV was observed (see Supplementary Information).
380	Of the different viability PCR approaches examined, we found that PMAxx-Enhancer-PCR

381	provided the greatest PCR signal reduction for AdV and CV, and comparable signal reductions were
382	observed for all the treatments with PMMoV. In addition, no large differences in the signal
383	reduction performances were observed for PMAxx-Enhancer treatment within the PMAxx
384	concentration range of 50 to 500 μ M. Based on these results, in the following inactivation
385	experiments we used PMAxx-PCR and PMAxx-Enhancer-PCR with 200 μ M of PMAxx.
386	
387	3.4. Application of PMAxx-PCR and PMAxx-Enhancer-PCR to heat-inactivated virus
388	Next, we evaluated whether PMAxx-PCR and PMAxx-Enhancer-PCR could distinguish between
389	infectious and heat-inactivated virus. Because PMAxx and PMAxx-Enhancer treatments may
390	themselves have virucidal activity, we first evaluated the effect of PMAxx-Enhancer treatment on
391	virus infectivity (Figure S2). Limited inactivation (≤0.4-log10) of AdV, CV, or PMMoV, as evaluated
392	by infectivity assay, was observed when infectious AdV, CV, or PMMoV were exposed to the
393	combination of PMAxx (final concentration, 200 $\mu M)$ and PMA Enhancer for 10 min with
394	subsequent photo-activation for 15 min, indicating that virus inactivation by PMAxx treatment and
395	PMAxx-Enhancer treatment was negligible for AdV, CV, and PMMoV.
396	Figure 4 shows the performance of PCR alone, PMAxx-PCR, and PMAxx-Enhancer-PCR to
397	discriminate between infectious and heat-inactivated viruses. For AdV, although a reduction in
398	infectivity was observed at ≥ 60 °C (see section 3.1), PCR alone showed almost no reduction of the
399	PCR signal at any of the temperatures tested (Figure 4a). Similarly, Leifels et al. (2015) reported a
400	>4-log ₁₀ inactivation of AdV type 5 after heat treatment at 65 °C for 10 min, as evaluated by TCID ₅₀

401	assay, but no reduction of the PCR signal. Thus, these results indicate that PCR alone is unable to
402	discriminate between infectious and heat-inactivated AdV. In contrast, PMAxx-PCR and
403	PMAxx-Enhancer-PCR showed signal reductions consistent with the observed reduction in
404	infectivity at ≥60 °C: 2.2–2.7-log ₁₀ and 2.4–3.7-log ₁₀ reductions were observed for PMAxx-PCR
405	and PMAxx-Enhancer-PCR, respectively. Similar trends were observed for CV and PMMoV
406	(Figure 4b,c). These results indicate that PMAxx enters heat-inactivated viruses and binds to the
407	viral DNA or RNA, and that heat treatment inactivates these viruses by damaging the viral capsid
408	(i.e., altering the viral capsid proteins and compromising capsid integrity) rather than by degrading
409	the viral genetic material; therefore, these data are consistent with the current understanding of the
410	viral component affected by this disinfection process (Wigginton et al., 2012; Torrey et al., 2019).
411	The signal reductions observed for PMAxx-Enhancer-PCR tended to be larger than those
412	observed for PMAxx-PCR, indicating that the enhancer increased the penetration performance of
413	the intercalating dye; in addition, the magnitude of the signal reduction was comparable with the
414	magnitude of the reduction in infectivity, regardless of the virus type (Figure 4). These results
415	indicate that PMAxx-Enhancer-PCR is more able than PMAxx-PCR to discriminate between
416	infectious and heat-inactivated viruses. Thus, PMAxx-Enhancer-PCR is a potential alternative to
417	the infectivity assays used in the present study for evaluating virus inactivation by heat treatment.
418	

419 3.5. Application of PMAxx-PCR and PMAxx-Enhancer-PCR to chlorine-inactivated virus

