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Analyses of Some Leaking Modes 

T oshika tsu Y OSHII 

(Received March 23. 1970) 

Abstract 

Some types of leaking modes were analyzed by utilizing OLIVER and MAJOR'S 
as well as Su and DORMAN'S methods. The mathematical reliability of these 
two methods, which are called "approximate methods" in the present paper, have 
alreadY been confirmed by TAZIME and YOSHII. The studies of leaking modes 
have not been so popular, probably due to its theoretical vaguenesses and the 
difficulty of the calculation. Just a few papers mainly about PL waves have 
been published. 

The leaking mode is characterized by its higher phase velocity than the shear 
velocity in the half space of the stratified media. The PL wave is not the only 
wave train which satisfies the above feature, and there exist many other interesting 
leaking modes as shown in the present study. The present author believes that 
many records which have been remained to be untouched can be analyzed in the 
light of the leaking mode. Two approximate methods may be the powerful tools 
for such analyses. 

1. Introduction 

This paper has been prepared as a synthetic report of a few papers on 

leaking modes written by the present author in japanese1)-9). The 

"keynote" of these papers was the analysis of observed leaking modes by 

using the dispersion curves obtained by the approximate methods of OLIVER 

and MA]OR10 ) and Su and DORlI1ANll ). All previous discussions on leaking 

modes were restricted in PL waves, but as will be shown in the present paper, 

there exist many other interesting leaking modes. At any rate, the two 

approximate methods above mentioned are very powerful for the analysis 

of these leaking modes. 

One of the reasons why the present author gives attention to these 

approximate methods is the theoretical vagueness of the leaking mode. Since 

the publication of a paper by ROSENBAUM12), the theory of the leaking mode 

seems to become perfect "mathematically" by noticing complex roots of the 

period equation. But some difficulties remain when we want to connect the 

mathematical result with the physical meaning. On the other hand, though 

the two approximate methods seep:l to be imperfect mathematically, they can 
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be understood more explicitly. T AZIME and Y OSHII8) have examined the 
mathematical reliability of these two methods. Since "dispersion" is very 
stable information from the seismogram, the concept of the leaking mode 
may be a powerful tool for the analysis of the seismogram. 

This report mainly consists of fOllowing four parts. 

1) PL waves. (§ 3) 
2) Surface waves on the model with a high velocity layer. (§ 4) 
3) Wave group II observed in small explosion seismology. (§ 5) 
4) Water waves observed in the shallow sea. (§ 6) 
In § 7, some comparisons of approximate solutions and complex roots will be 
discussed. 

* List of Notations * 

c phase velocity. 
d depth of the receiver. 

f frequency. 
Hi thickness of the i'th layer. 
k angular wave number. 
r horizontal distance. 
t time. 

T period. 
u (horizontal) ground displacement. 
U group velocity. 
Z depth of the source. 

a attenuation coefficient (§ 4.2). 
a, compressional wave velocity in the i'th layer. 
fli shear wave velocity in the i'th layer. 
..::I period function (..::1=0: period equation). 
Pi density in the i'th layer. 
(j" Poisson's ratio. 
w angular frequency. 

2. On the leaking mode and the approximate dispersion curve. 

Now, we are going to discuss elastic surface wave propagation on the 
layered half space. The solution of the present problem is represented by 
such a double integral as follows, 

( d) Joo Joo . [ F(w, k, z, d) ] 
u t,r,Z, = dk.klo(kr) dw.exp(-~wt). k)' 

_Q<;> _Q<;> ..::I(w,._ 
(1) 
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Fig. 1. Normal and leaking mode poles on w-plane. 

Evaluation of this integral may be performed by the residual theorem for one 
integral and by a suitable way such as the stationary phase method for the 
other. This technique is called the normal mode expansion and is very 
useful when rand t are large. Following GILBERT13), we shall at first 
evaluate the integral of (l) by the residual theorem. The dominant 
contribution in this integral arises from poles which are to be determined by 
the period equation J=O. 

On the complex ro-plane (Fig. 1), integral (1) has two pairs of branch 
points at w=±ank and w=±~nk due to following two radicals, 

and (2) 

in the integral, where suffix n indicate the value in the half space. Because of 
these branch points, we have four Riemann sheets which are called (+, +), 
(+, -), (-, +) and (-, -) sheets according to the sign of the real part of 
v and v'. 

The roots of the period equation d(w, k) =0 on the (+, +) sheet give 
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familiar normal modes and lie on the real axis of the w-plane where Re(w);;;JJnk. 

When two branch lines are taken along Re(v) =0 and Re(v') =0 as shown in 

Fig. 1 (a), no other poles are found on this uppermost sheet. Thus, the w­

integral of Eq. (1) is completely evaluated by contributions of the normal 

mode poles and of two branch lines. 
The contributions of these branch line integrals can be partly replaced 

by those of residues. When we deform the branch lines as those shown in 

Fig. 1 (b), poles on the other Riemann sheets are uncovered. These new 

complex roots yield the concept of the leaking mode.12) In this case, the 

integrals along two new branch lines are very small and dominant contribu­

tions in integral (1) arise from these real and complex roots. When the 

value of k is changed gradually, these poles take walks on the complex w­

plane. The track of a pole is called a dispersion curve. 

If we restrict our attention to the dispersion of the leaking mode, it is 

necessary to trace the position of the complex root. In general, when both w 

and k are taken as complex values in the period equation, the dispersion curve 

cannot be decided without one additional condition such as Im(k) =0 13) or 
Im(w) =014). TAZll\fE15) showed that the period equation means a kind of 
conformal mapping from a complex variable to the other. 

Even though a simple additional condition is chosen, it is still difficult 
to find the complex root of the period equation. OLIVER and MAJOR10) 

suggested a simple way to get the approximate dispersion curve for the leaking 

mode. They calculated the period function L1 (w, k) for real wand real k, 

and defined the dispersion curve which is the trace of its minima. 

The other simple method was given by Su and DORMANll ). In their 

method, surface amplitude spectra16) were calculated in order to get the 

dispersion curve of the leaking mode. They compared their results with the 

complex roots obtained by GILBERT13) for the same model and got good 

agreements. But they have given no mathematical discussions on the 

approximate method. TAZIlIIE and YOSHII8 ) mathematically confirmed that 

the solution from these simple methods agrees with the complex root when 

the imaginary part of the complex root is very small. 

Integral (1) contains the vibration term of 

Jo(kr) . exp(-iwt) . (3) 

Consequently, it is immediately recognized that the imaginary part of the 

complex root causes some attenuation of the wave train besides geometrical 

spreading or absorption. This attenuation corresponds to the wave energy 



Analyses oj Some Leaking Modes 291 

leaking out from the wave guide into the half space. Because this kind of 

attenuation depends on the magnitude of the imaginary part of the complex 

root, it is concluded from TAZIME and YOSHII'S study that the two 

approximate methods are very powerful for the analysis of the leaking mode 

which has large amplitude due to small attenuation. 

In the present paper, dispersion curves of the leaking mode were mainly 

obtained by these two approximate methods. Some comparisons of the 

approximate solutions with the complex roots will be given in § 7 in this 
paper. These complex roots were pursued from the start points decided by the 

approximate methods. Because the computer program of the author is written 

by the matrix methodl7 ), the complex root for the multi-layered wave guide 

can be calculated easily. 

3. PL waves. 

3.1 Model experiments on PL waves. 

The PL wave has been the most popular leaking mode since OLIVER and 
MAJOR'S famous paperlO) was pablished. The general appearance of the PL 

wave on the earthquake seismogram is a long period dispersed wave train 

between P and S waves. This wave train has the nature akin to a surface 

wave of Rayleigh type, and has considerable attenuation. The particle 

orbit on the free surface of this wave train is often prograde. 

Also in model seismology, PL waves have been observed frequently. 

KNOPOFF et aJ.18) observed dominant vibrations just after the P arrival, using 

the Brass-steel model, and attempted to explain it by the ray theory. 

GILBERT and LASTERl9) computed the" approximate dispersion curves of the 

PL wave by OLIVER and MAJOR'S method and compared them with the 

dispersions of the wave trains which were observed in their model experiment. 

They also suggested to label PL modes according to their connections to M 

modes named by TOLSTOY and USDIN20), as PL2V PLl2 etc. In the present 

paper, PL waves are labeled in this manner. LASTER et al.14) computed the 

complex root of the period equation for the Brass-steel model. They also 

calculated modal seismograms, considering the dispersion curve, the excita­

tion function, the attenuation coefficient and the instrumental response. They 

compared them with actual records. 

In all these previous model experiments, the predominant PL wave is 

always PL22 and the "fundamental" PL wave, namely PL2V is usually not 

found on the record. This appearance is very differ from that of the 
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Table 1. Elastic constants of the constituent plates. 

Plastics 
Aluminum 
Lamiverre 

receiver 

a (km/s) 

1.89 
5.35 
3.45 

f3 (km/s) 

1.07 
3.06 
1.55 

____ l_c ..... m ____ P_I_o_st_ic_S ______ j:,s~ource 

Aluminum or Lomiverre 

p (g/cm3) 

1. 40 
2.70 
1. 75 

Fig. 2. Schematic diagram of the present model experiment. 

earthquake record. LASTER et al. explained that this was due to the 
instrumental response. 

Two dimensional single layer models in the present model experiment are 
Plastics-Aluminium and Plastics-Lamiverre models. These models will be 

called simply PL-AL and PL-LAM models respectively. The elastic 
constants of these plates, about 2 mm thick, are tabulated in Table 1. The 
thickness of the model layer is 1 cm. Details about the instrument used 
in this model experiment have been described by SAIT021 ). 

In the present experiment, a sound source and a receiver were arranged 
as shown in Fig. 2, and because of this special arrangement, PL21 

waves were clearly observed. It is' not obvious why PL21 waves were 

predominantly observed by this way. Probably, SOme source conditions, 
such as source depth, have the great role in this problem. 

