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A B S T R A C T 

We explore the capability of deep learning to classify cosmic structures. In cosmological simulations, cosmic volumes are 
segmented into voids, sheets, filaments, and knots, according to distribution and kinematics of dark matter (DM), and galaxies 
are also classified according to the segmentation. Ho we ver, observ ational studies cannot adopt this classification method using 

DM. In this study, we demonstrate that deep learning can bridge the gap between the simulations and observations. Our models 
are based on 3D convolutional neural networks and trained with data of distribution of galaxies in a simulation to deduce the 
structure classes from the galaxies rather than DM. Our model can predict the class labels as accurate as a previous study 

using DM distribution for the training and prediction. This means that galaxy distribution can be a substitution for DM for 
the cosmic-structure classification, and our models using galaxies can be directly applied to wide-field surv e y observations. 
When observational restrictions are ignored, our model can classify simulated galaxies into the four classes with an accuracy 

(macro-averaged F 1 -score) of 64 per cent. If restrictions such as limiting magnitude are considered, our model can classify SDSS 

galaxies at ∼100 Mpc with an accuracy of 60 per cent. In the binary classification distinguishing void galaxies from the others, 
our model can achieve an accuracy of 88 per cent. 

Key words: methods: numerical – galaxies: general – cosmology: observations – dark matter – large-scale structure of Universe. 

1  I N T RO D U C T I O N  

The formation and evolution of galaxies can depend on their environ- 
ments in the Universe. Generally, galaxies in dense regions such as 
galaxy clusters are thought to form earlier than those in underdense 
regions such as voids. In clusters, various interactions between 
galaxies can affect their properties, such as tidal effects, mergers, gas 
stripping, and metal pollution by outflows from other galaxies (e.g. 
Dressler 1980 ; Blanton & Moustakas 2009 , and references therein). 
On the other hand, field galaxies outside the clusters can be expected 
to accrete intergalactic medium and may sustain their star formation 
acti vity until relati vely lo w redshifts (e.g. Aragon Calvo, Neyrinck 
& Silk 2019 ). Donnan, Tojeiro & Kraljic ( 2022 ) have found that 
spatial gradients of metallicities are significantly weaker in filaments 
than those in clusters. To understand the formation and evolution 
of galaxies, it is therefore indispensable to accurately know which 
cosmic structures galaxies belong to. 

It is, ho we ver, not straightforward to classify galaxies into cosmic 
structures. Large-scale structures in the Universe are formed by 
the gravity of dark matter (DM). Therefore, theoretical studies 
often utilize cosmological simulations and categorize spatial regions 
according to the topology of local DM density fields (see also 
Section 2 ) into four classes: void, sheet, filament, and knot (e.g. 
Arag ́on-Calvo et al. 2007 ; Hahn et al. 2007 ; Forero-Romero et al. 

� E-mail: inoue@astro1.sci.hokudai.ac.jp 

2009 ; Hoffman et al. 2012 ) 1 The knots are conv erging re gions of DM 

density, thought to correspond to galaxy clusters. The filaments are 
1D segments connecting the knots and embedded in 2D structures 
of sheets. The voids are nearly static or e xpanding re gions with 
lo w densities. Ho we ver, since these theoretical methods rely on the 
distribution of DM particles in simulations, they cannot be directly 
applied to actual observations of galaxies. 

Observational methods of cosmic-structure classification gen- 
erally use the spatial distribution of galaxies, instead of DM, 
obtained by surv e ys for vast fields such as the Sloan Digital Sky 
Surv e y (SDSS). The observational classification based on galaxies 
is performed with various methods depending on purposes of the 
studies. F or e xample, the method of DISPERSE (Discrete Persistent 
Structures Extractor; Sousbie et al. 2008 ; Sousbie 2011 ) extracts 
filaments by connecting local density peaks and saddle points 
of the galaxy distribution. Tempel et al. ( 2014a , b ) also identify 
filament regions as concatenated cylinders with a constant width. 
Voids are often defined as regions centred on minima of galaxy 
density with outer boundaries determined by a watershed algorithm 

or maximum spheres devoid of galaxy (e.g. Hoyle & Vogeley 
2002 ; Kreckel et al. 2011 ; Lavaux & Wandelt 2012 ; Sutter et al. 
2012 ; Habouzit et al. 2020 ). Most of the observational studies 
generally classify galaxies into three at most: void, filament, and knot 
(cluster). 

1 The sheet and knot are also referred to as ‘wall’ and ‘node’. 
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In terms of methodology, the theoretical and observational classi- 
fication of cosmic structures thus relies on the different components: 
DM and observable galaxies. Because the formation of cosmic 
structures is driven by self-gravity of DM as we mention abo v e, 
the theoretical classification based on DM is considered to be 
plausible; ho we ver DM is not observable. Although the observational 
classification is based on galaxy distribution, it is not guaranteed 
that galaxies can be taken as accurate tracers of DM; note that the 
formation of galaxies can depend on environments. Observations 
cannot detect faint galaxies below their limiting magnitudes. In 
addition, star formation does not occur in low-mass haloes below 

a threshold of M DM 

∼ 10 9.5 M � at redshift z � 1 (e.g. Efstathiou 
1992 ; Okamoto, Gao & Theuns 2008 ; Benitez-Llambay & Frenk 
2020 ). Therefore, the observational classification based on galaxy 
distribution may be unable to capture details of the cosmic structures 
in low-density environments. 

To address the problem mentioned abo v e, we propose a no v el 
method that is based on deep learning and applicable to observations. 
Aragon-Calvo ( 2019 ) has demonstrated the ability of artificial neural 
networks to classify the cosmic structures using DM density distri- 
bution in a cosmological N -body simulation (see also Section 4.1 ). 
In this study, we utilize a cosmological simulation including both 
DM and baryons, in which we can simultaneously access the cosmic- 
structure classification obtained by the DM-based analysis and spatial 
distribution of observable galaxies hosting stars. Our model learns 
the relationship between the class labels and observable quantities 
such as galaxy number count and predicts the cosmic structures using 
the galaxy distribution instead of DM. The model trained with the 
simulated galaxies can be applied to real observations such as SDSS. 

This paper is structured as follows. In Section 2 , we describe the 
cosmological simulation we utilize and the analysis of DM for the 
cosmic-structure classification. In Section 3 , we explain a layout of 
our neural networks and creation of our learning data to train our 
model. First, in Section 4.1 , we e v aluate the intrinsic performance 
of our model and compare it with a previous study. In Section 4.2 , 
we argue the difference of sampling schemes for training data and 
its influence on our deep-learning models. Next, in Section 4.3 , we 
mo v e on to the application to our mock observations and estimate 
the expected accuracy of our model for observational data. As the 
goal of this paper, in Section 4.4 , we classify observed galaxies in 
the SDSS data with our models. We discuss our results in Section 5 
and draw conclusions from this study in Section 6 . 

2  T H E  C O S M O L O G I C A L  SIMULATION  A N D  

COSMIC  STRUCTURE  CLASSIFICATION  

We use data sets of the IllustrisTNG project. The details of the 
cosmological simulations are presented on the website 2 and in 
related papers including Nelson et al. ( 2018 ), Weinberger et al. 
( 2017 ), and Pillepich et al. ( 2018 ). The simulations are performed 
with the N -body/moving-mesh hydrodynamics code AREPO (Springel 
2010 ; Weinberger, Springel & Pakmor 2020 ) in which various 
sub-resolution physics such as gas cooling, star and black hole 
formation, and their feedback effects are implemented. This study 
focuses on a snapshot of TNG100-1 at redshift z = 0; we also 
analyse the higher resolution run, TNG50-1, in Appendix B . The 
simulation box of TNG100-1 has a comoving side length of 111 Mpc, 
and the mass-resolutions of DM and stellar particles are 7.5 and 
� 1.4 × 10 6 M �, respectively. The cosmological parameters of the 

2 https://www.tng-pr oject.or g 

total matter, dark energy, and baryonic densities are �m 

= 0.3089, �� 

= 0.6911, and �b = 0.0486, respectively. The Hubble constant H 0 

= 67.74 km s −1 Mpc −1 is adopted. Gravitationally bound structures 
are identified with the friends-of-friends and SUBFIND grouping 
algorithms (e.g. Springel et al. 2001 ). In this study, the total masses 
of stars and DM are computed for each SUBFIND group which is 
considered to be a single (sub)halo. 3 Stellar magnitudes in mock 
SDSS bands are computed with a photometric model of Bruzual & 

Charlot ( 2003 ). 
We use the method proposed by Hoffman et al. ( 2012 ) for the 

cosmic-structure classification. First, we assign mass of the DM 

particles in the whole simulation to 256 3 voxels with the cloud- 
in-cell algorithm, which means that our classification has a spatial 
resolution of � r = 432 kpc. We do not use stars or gas for this 
analysis. Then, we obtain the mean velocities of DM in the voxels 
and adopt a Gaussian smoothing with the kernel size of � r to the 
velocity fields in order to wash out vox el-scale noise. Ne xt, we apply 
fast Fourier transform and compute tensors of velocity gradients as 

� ij = − 1 

2 H 0 

(
∂v i 

∂r j 
+ 

∂v j 

∂r i 

)
, (1) 

where the subscripts of i and j represent x , y , and z in the Cartesian 
coordinates. Finally, we compute the three eigenvalues of the tensor 
� ij and count the number of the eigenvalues larger than a threshold 
λth = 0.44. 4 When all, two, one, and none of the eigenvalues is larger 
than λth , the voxel is categorized into knot, filament, sheet, and void, 
respectively. To remedy over-resolutions, we apply the multiscale 
approach for the high-density regions above certain thresholds (see 
section 5 of Hoffman et al. 2012 ); in short we recompute the tensors 
by adopting a broader Gaussian kernel with 4 × � r , and replace the 
categorization if the results change. 