420 Figure 5 shows the performance of PCR alone, PMAxx-PCR, and PMAxx-Enhancer-PCR to

421	discriminate between infectious and chlorine-inactivated viruses. For AdV, although >3.4-log10
422	inactivation was observed immediately after the start of the disinfection process (within a contact
423	time of 5 s at 0.5 mg-Cl ₂ /L; see section 3.2), PCR alone showed a signal reduction of only
424	<0.3-log ₁₀ for all of the contact times tested (5 s–10 min; Figure 5a). Leifels et al. (2015) reported
425	>4-log10 inactivation of AdV type 5, as evaluated by PFU assay, after chlorine treatment (initial
426	free-chlorine concentration, 2 mg-Cl ₂ /L; contact time, 1 min), and only a 0.3-log ₁₀ reduction of the
427	PCR signal; these previous findings are consistent with our present results. Even when
428	PMAxx-PCR and PMAxx-Enhancer-PCR were used, almost no signal reductions were observed
429	within a contact time of 1 min. Similar trends were observed for CV (initial free-chlorine
430	concentration, 0.1 or 0.5 mg-Cl ₂ /L; signal reduction <0.9-log ₁₀ within a contact time of 10 min or 2
431	min, respectively; Figure 5b,c) and PMMoV (signal reduction <1.1-log10 within a contact time of
432	360 min; Figure 5d). Together, these results indicate that PMAxx-PCR and PMAxx-Enhancer-PCR
433	were unable to discriminate between infectious and chlorine-inactivated viruses at low CT values
434	(e.g., during the initial stages of chlorine treatment). Because PMAxx was unable to penetrate the
435	capsid of chlorine-inactivated viruses, virus inactivation by chlorine treatment at low CT values
436	probably is mainly due to subtle alterations of the viral capsid.
437	Furthermore, unlike PCR alone, which showed <0.3-log10 signal reduction for AdV at all of the
438	contact times tested, PMAxx-PCR and PMAxx-Enhancer-PCR showed signal reductions at a

439 contact of 2 min or greater, and the magnitudes of the signal reductions were increased with

440 increasing contact time (Figure 5a). These results indicate that chlorine treatment at a high enough

441	CT value to inactivate AdV caused damage to the viral capsid such that PMAxx could penetrate into
442	the virus but not damage the viral DNA, and that damage to the capsid was increased with
443	increasing contact time (i.e., increasing CT value). Similarly, PMAxx-PCR and
444	PMAxx-Enhancer-PCR showed signal reductions for CV from a contact time of 15 min when the
445	initial free-chlorine concentration was 0.1 mg-Cl ₂ /L and a contact time of 3 min when the initial
446	free-chlorine concentration was 0.5 mg-Cl ₂ /L (Figure 5b,c), and for PMMoV from a contact time of
447	720 min (Figure 5d). In addition, the magnitudes of the signal reductions increased with increasing
448	contact time, as was found for AdV. Moreover, even when PCR alone was used, signal reductions
449	were observed for CV and PMMoV, unlike in the case of AdV, and the magnitudes of the signal
450	reductions were also increased with increasing contact time. These results indicate that chlorine
451	treatment at a high CT value results in inactivation of CV and PMMoV not only by damaging the
452	viral capsid but also by damaging the RNA, including the part targeted by PCR, and both types of
453	damage increased with increasing contact time. Thus, the degree of damage of the genetic material
454	by chlorine treatment was different between the representative DNA virus (i.e., AdV) and the two
455	representative RNA viruses (i.e., CV and PMMoV), suggesting that the resistance of viral DNA
456	against chlorine treatment was higher than that of viral RNA; these results are consistent with the
457	observations of Leifels et al. (2015).

The magnitudes of the signal reductions observed with PMAxx-PCR and PMAxx-Enhancer-PCR were larger than those observed with PCR alone for chlorine-inactivated AdV, CV, and PMMoV. In addition, the magnitudes of the signal reductions observed with PMAxx-Enhancer-PCR tended to 461 be comparable or somewhat larger than those observed with PMAxx-PCR (Figure 5). These results 462 suggest that PMAxx-Enhancer-PCR performs better than PCR alone and probably better than 463 PMAxx-PCR for discrimination between infectious and chlorine-inactivated virus. However, the 464 magnitudes of the signal reductions observed with PMAxx-Enhancer-PCR were still smaller than those of the reduction in infectivity in most cases of chlorine treatment (Figure 5). This indicates 465 that infectious and chlorine-inactivated viruses cannot be fully discriminated even when 466 PMAxx-Enhancer-PCR is used, and that even PMAxx-Enhancer-PCR underestimates the efficacy 467 468 of virus inactivation by chlorine treatment (i.e., it overestimates infectious virus concentration after 469 chlorine treatment). Although the specific mechanisms that lead to virus inactivation by chlorine 470 treatment is still under discussion, it is generally considered to be a result of not only the loss of capsid integrity but also the loss of virus-specific functions, such as host attachment, genome 471 internalization, and genome replication (Wigginton et al., 2012; Torrey et al., 2019). Because the 472 performance of PMAxx-Enhancer-PCR relies on the integrity of the viral capsid, completely 473 474 distinguishing between infectious and chlorine-inactivated viruses will be difficult. To optimize the performance of PMAxx-Enhancer-PCR, we also examined the effects of incubation time and light 475 exposure time on performance, which are two important factors that are known to affect the 476 performance of PMA-PCR (Fittipaldi et al., 2012), Unfortunately, we found that increasing 477 incubation time did not provide any additional improvement on the performance of 478 479 PMAxx-Enhancer-PCR, and increasing the light exposure time produced a non-negligible increase 480 in virucidal activity (data not shown). Thus, although PMAxx-Enhancer-PCR results in