Examples of observed records are exhibited in Fig. 3. The upper trace is 
a record from PL-AL model and the lower trace is from PL-LAM model. The 

source signal is a pulse of about 7 {ls width. On both records, Mll waves 

having large amplitude are found about 200 {ls after the arrivals of initial P 

waves. Between P and Mu waves, two kinds of dispersed waves are recognized. 
One is a wave train with longer periods, about 40 {ls, and the other is a 

wave train with shorter periods, about 10 (ls. Both have a nature of 

normal dispersion and correspond to PL21 and PL22 respectively. Using the 
same PL-AL model like this, HAMADA22) also observed PL22 waves but did 
not PL21 waves. 
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PL -AL model 

il=100cm 

shot mark 

PL-LAM model 

100fs 

Fig. 3. Examples of records obtained from the model experiments. Upper; PL-AL 
model, Lower; PL-LAM model. 

PL-AL model 

c = 5.2 km/s 

5.0 

3.7 

o 20 30 40 50 60 70 
T/H (ps!cm) 

Fig. 4. Examples of the calculation of I A I. Two pairs of the minima represented 
with small arrows correspond to PL21 and PL22 waves. 
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Fig. 5. Theoretical phase velocity curves of normal and leaking modes for PL-AL 
model. Phase velocity curves of PL waves were obtained by OLIVER and 
MAJOR'S method. 

The theoretical disp~rsion curves of PL waves for these two models were 

obtained by OLIVER and MAJOR'S method. Some examples of the absolute 

value of the period function for PL-AL model are illustrated in Fig. 4. In 

order to calculate the period function, phase velocity c and frequency f were 
chosen as parameters. The ordinate of Fig. 4 is the arbitrary linear scale. 
Two pairs of sharp minima are represented with small arrows. The 
dispersion curves of PL waves were obtained by tracing these minima. 

The phase velocity curves of both normal and leaking modes for PL-AL 

model are shown in Fig. 5. As mentioned before, PL waves are labeled 
according to connections to M waves. The minima of the period function 
for PL12 wave are not so clear in this case. 

Fig. 6 is the travel time chart of peaks and troughs of observed PL21 waves 
for PL-AL model. Open and solid circles represent peaks and troughs of 
the wave train respectively. Observed phase velocity was defined as the 
propagation speed of a peak or a trough. Group velocity was obtained by 
an usual way23). The same process of the calculation was also performed 
for the other wave trains. 

Observed phase and group velocities of PL waves are plotted in Fig. 7 
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Fig. 6. Travel times of peaks and troughs of observed PL2l wave trains for PL-AL 
model. The phase velocity was obtained from the traveling speed of a peak or a 
trough. 

S.O 

>4.0 
I-

U 
o 
.....J 
W 
> 

o 

0.00 0 
0 00 
0,<8 

C " I , , 
PL22 : 

I 

, 0 .. 
'00 
, 0 

/00 
,0 

I o~o 
'0 0 I , eq 

o '9 U 
rP, 

000 

"'0 00 

~ 
0, 
0. 

~ 

PL-AL model H, = lcm 

40 

u 

, 
, 

0, 
o , , 

50 

Fig. 7. Observed and theoretical dispersions of PL waves for PL-AL model. 

and are compared with theoretical dispersion curves. Theoretical group 
velocity curves were obtained by graphic differentiation of phase velocity 

curves from the relation, U =c+k.dc/dk. The agreement between the 

observed and the theoretical dispersion is very good except for the small 
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Fig. 8. Observed and theoretical dispersions of PL waves for PL-LAM model. 

discrepancy of PL21 group velocity. It was also confirmed that dispersed waves 

observed in HAMADA'S model experiment were PL22 waves. Now, no 

discussion on normal modes is given in the present paper, because HAMADA 
made a perfect report about them. 

In Fig. 8, the comparison of observed and theoretical dispersions of PL 
waves for PL-LAM model is represented. The minima of the period function 
for this model are not so sharp as those for PL-AL model. This may be due 
to the smaller velocity contrast between the superficial layer and the half 
space of this model. But the agreement between the observation and the 
theoretical curve is still good. 

One of the major objects of this model experiment is to examine the 
reliability of the approximate dispersion curve for the leaking mode. As 
shown in this section, approximate solutions agree with experimental data very 
well. Of course, any approximation has its own limitation. In our leaking 

mode problem, approximate methods seem to be very powerful for the 
analysis of wave trains of the leaking mode which have large amplitude due to 
the small attenuation. 

3.2 P L waves in earthquake seismograms. 

3.2.1 Theoretical dispersion curves. 

Since the publication of OLIVER and MAJOR'S paper,lO) many authors 
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discussed PL waves in the long period seismograms24 ).25).1l).26). OLIVER and 

MAJOR calculated the dispersion curve of the PL wave for a crust-mantle 

model by their approximate method and compared it with observed data. 

This simple model has been called "OLIVER and MAJOR'S model" and was 
also analyzed by GILBERT13) and Su and DORMANll). GILBERT calculated 

the complex roots of the period equation for this model. Su and DORMAN 
showed that the results from two approximate methods agree with the 

complex roots obtained by GILBERT. 
OLIVER24 ) attempted to determine the velocity variation in the upper 

mantle from the analyses of PL waves. He could not get the good result for 
this problem, but obtained the variation of the crustal thickness in United 
States. 

In this section, more complicated crustal models will be analyzed. 

Dispersion curves are calculated mainly by the two approximate methods. 
Because the computer program is written by the matrix method17) dispersion 

curves for rather complicated models can be calculated easily. In § 7, 

some comparisons of approximate solutions and complex roots for the same 

model will be given. 

Table 2. Elastic constants of five crnst-mantle models. 

Model I a. (km/s) I fl. (km/s) I P. (g/cm') I H, (km) I H2 (km) 

]W-I 8.00 4.50 3.30 15.0 15.0 
]W-IA 7.50 4.20 3.30 15.0 15.0 
]W-lB 8.50 4.80 3.30 15.0 15.0 
]W-2 8.00 4.50 3.30 10.0 20.0 
]W-3 8.00 4.50 3.30 20.0 10.0 

a I =6. 10, fl, =3.45, PI =2.77, a2 =6.60, fl2=3.80 and p2=2.90 in all cases. 

VELOC lTV (km/s) 
o 3 4 5 6 8 
O~--~--~ __ -L~~ __ ~L-__ ~ __ ~ __ -L ___ 

10 

~20 

;: 30 
0.. 
W 
o 

40 

50 

: JW-2 ; .. -r--
~~JW-l -------,-_., 

JW-3 : 

-- Compressional wave 

---.---- Shear wave 

JW-2 

I 
~JW-l 

JW-3 

Fig. 9. Compressional and shea,r wave velocity distribntions with depth of five crust­
mantle models. 
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, , 
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0.15 0.2 

I 
I 

I 

Pl22 

,'-\ 

" , , 

0.2 

, , , 

0.25 

0.25 

0.25 

Fig. 10. Examples of computations by the two approximate methods for dispersion 
curves of PL waves. Horizontal, Vertical and I J I are two components of 
surface displacement spectra and the absolute value of the period function. 

At first of this section, the effect of the mantle velocity variation on 
dispersion of the PL wave is discussed. Three continental models (JW-l, 
JW-IA and JW-lB) tabulated in Table 2 are chosen for this purpose. Each 
model consists of two crustal layers and a half space mantle. The elastic 
constants of the crustal layers were determined by the present author27 ) 

in the analysis of Rayleigh waves observed in Japan. Constants of the 
mantle were determined tentatively for the present study. These models 
are exhibited also in Fig. 9. 
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Some computation examples by the two approximate methods for Model 
JW-l are shown in Fig. 10. The phase velocities are 7.9, 5.4 and 4.6 km/s. 

In this figure, Horizontal, Vertical and I d I represent the horizontal and vertical 

spectral amplitudes and the absolute value of the period function respectively. 
The phase velocity of 7.9 km/s is the example which is approximately same 
to the compressional wave velocity in the upper mantle. Some extremes which 

correspond to PL21> PL22 and PL23 waves are recognized. When the 
phase velocity is 5.4 km/s, the spectrum has a clear maximum for PL12 wave. 

But the period function shows very steep exponential increase, and the 

minimum for PLu wave cannot be found. The phase velocity 4.6 km/s is a 

little larger than the shear wave velocity in the upper mantle. Exponential 

increase of the period function is now very large and no sharp minimum is 
recognized. However, the spectra of two components have clear maxima 
for PL waves. 

The merits of those two approximate methods are clearly compared in 
Fig. 10. One problem is sudden sign change of the spectrum. Sometimes, 
this sign change occurs near the place where any PL wave is expected to 
arise. The other problem is steep exponential increase in the absolute value 
of the period function. These "anti-symmetries" disturb the positions of 
the extremes. 

Fig. 11 is the dispersion curves for Model JW-l. Group velocity U was 

determined from the relation, U =c+k.dc/dk, by graphic differentiation of 
the phase velocity curve. This figure is very similar to Fig. 4 in Su and 
DORMAN'S paperlll. The group velocity curve of PL22 has a very steep part 

and its approximate period was estimated from Fig. 11 as follows, 

T = H e/3.8 (sec) (4) 

where He is crustal thickness in km. 

The phase velocity curves for three models, ]W-I, JW-IA and JW-lB 

are shown in Fig. 12, where the abscissa means frequency. These models 
have the mantle P wave velocities of 8.0, 7.5 and 8.5 km/s respectively, and 
the effect of this velocity difference on the phase velocity clearly indicated 
in this figure. In Fig. 13, phase and group velocity curves of two principal 

PL waves, PL21 and PL22 , are given. In spite of large differences of the 

mantle velocity, the group velocity curves of PL21 wave in shorter period are 

of almost coincided with each other. This result may suggest a severe limit 
the application of the analysis of PL wave to obtain the detailed crust-mantle 

structure. In general, the group velocity of PL wave has more chances to 
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Fig. 11. Dispersion curves of PL.1 , PL12 and PL2• waves for Model JW-1. 
Fig. 12. Phase velocity curves for three models JW-I, JW-IA and JW-IB. 

be determined from observations than the phase velocity. Consequently, it 
seems to be very difficult to determine the accurate mantle velocity from the 
observation of PL wave. 