Fig. 1 shows our result of the cosmic-structure classification 
described abo v e. In comparing the DM density map (top), re gions 
classified as sheets distribute along structures resembling webs in 
the bottom panel. This is because the figure shows cross-sections of 
2D structures of the sheets. In the bottom panel, most of the voxels 
classified as filaments are found in intersections of the sheets, and 
knots are surrounded by the filament voxels. In the bottom panel, 
some weak structures of sheets are disconnected and/or ‘hollow’ in 
their cores, and these regions are classified as voids. This may be 
indicative of the inaccuracy of the abo v e analysis. The sensitivity to 
detect such weak structures would depend on the values of λth and 
� r . In this study, we take a stance that the abo v e analysis based on 
Hoffman et al. ( 2012 ) gives the definition of the cosmic structures 
although there could be mis-labelling due to such inaccuracy of the 
analysis. We argue the influence by the details of the DM analysis in 
Appendix C . This analysis classifies the equally spaced grid points 
representing 256 3 voxels. In this simulation, we find that 68.1, 26.7, 
4.83, and 0.344 per cent of the voxels are classified as voids, sheets, 
filaments, and knots, respectively. In this paper, we hereafter refer to 
this classification as ‘grid-based classification’. 

This study aims to classify galaxies rather than the spatial voxels. 
We label each galaxy with the classification of the voxel in which the 
galaxy resides. Fig. 2 shows the 3D positions of the galaxies coloured 
with their labels. The galaxies labelled as filaments (red) appear to 
distribute like strings connecting those labelled as knots (black). In 

3 We do not distinguish between main and subhaloes, refer to both as haloes 
in this study. 
4 This threshold is the value recommended in Hoffman et al. ( 2012 ) according 
to their visual inspection. 
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Figure 1. Top: DM densities in a slice as thin as � r = 432 kpc in TNG100-1 
at redshift z = 0, where the density fields are smoothed with the voxel-size 
kernel with � r . Bottom: the grid-based classification of the cosmic structures 
on the slice. 

the 3D distribution, our classification thus appears to represent well 
the cosmic webs in the simulation. If we define ‘galaxies’ as SUB- 
FIND groups having at least one stellar particle in the simulation, we 
find that 45518, 152534, 105291, and 22390 galaxies are labelled as 
voids, sheets, filaments, and knots, respectively. Hereafter, we refer 
to this classification as ‘galaxy-based classification’. Fig. 3 (blue) 
shows the mass distribution of galaxies with stars, and most of the 
SUBFIND groups abo v e ∼10 9.5 M � in DM mass host stars. Note that 
the halo masses of the galaxies that marginally form stars can depend 
on resolution and subgrid models in the simulation (see Appendix B ). 
If we consider galaxies brighter than an absolute magnitude of M r 

= −17.25 mag in r -band, these galaxies occupy most of the haloes 
abo v e ∼10 10.5 M � (see Section 4.3 ). 

Figure 2. 3D distribution of the galaxies labelled as voids (blue), sheets 
(green), filaments (red), and knots (black) in TNG100-1 at redshift z = 0: 
the galaxy-based classification. We here plot galaxies with stellar masses of 
M star > 10 8.5 M � for visibility. The filament galaxies appear to form web 
structures connecting the knots, just like neurons. The bottom set of panels 
plots the same galaxies but separately for each label. 

3  CONSTRUCTI NG  M AC H I N E  L E A R N I N G  

M O D E L S  

3.1 Creating cubic data 

To feed our model in Section 3.3 , we create data of 3D cubic 
regions of galaxy distribution tagged with the labels of the cosmic 
structures. We set the side length of all cubic data to be 10 Mpc, 
and a cube is binned with 16 3 voxels whose size is 625 kpc. Each 
cube is centred on its ‘classification point’ assigned with the labels 
obtained in Section 2 : knot, sheet, filament, or void. A position of 
the classification point is selected at random from the grid points 
in the case of the grid-based classification, whereas it is sampled 
from the galaxies in the galaxy-based classification. Next, we rotate 
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Figure 3. Histograms of the number of SUBFIND groups as functions of DM 

mass. The black line indicates all (sub)haloes in TNG100-1 at redshift z = 0, 
and the blue line does those hosting stars. The red line is for galaxies brighter 
than an r -band absolute magnitude of M r = −17.25 mag which corresponds 
to the apparent magnitude limit of SDSS, m r = 17.75 mag, assuming the 
galaxies to be at a distance of 100 Mpc (see Section 4.3 and Appendix A ). 
The halo occupation fractions are close to unity abo v e M star ∼ 10 9.5 M � and 
M star ∼ 10 10.5 M � for galaxies having stars (blue) and those brighter than the 
limiting magnitude (red). 

all galaxies three dimensionally around the normal, transverse, and 
longitudinal axes at random while fixing the classification point. 
Then, galaxies in the cubic region are placed in the voxels according 
to their positions. In the galaxy-based classification, the galaxy 
selected as the classification point is also included in the data. Here 
we do not apply the could-in-cell algorithm or any other smoothing 
schemes since we find that applying such a smoothing does not 
impro v e the performance of our models. Finally, we tag the cubic 
data with the class label at the classification point. Fig. 4 illustrates 
the abo v e procedures schematically. 

The side length of the cubic region, 10 Mpc, is set arbitrarily. We 
find, ho we ver, that our results hardly change in the range from ∼10 
to 20 Mpc and become less accurate outside this range. The number 
of voxels in the cube, 16 3 , is also an arbitrary choice; ho we ver we 
confirm that this little affects the accuracy of our models between 8 3 

and 32 3 . 
Since the grid- and galaxy-based classification are different in the 

schemes to sample the classification points, the data produced by 
the two schemes are not qualitatively homogeneous. Because the 
distribution of galaxies is biased towards high-density environments, 
a single cubic region in the galaxy-based classification generally 
includes more galaxies than that in the grid-based classification even 
if their labels are the same. The 3D extension of galaxy distribution 
could also be different between them. We argue the influence on our 
3D-CNN models by these different sampling schemes in Section 4.2 . 

3.2 Data augmentation and pr e-pr ocessing 

By repeating the abo v e procedures, we create 10 000 cubic data 
for each label. The classification points are randomly sampled with 
replacement. Although the same classification points can be selected 
again, we randomly change the orientation of the cube every time. 
In this study, the cubic data consist of a single channel: the number 
of galaxies, N voxel , in each voxel. We scale N voxel linearly in the data. 
Even when we scale the data logarithmically, the performance of 
our models hardly changes. 5 We discuss the influence by including 

5 We give the voxel log ( N voxel + 1) in the logarithmic case. 

other physical quantities as additional channels in Section 5.2 . For 
pre-processing the data, we apply the Min-Max normalization. The 
maximum value is computed among all voxels in all cubes, and then 
all voxel values are normalized into [0, 1]. In the 10 000 data cubes 
for each label, 6400, 1600, and 2000 are used as training, validation, 
and test data. Even if we generate four times more data sets, the 
performance of our models is not impro v ed. 

3.3 Neural networks: simple 3D-CNN as classifier 

We expect that the differences in 3D spatial distribution of ambient 
galaxies would have key information in deducing the cosmic struc- 
tures. We, therefore, consider 3D neural networks (3D-CNN) to be 
a feasible classifier of the cosmic structures. Such a classifier would 
be able to detect and distinguish their diffuse (voids), planar (sheets), 
filamentary (filaments), and concentrated (knots) distribution of 
galaxies. 