481	overestimation of infectious virus concentration (i.e., the magnitude of the signal reduction
482	observed with PMAxx-Enhancer-PCR is not comparable with the magnitude of the reduction in
483	infectivity), particularly after chlorine treatment, this method still provides a more accurate
484	assessment of the efficacy of virus inactivation by disinfection processes compared with PCR alone,
485	conventional PMA-PCR with or without enhancer, and PMAxx-PCR. Nevertheless, further
486	investigation is needed to improve the ability of viability PCR, including PMAxx-Enhancer-PCR,
487	to provide accurate validation of disinfection processes for virus inactivation.
488	
489	
490	4. Conclusions
491	(1) PMMoV showed higher resistance to heat treatment than AdV and CV. Thus, PMMoV appears
492	to be a potential surrogate for human enteric viruses for the assessment of the efficacy of heat
493	treatment to inactivate viruses.
494	(2) PMMoV showed higher resistance to chlorine treatment than AdV and CV, but the resistance of
495	PMMoV was markedly higher than that of CV, which is a chlorine-resistant virus. Thus,
496	PMMoV does not appear to be useful as a surrogate for human enteric viruses for the
497	assessment of the efficacy of chlorine treatment to inactivate viruses.
498	(3) Because the magnitudes of the signal reductions observed with PMAxx-Enhancer-PCR were
499	comparable to the magnitudes of the reductions in infectivity in the case of heat treatment,
500	PMAxx-Enhancer-PCR appears to be a suitable alternative to infectivity assay for evaluating

501 the inactivation of viruses by heat treatment.

502	(4) The magnitudes of the signal reductions observed with PMAxx-Enhancer-PCR were smaller
503	than the magnitudes of reductions in infectivity in most cases of chlorine treatment. Thus,
504	PMAxx-Enhancer-PCR likely underestimates the efficacy of virus inactivation (i.e.,
505	overestimates the infectious virus concentration) by chlorine treatment.
506	(5) Although PMAxx-Enhancer-PCR likely overestimates infectious virus concentration,
507	particularly after chlorine treatment, this method still provides a more accurate assessment of
508	the efficacy of virus inactivation by the two disinfection processes examined compared with
509	PCR alone, conventional PMA-PCR with or without enhancer, and PMAxx-PCR.
510	
511	
512	Acknowledgements
513	This work was supported by the Japan Society for the Promotion of Science (grant numbers
514	19H02269, 2019; 16H06362, 2016; 18H03790, 2018); the Ministry of Health, Labor and Welfare,
515	Japan; and the River Fund of The River Foundation, Japan.
516	
517	
518	References
519	Albinana-Gimenez, N., Clemente-Casares, P., Bofill-Mas, S., Hundesa, A., Ribas, F. and Girones, R.
520	(2006) Distribution of human polyomaviruses, adenoviruses, and hepatitis E virus in the