Phase velocity curves of PL waves for three models, JW-I, JW-2 and 
JW-3 are shown in Fig. 14. They have different ratios of H2/Hl as given 
in Table 2 and in Fig. 9. There are no systematic changes in these curves 
except for PL21 wave. Since these changes seem to be less than observation 
errors, it may be also very difficult to determine the ratio mentioned above. 

Next, we discuss the effect of the shallow water layer on the dispersion 

curves of PL waves. Three models, JW-IWA, JW-IWB and JW-IWC were 
considered. These models have water layers of 1 km, 2 km and 3 km thick, 
respectively, and are tabulated in Table 3. The velocity distributions of 
compressional and shear waves with depth of Models ]W-IWC and ]W-I are 
shown in Fig. 15. The sound velocity and the density of the water layer are 
1.52 km/s and 1.02 g/cm3. The total thickness of the crust is assumed to be 
30 km in all these models. 
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Fig. 14. Phase velocity curves for three models, JW-1, JW-2 and JW-3. 

Some examples of the calculation by the approximate methods are shown 
in Fig. 16, where phase velocity is 6. 7kmjs. The upper figure represents the 

absolute value of the period function and the surface spectra for Model 
JW-IWC. At about 0.13 cps, the period function has a very sharp minimum, 
and the vertical component of the spectrum has an extremely large maximum. 

On the other hand, the horizontal component changes its sign at this point 
suddenly. This special frequency corresponds to a kind of resonance in the 
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Table 3. Elastic constants of water covered crust-mantle models. 

Layer a (km/s) fJ (km/s) I p (g/cm3) H (km) 

1 1. 52 - 1. 02 H, 
2 6.10 3.45 2.77 (15.0-H,) 
3 6.60 3.80 2.90 15.0 
4 8.00 4.50 3.30 INF. 

Model JW-1WA; Hl=1.0(km), Model JW-1WB: H , =2.0, Model JW-1WC; 
H,=3.0. 
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Fig. 15. Velocity distributions of compressional and shear waves of models JW-I and 

JW-1WC. Other two models have almost same velocity distributions except 
for the thickness of the water layer. 

Fig. 16. Examples of computation by two approximate methods. Upper; Model 
JW-1WC, Lower; Model JW-1WC'. Phase velocity is 6.7 km/s. 

water layer. OLIVER and MAJORIO) have proposed an equation for this 
phenomenon, 

(5) 

0.25 

0.25 
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where 2€ is phase shift of the compressional wave reflecting on the liquid­

solid interface. In the present paper, the wave train corresponding to this 

special frequency is called PLw wave. 
The lower figure of Fig. 16 is the similar example for Model JW-IWC'. 

This model has no water layers but the other portions are exactly same to 
those of Model JW-IWC. From two figures in Fig. 16, it is soon recognized 
that the horizontal component of the spectrum is not disturbed by existence 
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w 
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I PLw 
a. 

C 

PER ICD 

Fig. 18. Schematic representation of transition from continental PL wave 
to oceanic PL wave. 
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of the water layer except for the sudden change of its sign at the frequency 
which corresponds to PLw wave. This result suggests the decoupling of the 
horizontal motion on the liquid-solid interface, and the dispersion curve of PL 
wave except for PLw wave may be simply calculated from the model with no 
water layer. 

In Fig. 17, the dispersion curves of PL waves for Models ]W-1, ]W-1WA, 

]W-1WB and ]W-1WC are illustrated. It is soon understood that the 
thicker the water layer, the lower the frequency of PLw wave. On the other 
hand, other PL waves, such as PL21 have opposite trend because of the 
thickness of the "solid" crust. From Fig. 17, the approximate frequency of 
PLw wave can be determined graphically as follows, 

j = 1jT = 1j(2.5XH1) (cps) (6) 

where Hl is the thickness of the water layer in km. 
Transition from continental PL wave to oceanic PL wave is schematically 

illustrated in Fig. 18. CHANDER (personal communication) has shown some 

records of shear-coupled PL wave named by OLIVER24 l which has periods 
as long as 40 seconds and propagated along the sub-oceanic path. The 
present author has such an opinion that shear-coupled PL wave is possible 

to have such long periods if it is not PLw but PL21• Sometimes, the transi­
tion of PL waves from continental to oceanic has been recognized as indicated 

by a dotted line in Fig. 18, but it does not seem to be true. 

3.2.2. Analyses oj observed PL waves. 

It has been shown that the long period vibration was recognized on the 
record near the initial motion of the great earthquake28l • MATuzAwA29 l 

explained that this vibration is not the leaking mode but a kind of body 

Table 4. List of the earthquakes. 

No. I Earthquake Date 
Epicentre I I I Instrument 

, __ ,--_ °P~.s. d(km}--,----
N E V H 

1 I Tajima May 23,1925 35.6° 134.8° T 455 A B,G 
2 Tango March 7, 1927 35.6 135.1 T 427 A,C B 

K 410 A' B 
3 E off Aomori March 9, 1931 41. 2 142.5 T 450 D E 

Pre£. 
4 Off Miyazaki Nov. 6,1931 32.2 132. 1 T 817 F 

I Pref. 

Observation point T; Hongo (Tokyo). K; Kamakura. 
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Table 5. Characteristics of the seismometers. 

I 
Magnification I Natural I Damping I 

penod (sec) ratIO 
Remarks 

A 2 10 2.5 with oil damper 
A' 2 10 2.0 with oil damper 
B 2 5 2.0 with oil damper 
C 1.5 30 1.6 
D 1.5 50 1.5 with oil damper 
E 7.5 20 3.0 with magnetic damper 
F 7.5 18 2.3 
G 10 12 

waves. But as explained in § 2 of the present paper, the leaking mode was the 

contribution of the pole which took the place of that of the branch line. The 

contribution of the integral along the branch line corresponds to the body 
wave. Therefore, the analysis of the leaking mode is considered as an another 
approach to the body wave. For example, KNOPOFF et al,18) observed the 

predominant vibrations which correspond to PL22 waves in his model 

experiment, and attempted to explain them by the ray theory or by the 

superposition of many body waves. 

At first, four old great earthquakes which occurred in Japan will be 
analyzed. These four earthquakes are tabulated in Table 4. The data about 
Tajima earthquake are due to MATUZAWA30), and other data were picked 

up from Catalog of Major Earthquake which occurred in and near Japan 

(1926-1956) by J.M.A. All records of these earthquakes were traced from 
the figures in the reports which were already published. The characteristics 

of the seismometers indicated with A, B etc. are tabulated in Table 5. 

Observation points and the epicentres of the earthquakes are shown in 

Fig. 19. In this figure, T and K mean the Hongo and Kamakura observa­
tion stations of the Earthquake Research Institute of Tokyo University. 

The propagation paths from these four earthquakes to the observation points 
are those of nearly continental structures. 

Figs. 20(a) and (b) are traced records of Tajima earthquake in 1925 

observed at Hongo. Notations P, P*, P etc. in these figures are the name of 
the peculiar phases after MATUZAWA30). In the records of EW component of 

(a) and the vertical component of (b), dispersed wave trains bigin from near 
the point indicated with P*. 

Now we must take our attention to the characteristics of the seismometers 

which were used in the observation. As shown in Table 5, the natural 
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o Observation point 

T - Tokyo (Hongo) 
K- Kamokura 

o Epicen\fe 

1 - Tajima (1925) 
2-TangO (1927) 
3-E off Aomori Pref. (1931) 
4-0ff Miyazaki Pr.f.(1931) 

Fig. 19. Observation points and the epicentres of the earthquakes No. I-No.4. 

Taj ima Earthquake 

May 23, 1925 ( Hongo) 

P p* P (5) 

o I I I J 
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1 min 

P p' P 
5 I I I 
N 

P p* P 
E J I I 
w 

(a) 

Taj ima Earthquake 
May 23,1925 (Hongo) 

u 
0 

(b) 

Fig. 20. Traced records of Tajima earthquake observed at Hongo. 
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Tango Earthquake Tango Earthquake 

March 7, 1927 

p rf P 
o I I I 
u 

p p' p 
s I I I 
N 

p p' P 
E I I I 
w 

(5) 
I 

1 min 

(a) 

( Hongo) March 7,1927 (Hongo) 

To = 30s 

P 
E I 

w 

To = lOs 1 

1 min 

(b) 

Tango Earthquake 

March 7, 1927 (Kamakura) 

p p 
o I I 
u 

p p' 

N I I 
5 

p p' 

E I I 
w 

(5) 
I 

1 min 

(c) 

Fig. 21. Traced records of Tango earthquake observed at Hongo and Karnakura. 

301 

period of the seismometer A which recorded the EW component record of 

figure (a) is about 10 seconds and is not so longer than period of observed 
waves, 7-8 seconds. Moreover, the damping ratio of the pendulum is not 
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East Off Aomori Pref. 
March 9.1931 (Hongo) 

To= 20s 

~~IlYJ''\.~llt11\ 
u 'I' '1 1{ 

Off Miyazaki Pref. 
Nov.2, ~931 CHongo) 

-- original record 

true ground motion 

To=505 

P 

~~.JV~~ 

"--~ 

To= 50s 
1 min 

p 

i~~~'-v~ 
Fig. 23 

1 min 

Fig. 22 
Fig. 22. Traced records of the earthquake of East off Aomori Pref. observed at Hongo. 
Fig. 23. Seismogram of the earthquake of Off Miyazaki Pref. observed at Hongo. The 

trace of a dotted line is the true ground motion computed by TC\ WASUMI. 

enough. But the period of this wave train is same to that in figure (b) which 

was recorded by seismometer G. The natural period of this seismometer is 

about 12 seconds. 