We implement 3D-CNN using the KERAS library on TENSORFLOW . 
Our network architecture is shown in Table 1 . We adopt the Adamax 
optimizer (Kingma & Ba 2014 ) with a learning rate of 0.002 without 
decaying and the parameters of β1 = 0.9, β2 = 0.999, and ε = 10 −7 . 
The categorical cross-entropy loss function is used. We set a mini- 
batch size to 512 and the number of learning epochs N epoch to 30. We 
use the model trained at the last epoch N epoch = 30 to e v aluate the 
resultant accuracy of the model using the test data; the performance 
of our models does not significantly depend on the epoch when we 
stop the training as long as N epoch � 10 (see Section 4 ). 

We find that such a simple 3D-CNN architecture with only 
two convolutional layers works well enough without significant 
o v erfitting in this study (see below), and building deeper networks can 
result in a tendency of instability on loss values as well as o v erfitting. 
Although we have tested various architectures, hyperparameters, 
other machine/deep-learning libraries and ways of pre-processing, 
such alteration for our model only changes the total accuracy by 
� 0.03 (see Section 5.2 ). Hence, we do not change the architecture 
or hyperparameters throughout this paper unless otherwise stated. 

4  RESULTS  

4.1 The grid-based classification 

We first examine the intrinsic performance of our 3D-CNN models. 
For this purpose, we present our results for the grid-based classifi- 
cation and compare them with a previous study. We here randomly 
select the classification points of the cubic data from the 256 3 grid 
points, and number densities in the cubes are computed from the 
haloes containing stellar particles. Fig. 5 tabulates the normalized 
confusion matrix and F 1 -scores in the case of classification into the 
four categories. The F 1 -score is equi v alent to Dice coefficient in the 
case of binary classification, defined as 

F 1 ≡ N tp 

N tp + 

1 
2 

(
N fp + N fn 

) , (2) 

where N tp , N fp , and N fn are the numbers of true positive, false 
positive, and false negative classification. In this study, we e v aluate 
the performance of our models with the F 1 -scores. As shown in Fig. 5 , 
the model can achieve relatively high accuracy for voids and knots 
with the F 1 = 0.83 and 0.84. On the other hand, classifying sheets 
and filaments are less accurate with the lower F 1 -scores of 0.63 and 
0.67. In the two classes, 20.2 and 17.9 per cent of the sheet voxels are 
erroneously classified as filaments and voids, and 23.4 and 11.4 per 
cent of the filament voxels are mistaken for knots and sheets. This 
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Figure 4. Schematic illustration of creating our learning data and assigning them class labels (see Section 3.1 ). Note that our actual data are in 3D cubic volumes 
although this figure illustrates the sampled region of data in the 2D manner for simplicity. The left-hand panel shows a map of cosmic-structure classification 
like the bottom one of Fig. 1 , and the central panel indicates the distribution of galaxies in the same region. A classification point (the orange filled circles) is 
randomly selected from the grid points or the galaxies in the simulation, and a cubic region of 10 3 Mpc 3 centred on the classification point is randomly oriented 
(the cyan square in the central panel), within which galaxies are sampled. In the sampled region, the numbers of galaxies are computed for 16 3 voxels without 
any smoothing (top right-hand panel), and the cubic data are normalized among all the created data (bottom right). The data cube takes o v er the label of its 
classification point. 

Table 1. Layers in our 3D-CNN architecture. The third column indicate 
the numbers of filters N filter and output units N out of convolution and fully 
connected layers. The fourth column describes parameters and types of 
acti v ation function and initializer, where R drop is dropout rate of the max- 
pooling layers, and ReLU stands for Rectified Linear Unit. 

Layer type Kernel size N filter / N out Remarks 

Convolution 1 3 × 3 × 3 N filter = 32 ReLU / He uniform 

Maxpool 1 2 × 2 × 2 – –
Dropout 1 – – R drop = 0.25 
Convolution 2 3 × 3 × 3 N filter = 64 ReLU / He uniform 

Maxpool 2 2 × 2 × 2 – –
Dropout 2 – – R drop = 0.25 
Flatten – – –
Fully connected 1 – N out = 512 ReLU / He uniform 

Fully connected 2 – N out = 512 ReLU / He uniform 

Output – N out = N class softmax 

difficulty in distinguishing sheets and filaments is probably because 
of their intermediate densities and complex spatial extension (see 
also Section 5.1 ). Ho we v er, the macro-av erage of the F 1 -scores is 
0.74, 6 which means that our model is not useless although we need 
to be aware of the accuracy according to actual applications of this 
method. 

F or the abo v e quaternary classification, Fig. 6 indicates the macro- 
averages of F 1 -scores and loss values as functions of learning epoch 
N epoch . The F 1 -scores and loss values almost converge after the 
first few learning epochs. Since the F 1 -scores (loss values) of the 
validation data are only slightly lower (higher) than those of the 

6 In all computations in this paper, the macro-averages of F 1 -scores are little 
different from the micro-averages. The macro-average is defined as the mean 
of F 1 computed in each class, whereas the micro-average is defined as F 1 

computed with the means of N tp , N fp and N fn among the classes. 

Figure 5. The normalized confusion matrix of the grid-based classification 
into the four categories. The value written with black or white in each cell 
indicates a percentage of the prediction for the test data. For example, for 
the two bottom cells in the second column from the left, 59.4 and 17.9 per 
cent of the cubic data labelled as ‘sheet’ are classified correctly as ‘sheet’ 
and erroneously as ‘void’, respectively. The sum in each column is 100 per 
cent. The values written with red in the diagonal cells indicate F 1 -scores of 
the classes. The macro-average of the F 1 -scores is 0.74 for the test data. 

training data at later epochs of N epoch � 15, the 3D-CNN classifier 
shows no sign of significant o v erfitting. 

Fig. 7 shows the map of predicted labels on the same slice of 
Fig. 1 . Unlike the distribution of the true labels, the boundary of the 
structures are blurred. This is probably because our cubic data have 
the side length of 10 Mpc, and this length limits the spatial resolution 
of the prediction. As we mention in Section 3.1 , ho we ver, decreasing 
the side length does not impro v e the accuracy of the prediction. 
Overprediction of knot and filament regions are significant, and the 
knot regions are quite large in the prediction (see also Figs 12 and 
16 in Section 4.3 ). 
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Figure 6. The macro-averaged F 1 -scores (the black lines with the left 
ordinate) and loss values (the red lines with the right ordinate) as functions 
of learning epoch N epoch in the case of Fig. 5 : the grid-based classification 
into the four categories. The solid and dashed lines indicate the values for the 
validation and training data. 

Figure 7. Same as the bottom panel of Fig. 1 but plotting the labels predicted 
with the 3D-CNN model of the grid-based classification. 

Aragon-Calvo ( 2019 ) has performed similar cosmic-structure clas- 
sification with 3D-CNN on a U-Net architecture (e.g. Ronneberger, 
Fischer & Brox 2015 ) although his deep-learning model learns DM 

density fields in large cosmological volumes and simultaneously 
classifies all spatial voxels therein. In terms of classifying spatial 
grid points, the situation of his study corresponds to the grid- 
based classification in ours. His study is, ho we ver, based on a 
binary classification where he ignores voids and merges knots with 
filaments. The largest difference from ours is that his model predicts 
the class labels from the DM density fields instead of galaxies. 
The performance of his model is F 1 = 0.78 and 0.72 for sheets 
and filaments/knots. Fig. 8 shows our result for the same binary 
classification where voids are ignored and knots are merged with 
filaments. Specifically, we randomly create 10 000 data cubes centred 
on the sheet voxels and another set of 10 000 cubes on the filament 
and knot voxels without distinguishing between the two. In our result 
shown in Fig. 8 , the F 1 -scores are 0.84 and 0.83 for sheets and 
filaments/knots, and the performance of our model is thus comparable 

Figure 8. The normalized confusion matrix of the grid-based classification 
into the two categories where voids are ignored and knots are merged with 
filaments. This binary classification is consistent with that in Aragon-Calvo 
( 2019 ). The values in each cell indicate the same as in Fig. 5 . The macro- 
average of the F 1 -scores is 0.84 for the test data. 

with that of Aragon-Calvo ( 2019 ). 7 This result demonstrates that 
galaxy distribution can be a substitution for DM density fields in 
predicting the cosmic structures with the models. It can therefore 
be feasible to classify the cosmic structures in the real Universe by 
using wide-field surv e y observations for galaxies such as SDSS. In 
addition, the abo v e result pro v es that our method with the simple 
3D-CNN classifier trained with the cubic data of galaxy distribution 
works as accurate as the U-Net architecture learning DM density 
fields in the previous study. 