- 521 environment and in a drinking-water treatment plant. Environmental Science and Technology
 522 40(23), 7416-7422.
- 523 Albinana-Gimenez, N., Miagostovich, M.P., Calqua, B., Huguet, J.M., Matia, L. and Girones, R.
- 524 (2009) Analysis of adenoviruses and polyomaviruses quantified by qPCR as indicators of water
- 525 quality in source and drinking-water treatment plants. Water Research 43(7), 2011-2019.
- 526 Bosch, A. (2007) Human viruses in water, Elsevier, Amsterdam, The Netherlands.
- 527 Bustin, S.A., Benes, V., Garson, J.A., Hellemans, J., Huggett, J., Kubista, M., Mueller, R., Nolan, T.,
- 528 Pfaffl, M.W., Shipley, G.L., Vandesompele, J. and Wittwer, C.T. (2009) The MIQE guidelines:
- 529 minimum information for publication of quantitative real-time PCR experiments. Clinical
 530 Chemistry 55(4), 611-622.
- 531 Canh, V.D., Furumai, H. and Katayama, H. (2019) Removal of pepper mild mottle virus by
- 532 full-scale microfiltration and slow sand filtration plants. npj Clean Water 2, 18.
- 533 Colson, P., Richet, H., Desnues, C., Balique, F., Moal, V., Grob, J.J., Berbis, P., Lecoq, H., Harle,
- 534 J.R., Berland, Y. and Raoult, D. (2010) Pepper mild mottle virus, a plant virus associated with
- 535 specific immune responses, fever, abdominal pains, and pruritus in humans. PloS One 5(4), e10041.
- 536 Cromeans, T.L., Kahler, A.M. and Hill, V.R. (2010) Inactivation of adenoviruses, enteroviruses, and
- 537 murine norovirus in water by free chlorine and monochloramine. Applied and Environmental
 538 Microbiology 76(4), 1028-1033.
- 539 Fittipaldi, M., Nocker, A. and Codony, F. (2012) Progress in understanding preferential detection of
- 540 live cells using viability dyes in combination with DNA amplification. Journal of Microbiological

- 541 Methods 91(2), 276-289.
- 542 Fuster, N., Pinto, R.M., Fuentes, C., Beguiristain, N., Bosch, A. and Guix, S. (2016) Propidium
- 543 monoazide RTqPCR assays for the assessment of hepatitis A inactivation and for a better estimation
- of the health risk of contaminated waters. Water Research 101, 226-232.
- 545 Haas, C.N. and Joffe, J. (1994) Disinfection under dynamic conditions-modification of Hom model
- 546 for decay. Environmental Science and Technology 28(7), 1367-1369.
- 547 Health Canada (2017). Guidelines for Canadian drinking water quality: Guideline technical
- 548 document–Enteric Viruses in Drinking Water. Water and Air Quality Bureau, Health Canada,
 549 Ottawa, Canada.
- 550 Hewitt, J., Rivera-Aban, M. and Greening, G.E. (2009) Evaluation of murine norovirus as a
- surrogate for human norovirus and hepatitis A virus in heat inactivation studies. Journal of Applied
- 552 Microbiology 107(1), 65-71.
- 553 Kahler, A.M., Cromeans, T.L., Roberts, J.M. and Hill, V.R. (2010) Effects of source water quality
- on chlorine inactivation of adenovirus, coxsackievirus, echovirus, and murine norovirus. Applied
- and Environmental Microbiology 76(15), 5159-5164.
- 556 Karim, M.R., Fout, G.S., Johnson, C.H., White, K.M. and Parshionikar, S.U. (2015) Propidium
- monoazide reverse transcriptase PCR and RT-qPCR for detecting infectious enterovirus and
 norovirus. Journal of Virological Methods 219, 51-61.
- 559 Kato, R., Asami, T., Utagawa, E., Furumai, H. and Katayama, H. (2018) Pepper mild mottle virus as
- 560 a process indicator at drinking water treatment plants employing coagulation-sedimentation, rapid

- sand filtration, ozonation, and biological activated carbon treatments in Japan. Water Research 132,61-70.
- 563 Kim, S.Y. and Ko, G. (2012) Using propidium monoazide to distinguish between viable and
- nonviable bacteria, MS2 and murine norovirus. Letters in Applied Microbiology 55(3), 182-188.
- 565 Kitajima, M., Sassi, H.P. and Torrey, J.R. (2018) Pepper mild mottle virus as a water quality 566 indicator. npj Clean Water 1, 19.
- 567 Lee, H.W., Lee, H.M., Yoon, S.R., Kim, S.H. and Ha, J.H. (2018) Pretreatment with propidium
- 568 monoazide/sodium lauroyl sarcosinate improves discrimination of infectious waterborne virus by
- 569 RT-qPCR combined with magnetic separation. Environmental Pollution 233, 306-314.
- 570 Leifels, M., Jurzik, L., Wilhelm, M. and Hamza, I.A. (2015) Use of ethidium monoazide and
- 571 propidium monoazide to determine viral infectivity upon inactivation by heat, UV- exposure and
- 572 chlorine. International Journal of Hygiene and Environmental Health 218(8), 686-693.
- 573 Meister, S., Verbyla, M.E., Klinger, M. and Kohn, T. (2018) Variability in disinfection resistance
- 574 between currently circulating enterovirus B serotypes and strains. Environmental Science and
- 575 Technology 52(6), 3696-3705.
- 576 Miura, T., Gima, A. and Akiba, M. (2019) Detection of norovirus and rotavirus present in suspended
- and dissolved forms in drinking water sources. Food and Environmental Virology 11(1), 9-19.
- 578 Nwachuku, N., Gerba, C.P., Oswald, A. and Mashadi, F.D. (2005) Comparative inactivation of
- 579 adenovirus serotypes by UV light disinfection. Applied and Environmental Microbiology 71(9),
- 580 5633-5636.