No predominant dispersed waves were found in the vertical component 

record in figure (a). It may be because of the rather shorter natural period 

of the pendulum. In all records of Fig. 20, many dispersed wave trains 
can be pointed out after the S arrival. They must be Love waves, Rayleigh 

waves and their higher modes, though they are not analyzed in the 

present study. 
Figs. 21 (a), (b) and (c) are the records of Tango earthquake in 1927 

observed at Hongo and Kamakura. These records were observed by 
hrAMuRA'S strong motion seismometer31). In the horizontal components of 

figure (a), very beautiful dispersed waves can be found between P and S 

arrivals. The periods of these wave trains are again 7-8 seconds. 

The upper figure of (b) is the record obtained by a seismometer whose 

natural period is about 30 seconds. Large vibrations of long periods, about 
24 seconds, are recognized but it must be noticed that the damping ratio of this 

seismometer was also very small. The lower figure is same to EvV component 
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in figure (a). From the comparison of these figure, we can also find the 
shorter period vibration superposing on the longer period one in the upper 
figure. If it is true, this figure suggests that the shorter period vibration, 

about 7-8 seconds, is not due to the smaller damping ratio of the seismometer, 

but indicates the true information of the propagating wave. Figure (c) shows 
the records observed at Kamakura. The same vibration which was found 

in figure (b) can also be found in this figure. But the record of EW com­

ponent seems to be disturbed by something, and the period is not exactly same 

to that of the other records. 

Traced records of the earthquake of East off Aomori Prefecture in 1931 
observed at Hongo are shown in Fig. 22. In the records of vertical and NS 

components, small but beautiful vibrations can be recognized. The period 
of this vibration is about 6 seconds and is very small compared with the 

natural period of the seismometer. 
Fig. 23 is the record of the earthquake of Off Miyazaki Prefecture in 1931 

observed at Hongo. The trace of a solid line is the original record and that of 
a dotted line is the true ground motion after KAWASUl\U32 ). He obtained 

this true ground motion by means of numerical integration. In both 

records, a dispersed wave train with periods of 20-30 seconds can be found 
clearly. 

Now, we are going to compute the group velocity from these records. 
But there is a big problem about "time". In all these old observations, the 

accuracy of time of the record was not so good, and the origin time of the 

earthquake could not be determined exactly. In the present study, the 
arrival times of initial P waves were fixed from the epicentral distances by 
the travel time table by WADATI, SAGISAKA and MAsuDA33 ) and the group 

velocity was computed by using "relative time". The accuracy of determina­

tion of initial P arrivals by this method may be about ±2 seconds. 

Consequently, the group velocities obtained have the accuracy of about ±3%. 
Group velocities from the records of Tajima and Tango earthquakes by 

the method mentioned above are plotted with various marks in Fig. 24. 

Because the paths from both epicentres to the observation points are almost 
same, the group velocities obtained are well concentrated in a narrow region. 

Solid lines in this figure are theoretical group velocity curves of PL22 wave 

for Model ]W -1. The thickness of the crust is found to be 30 to 35 km. 
This result agrees very well with the crustal thickness obtained from the 
dispersion of Rayleigh waves34) as well as from the gravity analysis35). 
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Table 6. List of the earthquakes (continued). 

Date Earthquake 
Epicentre I 

---.- M 
N E 

Off E Coast of Feb. 15,1961 43°16' 147°56' 6.3 
Hokkaido 

Off SE Coast of Feb. 21,1962 42 46 145 13 
Hokkaido 

Off Etorofu Is. Nov. 16,1963 43 32 149 04 6.2 
Off SE Coast of Nov. 12,1966 41 37 144 26 5.9 

Hokkaido 
Off Kinkazan Jan. 17,1967 38 15 142 05 6.3 
Hyuganada (A) April 1,1968 32 18 13223 6.3 
Hyuganada (B) Nov. 14,1968 3132 131 53 5.3 

Observation point M; Mt. Tsukuba, S; Sapporo, N; Memuro. 

I 

Obs·I.:1(km) 
pt. 

M 1030 

M 849 

N 283 
S 301 

S 537 
M 835 
M 923 

Off E Coast of Hokkaido 
Feb.15 1961 (Mt. Tsukuba) 
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o Observation point 

M - Mt. Tsukuba 
N - NemUTO 
5 - Sapporo 

o Epicentre 

5 - Off E Coast of Hokl-:aido 
G - Oi1 SE Cocs1 of Hokkaido 
7 - Off Etorofu Is. 
S - Off SE Coast of Hokkaido 
9 - Off Kinkazan 

10 - Hyugonada (A) 
II - Hyuganado{B) 

Ea\I~\I\I\~ 
R~I\III\I~\jl' 

N 

4 
Fig. 26 

300 km 
"--'---'--"' 

Fig. 27 
Fig. 26. Observation points and the epicentres of earthquakes No.5-No. 11. 
Fig. 27. Traced records of the earthquake of Off E coast of Hokkaido observed at 

Mt. Tsukuba. 

In Fig. 25, observed group velocities obtained from the records of four 
earthquakes are compared with the theoretical curves of PL21 and PL22 waves 

for Model JW-l. For the earthquake of Off Miyazaki Prefecture, group 
velocities were obtained from both the original record and the true ground 
motion. The group velocity of this wave train fits to the theoretical curve of 
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Off SE Coosl of Hokkoido Off Elorofu Is. 

r:Y\N'n~~I~ 
F?J\tJI~ I Fail 
EVru~~ 

Fig. 28 Fig. 29 
Fig. 28. Traced records of the earthquake of Off SE coast of Hokkaido observed at 

Mt. Tsukuba. 
Fig. 29. Traced records of the earthquake of Off Etorofu Island observed at Nemuro. 

PL21 wave for Model ]W-I whose crustal thickness is assumed to be 28 km. 
Open circles in Fig. 2S are the group velocities from the earthquake of 

Off Aomori Prefecture. These group velocities fit to the theoretical curve of 

PL22 wave for Model ]W-I whose crustal thickness is about 24 km. 
Next, PL waves found in more recent records will be analyzed. Table 

6 is the list of earthquakes No. S-No. 11. Observation points are Mt. 
Tsukuba, Sapporo and Nemuro, and the seismometer used are the Press-Ewing 
long period seismometer, the portable long period seismometer by Y OSHII36) 

and ].M.A. Type-59 seismometer respectively. These observation points 
and the epicentres are illustrated in Fig. 26. The data of the earth­
quakes tabulated in Table 6 were determined by ].M.A. 

Traced records of the earthquake of Off E coast of Hokkaido observed 
at Mt. Tsukuba are shown in Fig. 27. The long period dispersed wave, about 
30 seconds, can be found clearly, and the particle orbit of this wave train is 
prograde. The path from the epicentre to Mt. Tsukuba is rather sub-oceanic 
than continental. 

Records of the earthquake of Off SE coast of Hokkaido observed at 
Mt. Tsukuba are shown in Fig. 28. Also a long period wave train can be 
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Off SE Coast of Hokkaido 
Nov.12.1966 (Sapporo) 

Fig. 30 

Off Kinkazan 
Jan .17.1967 (Sapporo) 

Fig. 31 
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Fig. 30. Traced record of the earthquake of Off SE coast of Hokkaido observed at 
Sapporo. 

Fig. 31. Traced record of the earthquake of off Kinkazan observed at Sapporo. 
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Fig. 32. Observed group velocities from the records of earthquakes No.5-No.9. 
Solid lines are theoretical dispersion curves of PL21 and PL" waves for 
Model JW-1. 

found. The particle orbit of this wave IS prograde. 
Records of the earthquake of Off Etorofu Island observed at Nemuro 

by lM.A. Type-59 seismometer are given in Fig. 29. Rather short period 
dispersed waves can be found between P and S waves. In this case, the 

particle orbit is retrograde. We can find a strange phase indicated by a small 
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arrow in the record of NS component about 12 seconds after the initial P 
arrival. This component is almost transversal to the wave path as shown in 
Fig. 26. It is not clear why such a strange phase appeared at this position. 

Fig. 30 is a record of the earthquake of Off SE coast of Hokkaido observed 
at Sapporo. Between P and S waves, we can find two kinds of vibrations 

having longer and shorter periods. The former has not enough wave numbers 
for the dispersion analysis. 

Fig. 31 is a record of the earthquake of Off Kinkazan observed at Sapporo. 

The appearance of the record is very similar to that of the record in Fig. 30. 
The shorter period wave train can be recognized more clearly. 

In Fig. 32, group velocities obtained from these five earthquakes are 
shown together with the theoretical dispersion curves of PL waves for Model 
JW-l. Group velocities from the earthquakes of Off Etorofu Island, Off SE 
coast of Hokkaido and Off Kinkazan correspond to those of PL22 waves and 
crustal thicknesses determined are about 20-25 km in all these cases. 

Open circles and open triangles in Fig. 32 are the group velocities from the 
earthquakes of Off E coast of Hokkaido and Off SE coast of Hokkaido 
observed at Mt. Tsukuba. The crustal thickness estimated from the group 
velocity of PL21 wave is about 26 km and this value is somewhat too large to 
be compared with the other investigations. The present author thinks that 
these wave trains have not enough wave numbers to get the accurate group 
velocity. 

Figs. 33 (a) and (b) are records of the aftershocks of Hyuganada 
earthquake in 1968 observed at Mt. Tsukuba. As shown in Fig. 26 and Fig. 19, 
the propagation paths from these two epicentres to the observation point 
are very similar to that in the case of the earthquake of Off Miyazaki 
Prefecture in 1931. Actually, it is soon recognized that the records of Figs. 
33(a) and (b) have the almost same appearance to the record of Fig. 23. The 
particle orbit is also prograde. 

Fig. 34 is the comparison of observed and theoretical group velocities. 