4.2 Classifying galaxies with the grid-based model 

We stress, ho we v er, that the abo v e models in Section 4.1 cannot 
classify galaxies since they are trained with the grid-based data. 
The grid-based classification uniformly samples spatial regions for 
each class label, whereas galaxies distribute with a bias towards high- 
density re gions. F or e xample, few galaxies are found in the middle of 
void regions, and most of the galaxies labelled as voids reside around 
boundaries of void regions which are close to sheets. Accordingly, in 
the galaxy-based classification where the data cubes are centred on 
galaxies, the cubic regions centred on the void galaxies are generally 
similar to sheet regions. Sheet and filament galaxies are also subject to 
the same bias since most of them are found in regions close to filament 
and knot re gions, respectiv ely. To demonstrate the influence of this 
bias, we classify the galaxy-based data cubes with the model trained 
for the grid-based classification that is used for Fig. 5 . The galaxy- 
based data cubes are centred on galaxies selected randomly, and we 
create a set of 10 000 data for each label. Fig. 9 shows the result, where 
the predictions are significantly biased towards contiguous classes 
with higher densities except for knots. In comparison with Fig. 5 , 
the F 1 -scores are significantly lower in Fig. 9 . For knot galaxies, 
although the true positive fraction is quite high with 98.0 per cent, 
the false positive predictions to knots from sheets and filaments also 
largely increase to 27.8 and 69.6 per cent. As a result, the F 1 -score 

7 Although our simple model may be more accurate than that of Aragon- 
Calvo ( 2019 ) in F 1 -scores, the accuracy can depend on the resolutions of a 
simulation and the analysis of DM for the labelling. We use the tensors of 
velocity gradients (equation 1 ) to categorize the structures, whereas he does 
the second-order deri v ati ve of DM density fields. 
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Figure 9. Same as Fig. 5 but classifying the galaxy-based cubic data with 
the model trained with the grid-based data in Fig. 5 . The averaged F 1 -score 
is 0.49. 

of knots becomes lower as well as the other classes. The macro- 
averaged F 1 -score among the four classes is 0.49. Thus, we cannot 
adopt the model trained with the grid-based classification to galaxies. 
This implies that it is difficult to classify spatial regions close to 
boundaries between contiguous classes. 

The abo v e models trained with the grid-based data can, ho we ver, 
be useful for other purposes such as classifying spatial regions. 
F or e xample, it can define e xtents of void regions and lengths of 
filament structures in the real Universe. Especially, the size of ‘the 
super void’ and statistics of the filament lengths are used as tests of 
the models of cosmology (e.g. Inoue & Silk 2006 , 2007 ; Sousbie 
et al. 2008 ). A point worthy to mention here is that our methods 
use observable galaxies to classify the cosmic structures, but the 
class labels are obtained from velocity gradients of unobservable 
DM (equation 1 ). This is qualitatively different from the previous 
classification methods described in Section 1 . 

4.3 The galaxy-based classification 

4.3.1 Without observational restrictions 

As we show in Fig. 9 , the grid-based model cannot classify galaxies. 
To classify galaxies, we need to train the 3D-CNN models with the 
galaxy-based data whose classification points are on galaxies. We 
here ignore observational restrictions, include all the haloes having 
stars in the simulation and use their actual positions in creating 
the learning data. The top panel of Fig. 10 shows the normalized 
confusion matrix and F 1 -scores in the case of the quaternary clas- 
sification. In comparing with the grid-based classification (Fig. 5 ), 
the F 1 -scores become lower except for voids. The macro-average 
among the four classes is F 1 = 0.64 and decreases by 0.1 from 

the grid-based classification. This implies that it is more difficult to 
classify galaxies than the spatial grid points due to the bias we argue 
in Section 4.1 . It should be noted, ho we ver, that the classification of 
sheets and filaments is relatively inaccurate, and the galaxies in the 
two classes account for 79 per cent of all galaxies (see Section 2 ). 
Accordingly, the total performance for classifying all galaxies is 
dominated by the accuracy of sheets and filaments. Hence, if we 
e v aluate the average of the F 1 -scores weighted by the numbers of 
galaxies in the four classes, the ‘number -a veraged’ F 1 -score is 0.58. 
Although we have sampled 10 000 cubic data for each labels in this 
study, this sample size may be insufficient for the large classes such as 
voids in the grid-based classification and sheets and filaments in the 
galaxy-based classification. If it is the case, our model can become 

Figure 10. Top: same as Fig. 5 but the galaxy-based classification into the 
four categories. Middle: ternary classification where knots are merged with 
filaments. Bottom: binary classification where knots, filaments, and sheets 
are merged into a single class. The macro-averages of F 1 -scores among the 
classes are 0.64, 0.74, and 0.92 in the top, middle, and bottom panels, whereas 
the ‘number -a veraged’ F 1 -scores are 0.58, 0.68, and 0.91. 

less robust. In Appendix D , we examine the effect by repeating the 
same computations and find the fluctuation of F 1 -scores to be small. 

In the middle panel of Fig. 10 , we merge the knots with filaments by 
sampling 10 000 galaxies from the two classes without distinguishing 
them. In this ternary classification, the macro-averaged F 1 -score 
increases to 0.74. Ho we ver, merging the knots with filaments does 
not appear to impro v e the accuracy of the voids or sheets, and the 
F 1 = 0.58 for the sheets means that it is still difficult to classify the 
sheets accurately. The number -a veraged F 1 -score is 0.68. Ho we ver, 
since the class of filaments/knots is relatively accurate with F 1 = 

0.75, this model could be used to identify galaxies in cosmic streams 
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Figure 11. The macro-averages of F 1 -scores for the validation data as 
functions of epoch N epoch in the learning processes of the quaternary , ternary , 
and binary classification in Fig. 10 . 

connecting knot regions. Finally, in the bottom panel of Fig. 10 , we 
merge the knots and filaments with the sheets. The macro-averaged 
F 1 -score is 0.92 in this binary classification, and this model can 
identify void galaxies with the high accuracy. Fig. 11 indicates the 
macro-averaged F 1 -scores in the three cases of Fig. 10 as functions of 
learning epoch N epoch . In the galaxy-based classification, we find no 
significant o v erfittings until the last epoch, and the macro-av eraged 
F 1 -scores converge after the first few epochs. 

To compare the true and predicted labels in a 3D space, we extract 
a one-eighth volume with a side length of 55 Mpc from the simulation 
and use the galaxies therein to create new test data. The other galaxies 
in the remaining volume are used to create new sets of 10 000 data 
cubes for each of the four classes, and we train the model with the 
new data in the same manner. We confirm that the validation accuracy 
and F 1 -scores are similar to the abo v e case in Fig. 10 . In Fig. 12 , 
we plot the positions of galaxies in the one-eighth volume, where 
they are coloured with their true and predicted labels in the left-hand 
and right-hand panels. Fig. 13 shows the same but plots the galaxies 

separately for each label. The most conspicuous error would be the 
o v erprediction of the number of knot galaxies in the right-hand panel. 
From the top panel of Fig. 10 , nearly 30 per cent of filament galaxies 
are erroneously classified as knots in the quaternary classification. 
Note that the filament and knot galaxies are the second largest and 
the smallest populations (see Section 2 ), and the number of filaments 
is nearly five times larger than that of knot galaxies in the whole 
simulation. Therefore, the majority of galaxies predicted as knots 
are erroneous classification of (true) filament galaxies. Ho we ver, the 
galaxies predicted as knots/filaments appear to delineate the fila- 
mentary structures where most of the (true) filament galaxies reside. 
Similar contamination is expected between the sheet and void galax- 
ies. The number of sheet galaxies in the true labels is nearly three 
times larger than that of void galaxies, and ∼15 per cent of the sheet 
galaxies are erroneously classified as voids although the accuracy 
for the voids is high. Accordingly, nearly one-third of the galaxies 
predicted as voids stem from the erroneous classification of sheets. 

4.3.2 With observational restrictions 

To apply our 3D-CNN models to actual observations, we need to take 
observational restrictions into consideration such as limiting magni- 
tudes and errors on distance measurements. Because our models use 
3D distribution of galaxies, spectroscopic determinations of distances 
(redshifts z) are required for observed galaxies. Generally, a limiting 
magnitude of spectroscopy is more severe than that of photometry. 
We cannot include galaxies fainter than the spectroscopic limiting 
magnitude in our samples since they lack distance measurements. In 
the SDSS observations, the limit on apparent magnitude is estimated 
to be m r = 17.75 mag in r -band (see Appendix A ), which corresponds 
to the absolute magnitude of M r = −17.25 mag at a distance of 
100 Mpc from the Earth. If we assume that all of the simulated 
galaxies are at 100 Mpc, the numbers of galaxies in our samples 
reduce to 1051, 9251, 5525, and 1413 for voids, sheets, filaments, 
and knots, respectively. The red histogram in Fig. 3 shows the 
number of the ‘observable’ galaxies brighter than M r = −17.25 mag, 

Figure 12. Spatial distribution of galaxies in a one-eighth volume of the simulation. The galaxies are coloured with true (left-hand panel) and predicted 
(right-hand panel) labels: void, sheet, filament, and knot galaxies with blue, green, red, and black. We here use the model for the galaxy-based classification 
without observational restriction (the top panel of Fig. 10 ), plot galaxies with stellar masses of M star > 10 9.5 M � for visibility. 
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Figure 13. Same as Fig. 12 but plotting the galaxies separately into the four categories for the true (top) and predicted (bottom) labels. 

and most of the galaxies more massive than ∼10 9.5 M � in DM 

mass are captured in this sample selection. Assuming that distance 
measurements are available for all galaxies brighter than the limiting 
magnitude, we use all the ‘observable’ galaxies in the simulation. 