581	Oka, T	., Stoltzfus,	G.T., Zhu	, C.,	Jung, K.,	Wang,	Q.H.	and Saif,	L.J.	(2018)	Attemp	ots to	grow
-----	--------	---------------	-----------	-------	-----------	-------	------	-----------	------	--------	--------	--------	------

- human noroviruses, a sapovirus, and a bovine norovirus in vitro. PLoS ONE 13(2), e0178157.
- 583 Parshionikar, S., Laseke, I. and Fout, G.S. (2010) Use of propidium monoazide in reverse
- 584 transcriptase PCR to distinguish between infectious and noninfectious enteric viruses in water
- samples. Applied and Environmental Microbiology 76(13), 4318-4326.
- 586 Payment, P., Tremblay, M. and Trudel, M. (1985) Relative resistance to chlorine of poliovirus and
- 587 coxsackievirus isolates from environmental sources and drinking water. Applied and Environmental
- 588 Microbiology 49(4), 981-983.
- Prevost, B., Goulet, M., Lucas, F.S., Joyeux, M., Moulin, L. and Wurtzer, S. (2016) Viral
 persistence in surface and drinking water: suitability of PCR pre-treatment with intercalating dyes.
- 591 Water Research 91, 68-76.
- 592 Randazzo, W., Lopez-Galvez, F., Allende, A., Aznar, R. and Sanchez, G. (2016) Evaluation of
- 593 viability PCR performance for assessing norovirus infectivity in fresh-cut vegetables and irrigation
- 594 water. International Journal of Food Microbiology 229, 1-6.
- 595 Randazzo, W., Piqueras, J., Rodriguez-Diaz, J., Aznar, R. and Sanchez, G. (2018) Improving
- 596 efficiency of viability-qPCR for selective detection of infectious HAV in food and water samples.
- 597 Journal of Applied Microbiology 124(4), 958-964.
- 598 Shirasaki, N., Matsushita, T., Matsui, Y., Marubayashi, T. and Murai, K. (2016) Investigation of
- 599 enteric adenovirus and poliovirus removal by coagulation processes and suitability of
- 600 bacteriophages MS2 and phi X174 as surrogates for those viruses. Science of the Total Environment

601 563, 29-39.

602	Shirasaki, N., Matsushita, T., Matsui, Y. and Murai, K. (2017a) Assessment of the efficacy of
603	membrane filtration processes to remove human enteric viruses and the suitability of bacteriophages
604	and a plant virus as surrogates for those viruses. Water Research 115, 29-39.
605	Shirasaki, N., Matsushita, T., Matsui, Y., Murai, K. and Aochi, A. (2017b) Elimination of
606	representative contaminant candidate list viruses, coxsackievirus, echovirus, hepatitis A virus, and
607	norovirus, from water by coagulation processes. Journal of Hazardous Materials 326, 110-119.
608	Shirasaki, N., Matsushita, T., Matsui, Y. and Yamashita, R. (2018) Evaluation of the suitability of a
609	plant virus, pepper mild mottle virus, as a surrogate of human enteric viruses for assessment of the
610	efficacy of coagulation-rapid sand filtration to remove those viruses. Water Research 129, 460-469.
611	Symonds, E.M., Nguyen, K.H., Harwood, V.J. and Breitbart, M. (2018) Pepper mild mottle virus: a
612	plant pathogen with a greater purpose in (waste)water treatment development and public health
613	management. Water Research 144, 1-12.
614	Torrey, J., von Gunten, U. and Kohn, T. (2019) Differences in viral disinfection mechanisms as
615	revealed by quantitative transfection of echovirus 11 genomes. Applied and Environmental
616	Microbiology 85 (14), e00961-19.