Solid circles are group velocities from the records of Fig. 23. Theoretical 
dispersion curves are again those for Model JW-l. Observed data fit well to 

the dispersion curve of PL21 wave for Model JW-l whose crustal thickness is 
about 28 km. 

In the analyses of earthquakes No.5-No. 11, epicentres and origin times 
used were taken from the catalog by J .M.A., and group velocities obtained 

are more reliable than those of earthquakes No. I-No.4. 
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Hyuganada (8) 
Nov.14. 19 66 (Ml.Tsukuba) 

Hyuganada (A) 
Apr. 1. 1966 (Mt. Tsukuba) EVI/I 
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Fig. 33. Traced records of two Hyuganada earthquakes. 
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Fig. 34. Group velocities obtained from the records of two Hyuganada earthquakes. 
Solid lines are theoretical dispersion curves of PL'1 w,we for Model JW-l. 
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Fig. 35. Velocity distributions of HUNKINS and Kuo's model and a simplified model 
HK-l. 
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Fig. 36. Comparison of observed and theoretical group velocities of PL waves observed 
in Tonga-Fiji region. Solid line is the theoretical curve of PL21 wave for 
Model HK-l. 

At last in this section, we will discuss the PL wave described by HU.NKINS 

and KU037 ). They discussed Rayleigh, Love and PL waves observed at Suva, 

Fiji Island. They divided Tonga-Fiji region into five groups according to the 
dispersion of the surface waves. They exhibited a crust-mantle structure 

obtained from the analyses of Love and Rayleigh waves for the wave path of 
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Group V. Observed group velocities of PL waves for Groups II and III were 
given in their paper but no theoretical calculations have been shown. 

Considering the dispersion of Love and Rayleigh waves, we can understand 
that Group II is similar to Group V. In Fig. 35, HUNKINS and Kuo's model 

for the wave path of Group V is transcribed. The present author computed the 
dispersion curve of PL wave for Model HK-1 which is illustrated in Fig. 35. 

The comparison of observed and theoretical dispersions is given in Fig. 

36. The theoretical group velocity of PL21 wave for Model HK-1 fits to 
the observed data for Group II very well. It is very important that this 

theoretical curve is not of PLw wave but of PL21 wave as shown in Fig. 18. 

Model HK-1 has the solid crust of about 19 km thick. The theoretical curve 

for a model which has the solid crust of about 22 km thick may fit to the 

observed data for Group III. 

4. Propagation of surface waves on the model 
having a high velocity layer. 

4.1. Theoretical dispersion curves. 

Propagation of surface waves on the special model which has a high 
velocity layer is a very interesting problem, because the usual technique of 
seismic prospecting is often invalid in such a case. This situation can be 

easily recognized from the simple ray theory. 
At first, five models in which high velocity layers are sandwhiched will 

be discussed. As shown in Fig. 37, these models are composed of plastics, 

aluminium and Lamiverre plates and are called PAL-models in this paper. 

Thickness ratios H2/Hl of two layers within five PAL-models, PAL-02, PAL-OS, 
PAL-I, PAL-2 and PAL-5 are 0.2, 0.5, 1.0, 2.0 and 5.0 respectively. The 

elastic constants of plastics, aluminum and Lamiverre plates were given 
already in Table 1. 

As illustrated in Fig. 37, two limits of H2/Hl~0 and H2/Hl~CO correspond 

respectively to PL-LAM and PL-AL models. Dispersion curves of Rayleigh 
waves for these two models can be easily calculated. In Fig. 38, phase 

velocity curves of Mn wave for PL-LAM and PL-AL models are given. 

When the ratio H2/Hl increases from zero to infinity, the dispersion curve for 
PAL-model may leave from that for PL-LAM model and approach to that 

for PL-AL model. In this case, shear wave velocity ~3 in the half space is 
less than that in the second Jayer. Therefore, the period equation A=O 

has no real roots in the region of C.>~3. The surface wave in this region must 
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Fig. 37. Schematic diagram of five PAL-models. 
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Fig. 38. Transition of the dispersion curve from PL-LAM model to PL-AL model. 

be a kind of leaking modes. 

Dispersion curves of the leaking mode for PAL-models were calculated 
by OLIVER and MAJOR'S method and are represented in Fig. 39. The 
dispersion curve for PAL-1O (H2/Hl =10.0) is also shown. Dashed lines 
represent the leaking mode, and solid and chain lines represent the normal 

modes. In the high frequency region, dispersion curves for PAL-models are 
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Fig. 39. Phase velocity curves for PAL-models. Dashed lines are the phase velocity 
curves of the leaking mode obtained by the approximate method. 
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Fig. 40. Relation between the dispersion curves of leaking and normal modes for 
PAL-I. Contour lines in the region of c>{Js represent the absolute value 
of the period function. 

very close to that for PL-AL model. These phase velocity curves have very 
strange features which have maxima and minima. The low frequency 
porition of the normal mode is also very complicated, though it is simplified in 
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Table 7. Elastic constants of PAL-IA. 

Layer I a (km/s) I fJ (km/s) I p (g/cm3
) I Layer thickness 

Plastics 
Aluminum 
Lamiverre 
(assumed) 

I 1. 89 1.07 1.40 
5.35 3.06 2. 70 

I 

3.45 1. 55 1. 75 
2. 79 1. 61 2.20 

SHEAR WAVE VELOCITY (km/s) 
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Fig. 41. (a) Shear wave distribution of PAL-IA. 
(b) Comparison of phase velocity curves for PAL-I and PAL-IA. Open 
circles indicate positions of minima of the period function for PAL-I. 

this figure. This portion will be represented later in more detail (Fig. 43). 
The dispersion curves for PAL-I, PAL-2, PAL-S and PAL-IO have two 
transition parts from normal to leaking modes. The transitions of the 
higher frequency sides are very smooth, but the sudden changes of the 
gradient of the dispersion curves are found at the lower frequency sides. 

The transition from the normal mode to the leaking mode fOr PAL-I is 

shown in Fig. 40. In the region of C>/33' the absolute value of the period func-
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tion is given by contour lines. Heavy solid lines in c;:£{Ja are real roots of 
the period equation. We can find a very sharp "trough" of the period func­
tion in c>{Ja and this trough seems to be connected smoothly to the dispersion 
curves of the real root. Now, we must pay attention to the fact that the 
dispersion curve discussed here is that of the "fundamental" mode. Since 
this mode may be the most important one, other "higher" modes were not 

discussed. 
In Figs. 41 (a) and (b), the other proof of reliability of the approximate 

dispersion curve for the leaking mode is shown. A new model P AL-IA has a 
half space in which shear wave velocity is a little larger than that in Lamiverre. 
The detail of this model is shown in Fig. 41 (a) and in Table 7. It is expected 
that the difference between phase velocities for PAL-l and PAL-IA will be 

very small except in the lower frequency region. It is also expected that 
whole dispersion curve of "fundamental" mode for PAL-1A will be included 
in the normal mode region, because shear wave velocity in the half space is 
larger than that of a layer just above. The phase velocity curve for PAL-IA is 
shown in Fig. 41 (b). In the region of {Ja<c<{J4' the normal mode solution 
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Fig. 43. (a) Phase velocity curves for PAL-models. The abscissa of this figure is 
normalized to H 2 • The phase velocity curve for AL-LAM model is also 
shown. 
(b) Low frequency portion of figure (a) is magnified. Only normal modes 
are shown. 

for PAL-IA is very close to the minimum of the period function for PAL-I. 
This result suggests high reliability of the approximate method for the present 
problem. The comparison of approximate solutions and complex roots of 
the period equation will be given in § 7 of this paper. 

Group velocity curves for PAL-models are illustrated in Fig. 42. These 
curves have very complicated appearances because of maxima and minima 
of the phase velocity curves. The group velocity has the higher value than 
the phase velocity in the region where the phase velocity has a characteristic 
of "inverse dispersion". 

Fig. 43 (a) illustrates the phase velocity curves for PAL-models and is 
essentially equivalent to Fig. 39, but the abscissa is normalized to H 2' If H 2 is 
not infinitely large, the limit of H2/Hl~OO correspond to AL-LAM model. 
As shown in this figure, when the ratio H 2/ H 1 increases, the phase velocity 
for PAL-model approaches to that for AL-LAM model, gradually. The 

low frequency portion of normal modes is shown very clearly now. This 

portion is magnified in Fig. 43 (b). 
AL-LAM model is another simple example of the "high velocity layer 
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Table 8. Elastic constants of five high velocity layer models. 

2.165 
2.598 
3.464 
4.330 
5.196 

1. 732 
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Fig. 44. Examples of the calculation by two approximate methods for Model H-125. 
Vertical, Horizontal and 141 are the two components of the surface spectrum 
and the absolute value of the period function. 

model". Its surface layer has the higher velocity than the half space medium. 
Next, general characteristics of the wave in the model of this type will be 
discussed. 

Elastic constants of five high velocity layer models discussed are listed 
in Table 8. The velocity contrasts of the surface layer and the half space for 
these models are 1.25, 1.5, 2.0, 2.5 and 3.0 respectively. All the velocities 
are normalized to fJ2' because this is the critical velocity between normal 
and leaking modes. The density contrast PI! P2 is tentatively assumed as the 
square root of the velocity contrast in all cases. Poisson's ratios in all these 
media are 0.25. 

Calculations of dispersion curves were carried out by using OLIVER and 

MAJOR'S and Su and DORMAN'S methods. Better results were obtained 
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Fig. 45. (a) Phase velocity curves of leaking modes for five high velocity layer models. 
The phase velocity c= 1.732 X P2 corresponds to the compressional wave 
velocity in the half space. 
(b) Phase velocity curves which show connections between normal and leaking 
modes. 
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Fig. 46. Phase velocity curves for high velocity layer models. The ordinate and 
abscissa of this figure are normalized to {31' The phase velocity curve of 
M2l mode for a "plate" model is also shown for comparison. 

by the latter method, because the former one was disturbed by steep 
exponential increase of the period function. This situation is illustrated in 
Fig. 44. When the absolute value of the period function suffers from steep 
exponential increase, the minima of it sometimes disappears. 