Although the abo v e assumption for the distance is arbitrary, we 
expect that the distance of 100 Mpc is within a range where our 
models can work efficiently for the SDSS catalogue (see Section 4.4 ). 
If we assume a closer distance �100 Mpc, the surv e y area of SDSS 

becomes too small to capture the variety of the cosmic structures, 
especially the dense environments such as filament and knot. We find 
that the number of observed galaxies largely increases at � 100 Mpc 
in the SDSS catalogue. If we assume a larger distance �100 Mpc, on 
the other hand, the limit on apparent magnitude becomes too severe 
to obtain sufficiently large samples of the simulated galaxies for the 
training data. Especially, only a handful of void galaxies are brighter 
than the magnitude limit at a distance �100 Mpc. Our 3D-CNN 

models can be less robust in such a case. 8 

In addition, line-of-sight positions (i.e. distances) of galaxies 
cannot be directly measured but are estimated from their recession 
velocities. Therefore, assuming uniform cosmic expansion in the 
nearby Universe, distance measurements of galaxies are affected by 
line-of-sight components of their peculiar velocities, v los , as 

x obs = x true + 

v los 

H 0 
, (3) 

where x obs and x true are estimated and true lines-of-sight positions 
of a galaxy. This effect can be significant in knot regions since 
peculiar velocities are generally large in galaxy clusters; the clusters 
are stretched along the line-of-sight directions, and this effect is 
know as the ‘fingers-of-god effect’. Because the assumed distance 
of 100 Mpc is significantly larger than the size of the cubic region 
for our training data, 10 Mpc, we can assume the lines of sight to be 
parallel for galaxies in the cubic region. 

8 To apply our 3D-CNN models to more distant galaxies, we need to utilize 
other cosmological simulations resolving larger volumes such as TNG300 
(see also Appendix B for the case of TNG50-1). 

Taking into account the abo v e observational restrictions, we again 
build the models with the galaxy-based classification. First, we 
exclude galaxies fainter than the limiting magnitude and randomly 
select a galaxy as a classification point. After we randomly rotate 
galaxies around the classification point and set a line of sight, we 
shift lines-of-sight positions of all galaxies according to equation ( 3 ). 
A data cube is centred on the classification point affected by its v los 

while it keeps its class label assigned at the original position. We 
sample 10 000 galaxies with replacement from the entire simulation 
for each label and create the cubic data to train our models. Fig. 14 
shows the normalized confusion matrices and F 1 -scores for the 
quaternary (top), ternary (middle), and binary (bottom) classification. 
In the three cases, the averaged F 1 -scores decrease from those in 
Fig. 10 by 0.04–0.06. Ho we v er, the o v erall trends hardly change; 
the classification of sheets and filaments is relatively inaccurate 
with the low F 1 -scores, and void galaxies are identified the most 
accurately. Note again that the sheets and filaments are the dominant 
classes in number. The number -a veraged F 1 -scores described in 
Section 4.3.1 are 0.5, 0.62, and 0.87 in the quaternary , ternary , and 
binary classification. Fig. 15 indicates the macro-averaged F 1 -scores 
for the validation data as functions of learning epoch N epoch . The 
results appear to be similar to Fig. 11 although there may be hints 
of weak o v erfittings at N epoch � 25 in the quaternary and ternary 
classification. 

As is done for Figs 12 and 13 , we extract the same one-eighth 
volume in the simulation and create new test data, and the rest is 
used for training and validation data. Fig. 16 shows the comparison 
between the true and predicted class labels in the 3D space, where the 
line of sight is pointed along the z-axis. Fig. 17 shows the same but 
plots the galaxies separately for each label. Since the plotted volumes 
in Figs 16 and 17 are the same as in Figs 12 and 13 , the comparison 
between them shows the influence of the observational restrictions. 
Because of the limiting magnitude, there are a smaller number of 
galaxies available for the data. Dense regions corresponding to galaxy 
clusters are significantly elongated along the line of sight ( z-axis) 
due to the effect of v los (equation 3 ), and the distribution of the (true) 
knot and filament galaxies is especially affected (the top panels of 
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Figure 14. Same as Fig. 10 but excluding galaxies fainter than M r = 

−17.25 mag and including the effect of v los in creating the data. The macro- 
averaged F 1 -scores are 0.60, 0.68, and 0.88 for the test data in the top, middle, 
and bottom panels, whereas the number -a veraged F 1 -scores are 0.5, 0.62, and 
0.87. 

Fig. 17 ). In comparing the true and predicted labels in Figs 16 and 17 , 
the significant o v erprediction of knot galaxies is seen as in Figs 12 
and 13 . Among the galaxies brighter than the magnitude limit, 54 
per cent are (true) sheets, and the number of these sheet galaxies is 
8.8 and 1.7 times larger than those of the void and filament galaxies, 
respectively. In the prediction, nearly 16 and 25 per cent of the sheet 
galaxies are mistaken for voids and filaments, respectively (the top 
panel of Fig. 14 ). Therefore, the erroneous classification of the sheets 
is also significant for the voids and filaments in the predicted labels 
of Figs 16 and 17 . Ho we ver, the galaxies predicted as knots/filaments 
are mainly found along the filamentary structures and in the cluster 
regions elongated by the effect of v los (see also Section 5.2 ). On the 

Figure 15. Same as Fig. 11 but for the models used in Fig. 14 . 

other hand, the galaxies predicted as sheets appear to distribute more 
diffusely than the true sheet galaxies (Fig. 17 ). 

4.4 Application to obser v ations 

Our models taking into account the observational restrictions can 
be directly applied to observations. Using the models obtained 
for Fig. 14 , we here classify observed galaxies. From the galaxy 
catalogue of SDSS DR12 for the north side (100 � RA � 300 deg), 
we extract galaxies and quasars 9 that have no warning flags for their 
redshift measurements, and convert their redshifts z to distances d obs 

by assuming the uniform expansion of the local Universe. We do not 
take into account uncertainties of the redshift measurements since 
these are typically �z/ z ∼ 10 −4 . We use galaxies within a range 
of d obs = 85–115 Mpc and create data cubes whose classification 
points are centred on all the galaxies within d obs = 90–110 Mpc. 
In this narrow distance range, the limits on absolute magnitude 
are nearly constant with the small variation from M r = −17.02 
to −17.46 mag. We can, therefore, consider the SDSS sample to 
be approximately volume-limited, and we use the models built by 
assuming the simulated galaxies to be at 100 Mpc in Section 4.3.2 . 
Our models can, ho we ver, classify galaxies at other distances by 
changing the absolute magnitude limit M r depending on the distances 
and retraining the models as long as the distance is not too large. We 
do not classify galaxies close to the boundaries of the surv e y area 
since our models cannot treat such galaxies if their data cubes o v erlap 
with the boundaries. 

Fig. 18 shows the predicted class labels for the SDSS galaxies 
within d obs = 90–110 Mpc. In the quaternary classification (top left- 
hand panel), we find 628 (9.1), 1895 (27.6), 2613 (38.1), and 1730 
(25.2) galaxies (per cent) in the classes of void, sheet, filament, and 
knot in the plotted region (RA = 130 ◦–230 ◦ and DEC = 10 ◦–55 ◦). 
The galaxies classified as filaments distribute along the structures 
resembling a web studded with compact groups of the knot galaxies. 
The sheet galaxies are found around the filaments, and the voids 
reside in the diffuse inter-filament regions. These features appear 
to agree with the intuitive recognition of the cosmic structures. 
Meanwhile, it should be reminded that the models cannot classify 
sheet and filament galaxies very accurately as shown in the top panel 
of Fig. 14 , and the F 1 -scores are 0.46 and 0.48 for sheet and filament 
galaxies in the quaternary classification. From the analogy of Figs 14 , 

9 Hereafter, we do not distinguish quasars from galaxies in the SDSS data. 
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Figure 16. Same as 12 but excluding galaxies fainter than M r = −17.25 mag and including the effect of v los . The line of sight is along the z-axis. We here plot 
all the galaxies brighter than the limiting magnitude. 