- 617 Varughese, E.A., Brinkman, N.E., Anneken, E.M., Cashdollar, J.L., Fout, G.S., Furlong, E.T.,
- 618 Kolpin, D.W., Glassmeyer, S.T. and Keely, S.P. (2018) Estimating virus occurrence using Bayesian
- 619 modeling in multiple drinking water systems of the United States. Science of the Total Environment
- 620 619, 1330-1339.

- 621 WHO (World Health Organization), (2011) Guidelines for Drinking-water Quality, fourth ed.,
- 622 World Health Organization, Geneva, Switzerland.
- 623 Wigginton, K.R., Pecson, B.M., Sigstam, T., Bosshard, F. and Kohn, T. (2012) Virus inactivation
- 624 mechanisms: impact of disinfectants on virus function and structural integrity. Environmental
- 625 Science and Technology 46(21), 12069-12078.
- 626

Table 1. CT value ranges observed from the chlorine treatment experiments and CT values calculated by using the efficiency factor Hom

(EFH) model for 2-, 3-, and 4-log₁₀ inactivation.

	Initial free chlorine concentration (mg-Cl ₂ /L)	CT value ^{<i>a</i>} (mg-Cl ₂ · min/L)					
Viruses		2-log ₁₀ inactivation		3-log ₁₀ inactivation		4-log ₁₀ inactivation	
		Observed	EFH model	Observed	EFH model	Observed	EFH model
Adenovirus	0.5	<0.04	ND ^b	< 0.04	ND	ND	ND
Coursellissing	0.1	>0.41 to <0.76	0.71	>0.76 to <1.09	0.95	>1.09	1.19
Coxsackievirus	0.5	>0.48 to <0.94	0.73	>0.94 to <1.40	0.97	>0.94 to <1.40	1.15
Pepper mild mottle virus	0.5	>21.4 to <57.1	51.2	>57.1 to <74.8	71.4	>74.8 to <92.1	84.5

^a CT value, free-chlorine concentration [C] multiplied by contact time [T], i.e., the integration of the residual free-chlorine concentration until a given contact time.

^b ND, not determined.

Figure 1. Inactivation of adenovirus type 40 (AdV), coxsackievirus B5 (CV), or pepper mild mottle virus (PMMoV) by heat treatment for 5 min, as evaluated by infectivity assay. Values were determined from a single experiment or are the means of duplicate experiments; error bars indicate standard deviations. Arrows indicate that the infectious virus concentrations were below the limit of quantification of the infectivity assay.

Figure 2. Inactivation of adenovirus type 40 (AdV) (a), coxsackievirus B5 (CV) (b,c), or pepper mild mottle virus (PMMoV) (d) by chlorine treatment, as evaluated by infectivity assay. Values are means and error bars indicate standard deviations (n = 1-3). Dotted lines indicate the fit of the efficiency factor Hom model to the observed virus inactivation curves. Arrows indicate that the infectious virus concentrations were below the limit of quantification of the infectivity assay.

Figure 3. Effects of type and concentration of intercalating dye, and the effect of using an intercalating dye enhancer, on PCR amplification of viral DNA extracted from adenovirus type 40 (AdV) (a), or viral RNA extracted from coxsackievirus B5 (CV) (b) or pepper mild mottle virus (PMMoV) (c). Values are means and error bars indicate standard deviations (n = 3-6). Dotted lines indicate the concentration of extracted viral DNA/RNA determined by PCR alone. Arrows indicate that the extracted viral DNA/RNA concentrations were below the limit of quantification of the PCR.

Figure 4. Comparison of the ability of PCR alone, PMAxx-PCR, or PMAxx-Enhancer-PCR to assess the efficacy of inactivation of adenovirus type 40 (AdV) (a), coxsackievirus B5 (CV) (b), or pepper mild mottle virus (PMMoV) (c) by heat treatment, as evaluated by infectivity assay. Values were determined from a single experiment or are the means of duplicate experiments; error bars indicate standard deviations. Arrows indicate that the virus concentrations were below the limit of quantification of the infectivity assay or PCR.

Figure 5. Comparison of the ability of PCR alone, PMAxx-PCR, or PMAxx-Enhancer-PCR to assess the efficacy of inactivation of adenovirus type 40 (AdV) (a), coxsackievirus B5 (CV) (b,c) or pepper mild mottle virus (PMMoV) (d) by chlorine treatment, as evaluated by infectivity assay. Values are means and error bars indicate standard deviations (n = 1-3). Arrows indicate that the virus concentrations were below the limit of quantification of the infectivity assay or PCR.