Phase velocity curves of the leaking mode for the high velocity layer 
models are shown in Fig. 45 (a). These curves were obtained mainly by Su 
and DORMAN's method. All these phase velocity curves have a special 
appearance of "inverse dispersion". Another special appearance is the 
discontinuity of them at c = 1. 732 X {32. This velocity corresponds to a2• 

Probably, the leaking mode has different natures in the region of c>a2. In 
this region, not only leak of the shear wave but also that of the compressional 

wave may be occurred. This problem will be discussed again in § 4.2 and 

in § 7. 
The connections between normal and leaking modes for high velocity layer 
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Table 9. Elastic constants of three high velocity layer models. 

Model 

HA-l 2.598 2.598 1.500 1.000 
HA-2 3.464 3.464 2.000 1.000 
HA-3 6.928 6.928 4.000 1. 000 

models are shown in Fig. 45(b). This feature is very similar to that of AL­

LAM model in Fig. 43 (a). Again the gradients of the phase velocity curves 
of the normal modes at C={J2 seem to be different from those of the leaking 
modes. All dispersion curves for these models converge into a point when 
the frequency approaches to zero. This velocity, c=O.9194 X {J2' corresponds 
to the free Rayleigh wave on the half space medium. 

If al and {JI are not infinitely large, al! a2-oo and {JI! {J2-00 are equivalent 
to a2 ={J2=O which will regard as to the condition of a "plate". As shown 
in Fig. 46, when the ratio {JI! {J2 or al! a 2 increases, the dispersion curve of 
the surface wave for the high velocity layer model approaches to that of M21 
wave for a plate model. The abscissa and ordinate of this figure are 
normalized to {JI for showing this relation. 

The other speCial high velocity layer models are shown in Fig. 47 and 
Table 9. In these models, compressional wave velocities in the surface layer 
are equal to those in the half space, but shear wave velocities in the surface 
layers are greater than those in the half spaces. As shown in Fig. 48, the 
surface waves for these models have the similar feature to that for H-125 etc. 
In this case, a Z!{J2->oo corresponds to a liquid half space. The problem of 
this type is sometimes called the "floating ice problem". 

All surface waves discussed in this section are those corresponding to M21 
wave (or an antisymmetric mode) for a "plate" model. Is there any surface 

wave corresponding to Mll wave (or a symmetric mode)? This problem will 
be discussed briefly in § 4.2. 

4.2. Model experiments of surface waves propagating on high velocity layer 
models. 

Experimental surface waves propagating on the high velocity layer models 
are analyzed here. Similar experiments have been carried out by OLIVER, 

PRESS and EWING18 ). However, they had no ideas about the leaking mode, 

and only experimental date were shown. Two dimensional models used in 

the present study are aluminum-Lamiverre and aluminum-plastics models. 
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Fig. 48. Phase velocity curves for three high velocity layer models shown in Fig. 47. 

receiver source 

Jl 
Aluminum 

Lamiverre or Plastics 

Fig. 49. Schematic diagram of the present model experiment. Both AL-LAM and 
AL-PL models were used. 

These models are called simply AL-LAM and AL-PL models here. The 
elastic constants of the three plates, about 2 mm thick, have been tabulated in 
Table 1. The equipment used in the present model experiment is same as that 
used in § 3. The sound source is a pulse of 5-10,us width. 

The schematic diagram of the experiment is illustrated m Fig. 49. A 
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sound source was attached to a corner of the model in order to avoid the reflec­
tion signals which may become undesirable disturbances on the record, 
because the dimensions of these models are only 85x85 cm2• Though the 
corner of the model is a kind of the singular point, no effects of it could not be 
found on the record, prima facie. 

Phase and group velocity curves for AL-LAM model are shown in Fig. 50. 
This group velocity curve was calculated by the usual way mentioned before. 
The group velocity is larger than the phase velocity because of "inverse 
dispersion" of the phase velocity. The group velocity curve of the normal 
mode is not given in Fig. 50. Since the gradient of the phase velocity curve 
suddenly changes at a transition point from the leaking mode to the normal 
mode, the group velocity may have a great gap at this point. 

Figs. 51 (a), (b) and (c) are experimental records for AL-LAM model. The 
equipment used in the present experiment has not so broad frequency 
response that a single model cannot get the record whose frequency range is 

broad enough to cover the theoretical dispersion curve. Because of this 
reason, model experiments were carried out for three models whose layer 
thicknesses are 2 em, 1 em and 0.4 em respectively. By using this way, the 
frequency range of the equipment can be relatively broadened. 

Wave trains of inverse dispersion which have large amplitudes can be 
found in the records of Figs. 51 (a), (b) and (c). The short period portion of 



Analyses of Some Leaking Modes 

AL-LAM model 

shot mark 

(a) 

AL -LAM model H, = 1 em 

20-r-"~ 

H, =2em 

t----I 
100}'S 

AL-LAM model H,=0.4em 

E30~ 
u 

shot mark 
>-------i 

lOOp. 

70 

shot mark 

(b) (c) 
Fig. 51. Experimental records for AL-LAM model. 
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the wave train damps suddenly with increase of the epicentral distance. 
Probably, it is due to the leakage of wave energy from the superficial layer to 
the half space. 

Observed phase and group velocities were calculated by NAFE and 
BRUNE'S39) and PEKERIS'S23) methods from the travel time chart of peaks and 

troughs of the wave train. Fig. 52 represents the comparison of the observed 
and the theoretical dispersion. The agreement may be satisfactory. In the 
case of a model which has a surface layer of 0.4 cm thick, the predominant 

wave train seem.s to be the norrna,l moge 1;>ecause of large attenuation of the 
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Fig. 53. Experimental records for AL-PL models. (a) H,=2 cm, (b) H, = lcm. 

leaking mode within the frequency range of the equipment. Small 
discrepancy between the observation and the theory in the normal mode region 
may be due to the measurement error in elastic constants of the Lamiverre 

plate. Since the Larniverre plate has small llnisotropy, this plate is not ;>9 
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good as the constituent medium for the model experiment. 

Figs. 53 (a) and (b) are records for AL-PL model. This model has 

larger velocity contrast than AL-LAM model, and thicknesses of of surface 
layers are 2 cm and 1 cm. Very beautiful dispersed wave trains of mverse 

dispersion are found in the records. 
The comparison between the observation and the theory of the surface 

wave is shown in Fig. 54. Again, theoretical dispersion curves of the leaking 

mode were calculated by OLIVER and MAJOR'S and Su and DORMAN'S methods. 
Observed phase velocities were obtained from the phase delay of the spectral 

analysis. Group velocities were obtained by the usual way. As illustrated 
in Fig. 54, the agreement between the observation and the theory is considered 

to be excellent. Small discrepancies of the observed and theoretical group 

velocities may be due to time delay of the equipment, because no group 

delay corrections have been done in the evaluation of observed group 
velocities. In the case of Hi =1 cm, the short period of the wave train and 
the large epicentral distance relatively decrease this time delay in compared 

with the case of Hi =2 cm, and the agreement is better than in the latter 

case. The discontinuity of the theoretical curve at c=a2 was already 

discussed in § 4.1. No predominant wave trains in the region of c>a2 

were observed in the experimental records. This may be due to the large 
attenuation of this wave. 

Next, we discuss the attenuation of the leaking mode. Since the most 
predominant surface wave on AL-PL model is the leaking mode, this model 

is suitable to examine the attenuation of the leaking mode. 

One of the most interesting characteristics of the leaking mode is 
attenuation. In general, the phase velocity of the leaking mode is larger 

than the shear wave velocity in the half space, and a part of wave energy of 

the propagating wave leaks into the half space. This leakage causes the 

attenuation which is peculiar to leaking mode propagation. 
Upper parts of Figs. 55 (a) and (b) are the amplitude spectra of the 

experimental records which were represented in Fig. 53. These spectra 

are normalized at a point which is very close to .the boundary between the 

normal mode and the leaking mode, because the attenuation discussed here 

is expected to be zero in the normal mode region. Large attenuation of the 
leaking mode can be soon recognized from these figures. Attenuation 
coefficients obtained from these spectra, are illustra,ted in the lower parts of 

Figs. 55 (a) and (b) by-open circles, 



332 

2.5 

~2.0. 
E ... 
> .... 
u 
9 
~1.5 

2.5 

~20 
E ... 
> 
0-

U 
o 
...J 

~1.5 

./ 

T. YOSHII 

o -

~"" . 
/0 

U ,/0 
,/ . 

o 0 _ 

--

0
0 -~~--c=Q(, 

" 0 , 

AL- PL model 

0..0.2 0..0.3 
FREQUENCY (cyclel,us) 

/'-
0-

U ,,'.' 

/' 
/: 

/,'. 

(a.) 

0-

,( 

D.O." 

, 0 ,". 
'0 

AL-PL model 

c = p, 
1.0'0'!.---'---,,0'*.0'2;;---L--,0.-.!.0.;7,,--'------n-o.o.!v6::----'--n0..*"o.ao-­

FREQUENCY (cyclel,us) 

(b) 
Fig. 54. Theoretical curves and observed data for AL-PL model. Observed phase 

velocities were calculated from the spectral analysis of the records. 
(a) Hl=2 em, (b) Hl=l em. 