Figure 17. Same as Fig. 16 but plotting the galaxies separately into the four categories in the true (top) and predicted (bottom) labels. 

16 , and 17 , a significant fraction of the galaxies identified as knots 
can be misclassification of (true) sheets. 

In the cases of the ternary (the right-hand panel in Fig. 18 ) and 
binary (bottom left-hand panel) classification, the merged classes 
are plotted in black. In the ternary classification, 548 (8.0), 1788 
(26.0), and 4530 (66.0) galaxies (per cent) are classified as voids, 
sheets, and filaments/knots. The fractions of void and sheet galaxies 
hardly change from the quaternary classification. In the binary 
classification, 927 (13.5) and 5939 (86.5) galaxies (per cent) are 
classified as voids, sheets/filaments/knots. Although the fraction of 
voids is somewhat higher than those in the cases of the quaternary and 
ternary classification, the binary case is expected to be more accurate 
and credible for the voids because of the higher F 1 -score (Fig. 14 ). 

5  DI SCUSSI ON  

5.1 Classification with local density of galaxies 

Here, we compare the accuracy of our 3D-CNN model with that of 
a simple method not using the deep learning. In the four cosmic- 
structure classes, local densities of galaxies are expected to typically 
increase from void, sheet, filament to knot regions. A local density 
around a galaxy may therefore characterize the cosmic structure 
to which the galaxy belongs. As is done in Section 4.3.2 , we 
exclude galaxies fainter than M r = −17.25 mag from the TNG100- 
1 simulation and shift positions of the galaxies according to their 
v los by equation ( 3 ). We then compute a distance from a galaxy to 
its fifth nearest neighbour, r 5 . We calculate a local number density 
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Figure 18. Classification of the SDSS galaxies in the distance range from d obs = 90 to 110 Mpc using the models obtained in Fig. 14 . We include all galaxies 
with spectroscopic redshift measurements in the region. In the ternary (right-hand panel) and binary (bottom left-hand panel) classification, galaxies of the 
merged classes are plotted with black. 

of galaxies as n 5 = 5 / (4 πr 3 5 / 3) for every single galaxy with M r < 

−17.25 mag in the simulation, compute a global number density φ
of galaxies with a given n 5 in the entire simulation. The top panel of 
Fig. 19 shows the distribution of φ as a function of n 5 for galaxies in 
each (true) class label. As we e xpect abo v e, the median values of n 5 
(the vertical dashed lines) increase from voids to knots in the order. 
It is worthy to mention, ho we ver, that their ranges between ±1 σ of 
n 5 (the thick parts of the solid lines) significantly o v erlap with each 
other, especially those of sheets, filaments, and knots. 10 We find that 
the distance measurement errors by v los can significantly lower n 5 of 
galaxies in dense environments. 

In the bottom panel of Fig. 19 , we normalize the functions of φ to 
make their integrals equal to unity. The vertical solid lines indicate 
the values of n 5 at which the normalized distribution functions ˜ φ

become equal between contiguous classes. We consider these values 
of n 5 to be the thresholds between the pairs of contiguous classes, 
which give the galaxies their predicted labels as illustrated in the 
bottom panel of Fig. 19 . Thus, in this simple analysis, each galaxy 
has its true label determined by the DM analysis (equation 1 ) and 
the predicted label given by the local density n 5 . A difference from 

the 3D-CNN models is that this prediction based on n 5 does not take 
into account the shapes of 3D distribution of galaxies. 

Fig. 20 shows the normalized confusion matrix of the abo v e 
classification. In comparison with the 3D-CNN model (the top 
panel of Fig. 14 ), the F 1 -scores decrease in all classes, and their 
macro-average is 0.54. Especially, the misclassification of filaments 
as knots (38.2 per cent) is more than the true positive classification 
of filaments (36.7 per cent). Ho we ver, the decrease of the F 1 -scores 
is relatively small in the voids and knots. Although we define 
n 5 at the fifth nearest neighbour, the result of Fig. 20 does not 
significantly depend on the number of the nearest galaxies to define 
the local density. If predicted labels are given completely at random, 
quaternary classification results in F 1 = 0.25 for all classes. So, in 

10 Similar arguments have been presented in Hoffman et al. ( 2012 ) for DM 

density. 

Figure 19. Top: Global number density φ of galaxies in the whole simulation 
as functions of local number density n 5 of galaxies within a radius of the fifth 
nearest neighbour. Here the galaxies brighter than M r = −17.25 mag are 
included in the analysis, and their line-of-sight positions are affected by v los 

according to equation ( 3 ). The vertical dashed line indicates the median of n 5 
for each (true) class label and all the galaxies, and the thick part of the solid 
line highlights the range of ±1 σ from the median. Bottom: Same as the top 
panel but normalized to make the integral unity: 

∫ 
˜ φd n 5 = 1. The vertical 

solid lines indicate n 5 at which the probability density functions ˜ φ become 
equal between the contiguous classes. We consider these values of n 5 as the 
boundaries between the classes and give the galaxies their predicted labels as 
function of n 5 . The allows illustrate the ranges of n 5 for the predicted classes. 
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Figure 20. Same as the top panel of Fig. 14 but for the predicted classes 
given by the local density n 5 described in Section 5.1 and Fig. 19 . The 
macro-average of the F 1 -scores is 0.54, and the number -a veraged F 1 -score is 
0.44. 

this sense, we consider that the classification based on n 5 is not too 
inaccurate. Although the local density of galaxies is an essential 
quantity to characterize the cosmic structures, the 3D-CNN model 
can impro v e the accurac y by taking into account the 3D e xtension 
of galaxy distribution, especially for sheets and filaments. 11 a large 
number of faint galaxies are taken into account in this analysis, 
and the number density of galaxies increases generally. Since most 
of the faint galaxies would be satellites, the distances to the fifth 
nearest neighbours r 5 can become significantly shorter. 

5.2 To impro v e the performance 

We have tested various types of CNN architectures. 2D CNN using 
projected images of the cubic data are significantly inaccurate. More 
sophisticated 3D-CNN on neither Residual Networks (ResNet, He 
et al. 2015 ) nor U-Net based classification models impro v e the 
accuracy significantly. We finally arrived at the simple 3D-CNN 

classifier described in Section 3.3 . 
In the cosmological simulation, there are other quantities available 

in observations besides the number of galaxies, such as stellar mass 
and colour. As the second and third channels of our cubic data, we 
add the total stellar mass and g − i colours of galaxies in each voxel. 
Ho we ver, we find that these additional channels do not change the 
performance of our models. Although we have also tested with the 
higher resolution simulation of TNG50-1, the results are similar to 
those with TNG100-1 (see Appendix B ). 

The method of this study assumes the cosmological simulation to 
be accurate and statistically compatible with the observed galaxies. 
The details of baryon components can depend on the sub-grid models 
in the simulation. Ho we ver, since our fiducial models only use the 

11 If the observational restrictions are ignored, we find that the simple 
classification method based on the local density n 5 does not classify the 
simulated galaxies accurately. This is because a large number of faint galaxies 
are taken into account in this analysis due to the absence of the limiting 
magnitude, and the number density of galaxies increases generally. Since 
most of the faint galaxies are satellites, the distances to the fifth nearest 
neighbours r 5 can become so short that the fifth neighbours can be included in 
the systems hosting the galaxies (i.e. r 5 ∼ 10–100 kpc). Since the local density 
n 5 is strongly affected by their host systems in this case, n 5 cannot characterize 
their environments of the cosmic structures on the scale of ∼10 Mpc. Even 
if we use the fiftieth nearest neighbours n 50 , the simple classification method 
is still significantly inaccurate. 

Figure 21. Same as the top panel of Fig. 14 but using all haloes having 
stellar particles by ignoring the magnitude limit. Their line-of-sight positions 
are affected by v los . The macro-average of the F 1 -score is 0.64 for the test 
data, and the number average is 0.54. 

spatial distribution of galaxies abo v e the limiting magnitude, our 
results are expected to be less dependent on such physical models for 
baryons. Our results can also depend on the accuracy of the cosmic- 
structure classification to obtain the true labels. In Section 2 , we have 
used the method of Hoffman et al. ( 2012 ) with the threshold of λth 

= 0.44. If this method and/or the threshold is inaccurate, our models 
cannot correctly predict the labels by the mislabelling. In addition, 
the eigenvalues of the velocity-gradient tensors (equation 1 ) can vary 
continuously between the classes. If it is the case, the class labels 
given to a certain fraction of galaxies would be ambiguous. Ho we ver, 
there are no methods to e v aluate quantitati v ely the accurac y of the 
true labels. In this study, we consider that the DM analysis of Hoffman 
et al. ( 2012 ) presents the ‘definitions’ of the cosmic structures. The 
detailed discussion of the cosmic-structure classification is beyond 
the scope of this study although we show further analysis for the true 
labels in Appendix C . 

Observations would be impro v ed in the future. In Section 4.3.2 , 
we have considered the two observational restrictions: limiting 
magnitude and distance measurement error by a proper motion. The 
former can be mitigated if deeper spectroscopic surv e ys become 
available although the latter is unavoidable as long as distances 
are measured from recession velocities of galaxies. Fig. 21 shows 
the confusion matrix of the galaxy-based classification, where the 
limiting magnitude is ignored by taking into account all the subhaloes 
that contain stellar particles whereas the distance errors are included. 
In comparison with the result including both restrictions (the top 
panel of Fig. 14 ), the performance of the model is a little impro v ed 
in Fig. 21 , and the macro-averaged F 1 -score is 0.64. This F 1 -score is 
similar to that in the case including neither restriction (the top panel 
of Fig. 10 ). Thus, although excluding faint galaxies by the limiting 
magnitude lowers the accuracy of the models, it can be improved 
if the limiting magnitude is mitigated in future observations. In 
addition, we e v aluate the influence by the distance errors due to v los 

by comparing Fig. 21 with the top panels of Fig. 10 . Although the 
model for Fig. 21 includes the effect of v los , the F 1 -scores are similar 
to those in the top panels of Fig. 10 , and the differences are within the 
fluctuation shown in Table D1 (Appendix D ). This may imply that the 
3D-CNN model learns the pattern of the redshift distortions by v los in 
cluster regions, and the model can adjust the prediction to the distance 
errors. Thus, the distance errors do not make the models inaccurate. 
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6  SUMMARY  A N D  C O N C L U S I O N S  

This study explores the ability of deep learning to classify the 
cosmic structures into four categories: knot, filament, sheet, and void. 
Utilizing the cosmological simulation, these labels are obtained from 

local velocity-gradient tensors of DM, and our models based on 3D- 
CNN predict the labels from spatial positions of galaxies within a 
cubic region of 10 3 Mpc 3 centred on a classification point. We train 
the models with data of the cosmological simulation, which can 
include observational restrictions such as limiting magnitude and 
distance measurement error by a proper motion of a galaxy. Since 
the input data are distribution of observable galaxies, our 3D-CNN 

model can be directly applied to observations of galaxy surv e ys such 
as SDSS. Thus, our models can tag the observed galaxies with the 
class labels obtained from the DM-based analysis in the simulation. 
In this sense, the method proposed in this paper is qualitatively 
different from the previous classification for observed galaxies. Our 
approach connects cosmological simulations to observations with 
the aid of deep learning. 

If the classification points are randomly selected from uniform 

spatial grid points, our model can achieve the macro-averaged F 1 - 
score of 0.74 in the quaternary classification. It is generally difficult 
to distinguish sheets and filaments, whereas voids and knots can be 
classified with relatively high accuracy. In the case of the binary 
classification into sheet and filament/knot, the macro-averaged F 1 - 
score is 0.84. This accuracy is comparable to the result of Aragon- 
Calvo ( 2019 ) in which learning data for his similar 3D-CNN model 
are created from DM density fields, whereas our model uses galaxy 
distribution. This means that galaxy distribution can be a substitution 
for DM density fields, and wide-field observations of galaxy surv e ys 
can be used to classify the cosmic structures by the 3D-CNN models. 

To classify galaxies, we need to select the classification points from 

the positions of galaxies in the simulation. In this case, the macro- 
averaged F 1 -score is 0.64 in the quaternary classification. If we 
include distance measurement errors by proper motions and impose 
the limiting magnitude of the SDSS spectroscopy, our model results 
in the averaged F 1 -score of 0.60 in the quaternary classification. For 
the specific purpose to identify void galaxies, the F 1 -score reaches the 
high value of 0.88 in the binary classification distinguishing between 
voids and the others. These deep-learning models can be applied to 
SDSS data, and the results are shown in Fig. 18 . 
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APPENDI X  A :  T H E  LI MI TI NG  M AG N I T U D E  IN  

SDSS  

For the models used in Sections 4.3.2 and 4.4 , we need to make the 
galaxy samples consistent between the simulation and SDSS. For 
this purpose, we determine the limiting magnitude of the SDSS 

spectroscopy. From the catalogue of SDSS DR12 for the north 
side, we extract galaxies and quasars with redshift measurements 
by spectroscopy and plot the distribution of their r -band apparent 
magnitude m r in Fig. A1 . The distribution of m r sharply declines at 
m r = 17.75 indicated with the vertical red line, and 95 per cent of the 
galaxies within d obs = 500 Mpc have m r < 17.75. Thus, m r = 17.75 is 

Figure A1. The histogram of r -band apparent magnitudes of the SDSS 
galaxies with distances <500 Mpc. The vertical red line indicates the limiting 
magnitude m r = 17.75 below which 95 per cent of the galaxies are included. 
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considered to be the limiting magnitude of the spectroscopy for their 
redshift measurements. We find that the limit can be determined 
the most accurately in the distribution of r -band magnitudes. In 
Section 4.3.2 , we adopt this limit to the simulation and exclude 
galaxies fainter than the limit from our sample. Imposing the limit 
significantly decreases the number of simulated galaxies (see Fig. 3 
and Section 4.3.2 ). 

APPENDIX  B:  RESULTS  F O R  T N G 5 0 - 1  

The run of TNG50-1 has the highest mass-resolution in the series 
of the IllustrisTNG simulations. The simulation box has a side 
length of 51.7 Mpc, and DM and stellar particles in TNG50-1 have 

Figure B1. Same as 10 but for TNG50-1: classifying the galaxy-based data 
cubes created without the observational restrictions. The macro-averages of 
F 1 -scores among the classes are 0.66, 0.73, and 0.93 in the top, middle, and 
bottom panels, whereas the ‘number -a veraged’ F 1 -scores are 0.55, 0.78, and 
0.92. 

8.5 × 10 4 and 4.5 × 10 5 M � which are 16.5 times smaller than 
those in TNG100-1 used in our fiducial cases. Therefore, TNG50- 
1 samples a larger (smaller) number of faint (bright) galaxies than 
TNG100-1. In the snapshot data at redshift z = 0, we apply the 
same classification analysis of Hoffman et al. ( 2012 ) to DM with a 
resolution of � r = 202 kpc (256 3 v oxels). Galaxies ha ving stellar 
particles occupy most of haloes abo v e ∼10 8.5 M �, and 14211, 75924, 
46110, and 9687 galaxies are labelled as voids, sheets, filaments, 
and knots, respecti vely. Ho we ver, when we impose the limiting 
magnitude of M r = −17.25, the numbers of galaxies decrease to 
158, 2318, 1374, and 324. The small sample size is thought to be 
insufficient to create 10 000 cubic data for each class, especially for 
voids and knots. Accordingly, we consider TNG50-1 to be unsuitable 
for the 3D-CNN models including the observational restrictions 
(Section 4.3.2 ). 

As is done in Section 4.3.1 , we construct the models for the galaxy- 
based classification without considering the observational restriction. 
The cubic data for learning are created in the same way as described 
in Sections 3.1 and 3.2 but with a smaller side length of 5 Mpc 
for the volume of the cubic data due to the smaller simulation box 
and higher resolution of TNG50-1. 12 Fig. B1 shows the normalized 
confusion matrices and F 1 -scores for the models with TNG50-1. 
In the macro-average values, the F 1 -scores are higher than in the 
fiducial case with TNG100-1 by 0.02 and 0.01 in the quaternary and 
binary classification but lower by 0.01 in the ternary classification. 
Thus, using the higher resolution run TNG50-1 does not significantly 
impro v e the performance of our 3D-CNN models. 

APPENDI X  C :  T H E  I N F L U E N C E  BY  T H E  

ANALYSI S  F O R  T H E  T RU E  LABELS  

In the bottom panel of Fig. 1 , some weak structures of sheets 
appear to be discontinuous and/or hollow in their ‘core’ regions 
that are categorized as voids. These features may be indicative of the 
inaccuracy of the DM analysis based on Hoffman et al. ( 2012 ); such 
discontinuous and hollow cores of sheets are also seen in Hoffman 
et al. ( 2012 , their fig. 1). The presence of the discontinuous cores can 
be explained physically in the analysis of Hoffman et al. ( 2012 ). DM 

density is not uniform in a sheet and decreases towards its centre. 
Since the central core region is expected to have the lowest density 
in the sheet, the density contrast between the core and neighbouring 
void regions is weak. The local environment of such a core is 
thought to be ef fecti vely the same as those of the surrounding void 
regions. Since the potential well is shallow in the core, the velocity 
gradient (the largest eigenvalue of � ij in equation 1 ) becomes small 
in/around the core. The fiducial threshold of λth = 0.44 would be 
so strict that the analysis cannot capture such a low-density core 
in the sheet. We expect, ho we ver, that there are few galaxies in 
such low-density environments, and labelling the sheet cores as 
voids would not significantly affect our results in the galaxy-based 
classification. 