Beside the attenuati0n due to "energy leak", there is another attenua­
tion due to "absorption" in the propagation of the leaking mode. The 

surface wave absorption on the aluminum plate is very small and negligible, 
but that on the plastics plate is considerable, about Q =28*. The absorp­
tion of the normal mode on the layered half space can be estimated by the 

* This Q was defined by (/= 'Ttl/ac, where a is the absorption coefficient, 



Analyses oj Some Leaking Modes 333 

AL-PLmodel H, =2em 

.1= 20cm 

30cm 

40cm 

~8~==~==========~ 
'E 
~7 

its 
lU 
05 
u 
zl, 

93 
I-

:3 2 

o Q= co 
• Q= 28 

i 
0 0 .. 

o 0 

~ 1 (ci;iii) 
SOoL---~~~oL.O~1------~O~.O~2------~o~n3 

FREQUENCY (eycle/ps) 

(a) 

AL- PL model H, ·= 1 em 

A = ZOcm 
30cm 

40cm 

~8~====~========~~ 
~7 
t::S 
~5 
ul, 
z 
9 3 
~2 
21 

o Q:;: 00 

• Q= 26 

o ... 
lU 
~oO~--~~~O~.O~2---L--~o~n~I,--~--~O.OS 
« FREQUENCY (eyciel,Us) 

(b) 
Fig. 55. Relative amplitude spectra and attenuation coefficients of the surface 

wave for AL-PL model. (a) HI =2 cm, (b) HI = 1 cm. 

energy integral40) but that of the leaking mode cannot be calculated here, 

because the definition of the amplitude distribution with depth of the leaking 

mode is vague. However, it is clear that Q=28 indicates the maximum 

absorption of the leaking mode discussed here. Dotted lines in the lower 

parts of Figs. 55 (a) and (b) represent this absorption coefficients for Q= 
28. Closed circles in these figures are evaluated by subtracting the values on 

dotted lines from those of open circles. The attenuation coefficients of the 

leaking mode which are purely due to the energy leak must be situated 

between these open and closed circles. 

When we restrict our attention to the dispersion of the leaking mode, two 
approximate methods have been very useful as mentioned before. But it is 
necessary for the analysis of the attenuation to find complex roots of the 
period equation, because the imaginary part of the complex root has a close 
relation to the attenuation of the leaking mode. 

In Fig. 56, the complex root for AL-PL model is shown by dashed lines. 

This complex root is "k-real, J-complex" type and is similar to that by 

GILBJ<;RT13), Since imaginary part! is much smaller than real part I, the 
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Fig. 56. Complex roots on (+, -) Riemann sheet for AL-PL model. Open circles 
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scale of the ordinate for j is largely exaggerated. Approximate solutions are 

also illustrated by small open circles. In the region of {J2<c<a2' the real 
part of the complex root fits well to these approximate solutions. The 

complex root shown in this figure is on the (+, -) sheet which is one of 
four Riemann sheets labeled by GILBERT13). The approximate solutions in 
c>a2 may correspond to the complex root on the (-, -) sheet (See §7) . 

The expression of the surface wave contains a factor exp(iwt) which 
means stationary vibrations. If frequency is assumed to be complex, 
namely f=J+ij, then exp(iwt) =exp(27tift) =exp(27tiJt).exp(-27tjt). The last 
exponential factor corresponds to attenuation with time. Now, t=x/U and 
exp (-27tjt)=exp (-27t jx/U) , where x and U mean the distance and the group 
velocity, respectively. Then, the attenuation coefficient a obtained from the 
spectral analysis can be related to the complex root by the following relation, 

a = 27tf/U or f= aU/27t. (7) 

Observed a,nd theoretica,l a,ttenllations are compared in Fi$". 57, It is QbyiQllS 
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Fig. 58. Schematic diagram of the model experiment on coupling of the body wave 
and the leaking mode. 

that the observed attenuation coefficient can be explained by the imaginary 

part of the complex root. This is one of the most important results in the 

present study. 
Fig. 58 is the schematic diagram of the 

coupling of the body wave and the leaking mode. 
model experiment on the 

This type of coupling was 
first discussed by OLIVER24), and he suggested a hypothesis. According to 
him, this coupling occurs when the apparent velocity of the body wave, 

which comes up from the half space to th~ waye /?uide, is equal to the phase 
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Fig. 59, Observed records. Brackets a and b indicate P-coupled and S-coupled leak­

ing modes respectively. 
Fig. 60. Observed and theoretical arrival times of P-coupled and S-coupled leaking 

modes. Theoretical curves were calculated by Eq. (8). 

velocity of the leaking mode. OLIVER24), Su and DORMANll ) and CHANDER et 
al,26) investigated the long period vibrations near S arrivals using OLIVER'S 

hypothesis. Since the leaking mode is a predominant surface wave on AL­
PL model, it seems to be very easy to examine the coupling by using this 
model. A slit on the side of the model, as shown in Fig. 58, was set to 
avoid any surface wave which travels around the corner. 

In the present experiment, the epicentral distance A was fixed in 85 cm 
taking account of the size of the model. The "source depth" z was changed 
from 20 to 50 cm. 

From OLIVER'S hypothesis, the arrival time t(f) of the wave train can be 
explained by a following simple equation, 

t(/) = c(f).z A-ZJ(C(f)L V2)1/2 
V· (C(f)2- V2)1/2 + . U(f) 

(8) 

where V is the shear or the compressional wave velocity in the half space. This 

equation can be easily evaluated from dispersion curves of the leaking mode. 

Actual records obtained are shown in Fig-. 591 and observed an-ivaI times 
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Fig. 62. Observed and theoretical dispersions of the wave train corresponding to Mll 

wave. 

0.15 

are compared with theoretical curves in Fig. 60. In Fig. 59, brackets a and 
b indicate regions of P-coupled and S-coupled leaking modes respectively. 

The agreement between observed and theoretical arrival times is very good. 
Thus, OLIVER'S hypothesis of the coupling of the body wave and the 

leaking mode could be confirmed by the present model experiment. It must 

be noticed in this model experiment that the leaking mode in the region of 
c>a2 had very large amplitudes, though no' reasons can be given now. 

At the end of this section, surface waves which exist on the high 

velocity layer model and correspond to Mu waves on the "plate" model will 

be discussed. Very high gain records for AL-PL model are represented in 

Fig. 61. The gain of these records is so high that traces of later phases which 
were found in Fig. 53 (a) are all off scale. The layer thickness of the model 
is 2 cm. 

Solid lines in Fig. 62 are the dispersion curves of Mll wave for an 

aluminium plate, and solid circles represent the approximate solutions of the 
leaking mode for AL-PL mode1. The agreement is very good. Open circles 
are observed dispersion data from the records in Fig. 61. It is soon recognized 

from these figures that the existance of the leaking mode corresponding to 
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Mll wave is sure. The amplitude of this wave train is not so large, probably 

due to small excitation and large attenuation. 

5. Wave group II observed on the record of small 
explosion seismology. 

On the records of small explosion seismology, we often find several 

predominant wave groups. These wave groups have been called (usually 
in Japan) wave groups I, II, III and IV41). Wave group I is the first 

arrival and is the refracted Pwave. Wave groups III and IV have 
characteristics of surface waves and they have been recognized as higher 

and fundamental modes of Rayleigh type surface waves. Wave group II 
appears just after wave group I, and it has large amplitude especially in the 

experiment on the "wet" or "muddy" field. 
Many arguments about wave group II have been reported but no definite 

conclusions have been given as far as the present author knows. There are 
two stand points in the discussion on wave group II, namely, whether this 

wave group is the surface wave or the body wave. In early studies of small 
explosion seismology, this wave was recognized as a normal higher mode of the 
Rayleigh type42). However, the above recognition has such a difficulty that 
the phase velocity of this wave train is much larger than any shear wave 
velocity in the structure under consideration. OKADA 43) explained that this 

wave group was constructed by the superposition of many body waves. 

KUBOTERA and OHTA44 ) took this wave group as surface waves on a liquid 

layer over a liquid half space, though the media of the actual field were not 
liquid but "wet" solid. 

It is the author's opinion that wave group II must be discussed in the 

light of the leaking mode because of its larger phase velocity and of the feature 

of its dispersion. In § 5.1, the dispersion curves of the leaking mode for 
single layer models which have verious velocity contrasts and verious Poisson's 

ratios will be calculated. This calculation will show the transition from the 

surface wave on the solid-solid model to that on the liquid-liquid model. In 
§ 5.2, some actual records of wave group II will be analyzed. 

5.1. Theoretical dispersion curves. 

Elastic constants of the models analyzed in this section are tabulated III 

Table 10. These single layered models are divided into three groups according 

to the velocity contrast between the surface layer and the half space. The 
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Table 10. Elastic constants of models. 

1) velocity contrast: 2.0 

Model 

A-I 2.0 0.577 1.155 
A-2 2.0 0.500 1.000 
A-3 2.0 0.250 0.500 
A-L 2.0 - -

2) velocity contrast; 1.5 

Model 

A-ll 1.5 0.577 0.866 
A-12 1.5 0.500 O. 750 
A-12A 1.5 0.400 0.600 
A-12B 1.5 0.333 0.500 
A-13 1.5 0.250 0.375 
A-IL 1.5 - -

3) velocity contrast: 3.0 

Model 

A-21 I 3.0 0.577 1. 732 
A-22 3.0 0.500 1.500 
A-22A 3.0 0.400 1.200 
A-23 3.0 0.250 O. 750 
A-24 3.0 0.167 0.500 
A-2L 3.0 - -

C/cX, = 1.6 

1.0 
1.0 
1.0 
1.0 

1.0 
1.0 
1.0 
1.0 
1.0 
1.0 
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1.0 
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it~ 
~t~ 
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0.250 
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(0.5) 

<f 

0.250 
0.333 
0.405 
0.438 
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(0.5) 

<f 

0.250 
0.333 
0.405 
0.467 
0.486 
(0.5) 

Fig. 63. Calculated examples of the period functions for models A-I, A-2 and A-3. 
Ordinate is arbitrary linear scale. 
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Fig. 64. Theoretical phase velocity curves of the normal and leaking modes for the 
models whose velocity contrasts are 2.0. (a) Model A-I, (b) Model A-2 and 
(c) Model A-3. Dotted lines represent the dispersion curves of the pressure 
wave for Model A-L. 

velocity contrasts discussed here are 1) 2.0, 2) 1.5 and 3) 3.0, and Poisson's 

ratios are changed from 0.25 to 0.5 in each group. Dispersion curves of 

leaking modes were calculated by OLIVER and MAJOR'S and Su and DORMAN'S 
methods. 