A possible remedy for the discontinuity of sheets is to adopt a 
lower threshold in the cores. We here present our new analysis for 
the true labels, where we first compute the labels with the fiducial 
threshold λth = 0.44 and iterate the same computations but with a 
secondary threshold λ′ 

th for the void regions detected first with the 
fiducial threshold. If the results change in the re-computations with 
λ′ 

th , we replace the labels. Although we infer that the hollow parts 

12 We confirm that our result for TNG50-1 hardly changes even if the side 
length of the cubic data is kept to be 10 Mpc. 
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Figure C1. Same as the bottom panel of Fig. 1 , but the re-labelling process 
is applied to the regions first identified as void with the fiducial threshold λth 

= 0.44. In the top and bottom panels, the re-labelling is performed with the 
lower secondary thresholds λ′ 

th = 0 . 30 and 0.05. 

of sheets would be attributed to the o v er-resolution in the spines of 
the sheets, we find that the hollowness is also mitigated by the abo v e 
re-labelling. 

Fig. C1 shows the cosmic-structure classification with the re- 
labelling for voids with the secondary thresholds λ′ 

th = 0 . 30 and 
0.05 for the same slice of Fig. 1 in Section 2 . As λ′ 

th decreases, the 
sheets become thicker, and the discontinuous and/or hollow features 
seem to be impro v ed to some extent. Note, ho we ver, that e ven weaker 
structures in low-density environments are newly identified as sheets, 
and some of them are still discontinuous and/or hollow. It should also 
be noted that the re-labelling process with λ′ 

th turns void regions into 
sheets/filaments not only in the sheet cores but also in other regions 
close to sheets. From appearance of the bottom panel of Fig. C1 , the 
secondary threshold of λ′ 

th = 0 . 05 may be too low since the sheet 
regions occupy a larger volume than the voids. In the grid-based 
classification with the secondary thresholds of λ′ 

th = 0 . 30 (0.05), 
59 (30), 36 (61), 4.9 (8.1), and 0.34 (0.40) per cent of the spatial 

Figure C2. Confusion matrices and F 1 -scores in the grid-based classification 
where the true labels are obtained the DM analysis with the re-labelling with 
λ′ 

th = 0 . 30 (top) and 0.05 (bottom). The macro-averaged F 1 -scores are 0.75 
and 0.70 for λ′ 

th = 0 . 30 and 0.05. 

voxels are categorized as void, sheet, filament, and knot, respectively. 
In the galaxy-based classification with the secondary thresholds of 
λ′ 

th = 0 . 30 (0.05), if we do not take into account the observational 
restrictions, 25013 (1293), 173299 (168169), 105514 (130856), and 
21907 (25415) galaxies are labelled as voids, sheets, filaments, and 
knots, respectively. The number of void galaxies monotonically 
decreases as λ′ 

th decreases, whereas the number of sheet galaxies 
hardly changes with λ′ 

th . 
Figs C2 and C3 show the results of our 3D-CNN models using the 

true labels obtained by the abo v e DM analysis with the re-labelling. 
In the grid-based classification (Fig. C2 ), the macro-averages of F 1 - 
scores are 0.75 and 0.70 for λ′ 

th = 0 . 30 (top) and 0.05 (bottom). Since 
the macro-averaged F 1 -score is 0.74 in the fiducial case (Fig. 5 in 
Section 4.1 ), the re-labelling with λ′ 

th does not appear to affect the 
performance of our model. The low value of λ′ 

th = 0 . 05 appears 
to make the prediction inaccurate slightly. In the galaxy-based 
classification without the observational restrictions (the top panel 
of Fig. C3 ), the macro-averages of F 1 -scores are 0.65 and 0.61 for 
the re-labelling with λ′ 

th = 0 . 30 (top) and 0.05 (bottom). We obtain 
the same result: the re-labelling little affects the performance of our 
3D-CNN model. The slightly lower macro-averaged F 1 -scores in the 
cases of λ′ 

th = 0 . 05 could be attributed to the significance of mis- 
labelling due to the low secondary threshold. From the abo v e results, 
we consider that the fiducial classification based on Hoffman et al. 
( 2012 ) is reasonable enough, and our model can be readily applied to 
true labels classified by other methods since the performance of the 
models hardly depends on the details of the DM analysis to obtain 
the true labels. 
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Figure C3. Same as Fig. C2 but for the case of the galaxy-based classification 
without the observational restrictions. The macro-averaged F 1 -scores are 0.65 
and 0.61 for λ′ 

th = 0 . 30 (top) and 0.05 (bottom). 

APPENDIX  D :  T H E  INFLUENCE  BY  T H E  CLASS  

I N BA L A N C E  

The class inbalance is large in our original samples taken from the 
entire simulation (see Section 2 ). In the grid-based classification, the 
majority of the voxels in the whole simulation are categorized as 
voids, whereas the knot regions are quite small. In the galaxy-based 
classification, the majority of the galaxies are (true) labelled as sheets 
and filaments. We here argue the influence by the class inbalance on 
our results. 

Table D1. Statistics of F 1 -scores in our 3D-CNN models by repeating the 
same computations 10 times with different random seeds. Top: the grid- 
based classification. Bottom: the galaxy-based classification without the 
observational restrictions. 

Void Sheet Filament Knot Macro-average 

Minimum 0.8260 0.6216 0.6127 0.8229 0.7311 
−1 σ 0.8289 0.6326 0.6308 0.8258 0.7365 
Median 0.8399 0.6497 0.6360 0.8329 0.7405 
+ 1 σ 0.8492 0.6768 0.6554 0.8379 0.7468 
Maximum 0.8495 0.6786 0.6671 0.8411 0.7522 

Minimum 0.8779 0.5033 0.3826 0.6494 0.6202 
−1 σ 0.8829 0.5046 0.4094 0.6618 0.6295 
Median 0.8880 0.5411 0.4390 0.6796 0.6347 
+ 1 σ 0.8932 0.5705 0.4573 0.6895 0.6427 
Maximum 0.8970 0.5779 0.4763 0.6925 0.6443 

Because we randomly create the cubic data equally in number 
between the class labels (10 000 for each, and 6400 of them are used 
for the training) in all cases, the class inbalance does not directly 
affect the training of our 3D-CNN models. Sampling 10 000 cubic 
data may, ho we ver, be insuf ficient for the large classes such as void 
in the grid-based classification and filament and sheet in the galaxy- 
based classification. If it is the case, our 3D-CNN models could not 
be robust. To e v aluate the influence, we here examine the results of 
the grid-based quaternary classification (Fig. 5 ) and the galaxy-based 
quaternary classification without the observational restrictions (the 
top panel of Fig. 10 ). We repeat the same computations 10 times while 
changing random seeds in creating the cubic data. Table D1 shows 
the statistics of F 1 -scores among the 10 repeated computations. In 
both of the grid- and galaxy-based classification, the fluctuations of 
F 1 -scores are larger in the classes of sheets and filaments than those 
in voids and knots. Especially, the F 1 -scores of filament galaxies 
can vary by ∼0.1 from the minimum to maximum in the galaxy- 
based classification. Ho we v er, the macro-av erages of F 1 -scores only 
fluctuate by ∼0.02. 

This paper has been typeset from a T E 

X/L 

A T E 

X file prepared by the author. 

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/515/3/4065/6648844 by H
okkaido U

niversity user on 14 Septem
ber 2022

art/stac2055_fC3.eps

	1 INTRODUCTION
	2 THE COSMOLOGICAL SIMULATION AND COSMIC STRUCTURE CLASSIFICATION
	3 CONSTRUCTING MACHINE LEARNING MODELS
	4 RESULTS
	5 DISCUSSION
	6 SUMMARY AND CONCLUSIONS
	ACKNOWLEDGEMENTS
	DATA AVAILABILITY
	REFERENCES
	APPENDIX A: THE LIMITING MAGNITUDE IN SDSS
	APPENDIX B: RESULTS FOR TNG50-1
	APPENDIX C: THE INFLUENCE BY THE ANALYSIS FOR THE TRUE LABELS
	APPENDIX D: THE INFLUENCE BY THE CLASS INBALANCE