In Fig. 63, some calculated examples of the period functions for Models 

A-I, A-2 and A-3 are shown where the phase velocity is L6xal' Sharp 
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minima indicated with small dashes can be found. The pattern of the period 

function for A-3 is characterized by the superposition of two different vibra­
tions. These longer and shorter period vibrations may be correlated with the 

compressional and shear waves in the surface layer. 

Phase velocity curves of the normal and leaking modes are shown in Figs. 
64 (a), (b) and (c). In these figures, the dispersion curves for Model A-L 
which is a single layered liquid model are also represented by dotted lines for 

comparison. Notations (1) and (2) in the figures mean the order number of 
the pressure wave. 

In Fig. 64(a), dispersion curves of the normal and leaking modes for A-I 
are illustrated by solid and dashed lines respectively. As in § 3, the leaking 
modes were labeled according to the connections to M waves. Poisson's ratio 

of this model is 0.25, and therefore, this figure is very similar to Fig. 5 for 
PL-AL model. No remarkable correlations between A-I and A-L can be 
found. In this case, the series of PLln is not so clear as in the case of PL-AL 
model. 

Fig. 64 (b) is the case of Model A-2. Dispersion curves become closer 

to each other because of the smaller shear wave velocity, but this figure is 

essentially similar to Fig. 64 (a). 
The dispersion curves for Model A-3 are shown in Fig. 64 (c). Only 

sharp minima were picked up to determine these dispersion curves (See 
Fig. 63). The phase velocity curve for A-3 is very close to that for A-L, and 

it is easily understood that the phase velocity of the leaking mode may be 
close to that of the pressure wave for the large Poisson's ratio model. 

In Fig. 64(c), the dispersion curve of the leaking mode has a gap at about 
cjal = 1.3. This character will be discussed later in more detail. 

In Figs. 65 (a), (b), (c), (d) and (e), the dispersion curves for Models A-ll, 
A-I2, A-I2A, A-I2B and A-I3 are illustrated. Again, the dispersion curves 
of the pressure waves for Model A-IL are drawn by dotted lines in each 

figure. Dispersion curves of the phase velocity less than 0.6 X al were 

neglected. 

Poisson's ratio of Model A-II is 0.25 and the phase velocity curves for 

this model are shown in Fig. 65(a). Notations of (1), PL2V Mn etc. are 

same to those in the previous case. No remarkable correlations between 

dispersion curves of the leaking mode and the pressure wave can be found. 

Dispersion curves of PLln waves seem to bigin from the points where c=av 
and this velocity has been called the "quasi-cutoff" velocity by GILBERT 
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Fig. 65. Theoretical phase velocity curves of the normal and leaking modes for 

the models whose velocity contrasts are 1.5. (a) Model A-II, (b) Model A-I2, 
(c) Model A-I2A, (d) Model A-I2B, (e) Model A-I3. Dotted lines represent 
the dispersion curves of the pressure wave for Model A-IL. 

and LASTER19). 

The dispersion curves for Model A-12 whose Poisson's ratio is 0.333 

are shown in Fig. 6S (b). The quasi-cutoff velocity is also exist. Slight 
correlation between the leaking mode and the pressure waves is recognized. 

The dispersion curves for Model A-12A whose Poisson's ratio is 0.405 
are shown in Fig. 6S(c). Specific intervals of phase velocity curves become 
smaller due to larger Poisson's ratio. Since Poisson's ratio of this model is 

larger than that of usual elastic media, it may be questionable to call the 
leaking mode on this model as "PL wave". In this paper, the leaking modes 

like this are indicated simply by notations (21), (12), (22) etc. according to the 
connections to the M waves. 

The dispersion curves for Model A-12B whose Poisson's ratio is 0.438 

are shown in Fig. 65 (d) , and the correlation between the leaking mode and 
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. the pressure wave is now very clear. From the examples of A-12A and A-12B, 
the transition from the leaking mode to the pressure wave can be easily 
understood. In the computation of OLIVER and MAJOR'S method, minima 
of the period function are very sharp near the dispersion curve of the pressure 
wave where excitation of the leaking mode may be expected to be large. 
The transition from the solid-liquid model to the liquid-liquid model has a 
similar nature to the present problem 45). 

Fig. 65 (e) is the case of Model A-I3 whose Poisson's ratio is 0.467. 

Obtained dispersion curves of the leaking mode are very close to those of the 
pressure wave except for slight shifts to high frequency. Actually, disper­
sion curves for Model A-I3 may be composed of many dispersion curves closely 

spaced, as in the case of A-I2B etc. The "resolution power" of the 
approximate methods may be not enough to separate these curves, and only 

sharp minima near the pressure wave were picked up as the dispersion curve 
of the leaking mode. In Fig. 65 (d), there are some parts on dispersion 
curves where dc/dj> 0, resulting in the negative group velocity. The 

concept of the negative group velocity has not been clear. 
Figs. 66 (a), (b), (c), (d) and (e) are the dispersion curves for Models 

A-21, A-22, A-22A, A-23 and A-24 whose velocity contrasts are all 3.0. 
Dotted lines in each figure are dispersion curves of the pressure wave for Model 
A-2L. Elastic constants of these models have been tabulated in Table 10. 

The dispersion curves for Model A-21 whose Poisson's ratio is 0.25 are 
shown in Fig. 66(a). Dispersion curves of PLIn modes are not so clear for 
this model, probably because "quasi-cutoff" velocity al is smaller than (J2' 
In general, the dispersion curve of the normal mode for a model whose velocity 
contrast is pretty large has the very complicated feature. For example, the 
set of dispersion curves of M waves has many "kinks" at c/a1i"',d. Also in the 
leaking mode region, we must take attention to a fact that the dispersion 
curves of PL13 and PL22 waves seem to be connected "at a grance" with 

those of M22 and MI3 waves respectively. 

Fig. 66 (b) is the case of Model A-22 whose Poisson's ratio is 0.333. 

Obtained phase velocity curves of the normal and leaking modes are essentially 
similar to the case of A-21 but these curves become closer to each other. 
We can find a remarkable "kink" at a point where C={J2 and jxHI /a1 =0.6. 
Dispersion curves of PLI3 and PL22 waves seem as if they are continuations 
of M22 and MI3 , but actually they are connected with those of MI3 and M22 
respectively. No remarkable approach of the dispersion curves of the leaking 
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Fig. 66. Theoretical phase velocity curves of the normal and leaking modes for 
the models whose velocity contrasts are 3.0. (a) Model A-21, (b) Model A-22, 
(c) Model A-22A, (d) Model A-23 and (e) Model A-24. Dotted lines represent 
the dispersion Gurves ot the preSSUfl! wave for Maciel A-~L, 
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Fig. 67. Calculated examples of the period function for Model A-24 under two different 
conditions. Upper; c=const. Lower; j=const. 

mode to those of the pressure wave can be found. 
The dispersion curves for Model A-22A whose Poisson's ratio is 0.405 are 

shown in Fig. 66 (c), and some parts of the leaking mode have approached 

to the pressure wave. It must be remarked that (22), (13), M23, M14 and M24 
waves are suggested to have the close relation with the pressure wave. It 

may be expected that the "excitation function" of these waves46) has large 

values near the dispersion curve of the pressure wave. 
Fig. 66 (d) is the case of Model A-23 whose Poisson's ratio is 0.467 and is 

larger than the previous values. But dispersion curves of the leaking mode 
do not come so close to the pressure wave as in the case of Models A-I3 or 

A-3. This may be due to the larger velocity contrast. By tracing the maxima 
of the spectrum of the vertical component, dispersion curves of (22) and (23) 
were connected to each other as indicated by a chain line. 

Fig. 66(e) is the case of Model A-24 whose Poisson's ratio is 0.486. These 

curves are very close to the pressure wave for Model A-2L, but they are 

divided into small pieces. These curves were obtained by tracing only the 

sharp minima of the period function. The wave train with large amplitudes 
cannot be expected in the region of "dull" minima. 

In Fig. 67, some calculated examples of the period function for Model A-24 

are shown. The upper figure is drawn under the condition of "c=const." 

As mentioned before, this curve is composed of two vibrations with 

different wave lengths, and the "dividing" of the dispersion curves, as in 

Fig. 66 (e) is due to this short period vibration of the period function. On the 

other hand, if the period function is drawn under the condition of 'j=const.", 

no short periocl vibrations appear as shown in the ~ower fi~ure of Fi~. 67. Th~ 
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Fig. 68. Approximate dispersion curvesIof the leaking mode for Model A-24 obtained 
under the condition of "f=const." 
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Fig. 69. Upper; Example the calculation by two approximate methods for Model 
A-22A. 
Lower; Spectrum of synthesized amplitude. 

former condition makes many "gaps" on the dispersion curve of the leaking 
mode. But the period function which is drawn under the latter condition is 
not disturbed by the short period vibration as in the lower figure of Fig. 67. 
Fig. 68 represents the dispersion curves of the leaking mode which were 
obtained by tracing the minima of the period function under a new condi­
tion 'J=const." mentioned above. New curves are not broken and very 
close to those of the pressure wave as in the case of Models A-3 or A-I3. It 
is clear from Fig. 66 (e) and Fig. 68 that the dispersion curve for Model 

A-24 is practically equivalent to that for Model A-2L. 
In all models with large Poisson's ratio, namely A-3, A~I3 and A-24, 

dispersion curves of the leaking mode are similar to those of the pressure wave. 
As mentioned before, wave group II is especially remarkable on the "soft 
ground" where Poisson's ratio is nearly 0.5. Consequently, it was been con­

firmed that wave group II may be taken approximately as the pressure wave 
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in the field like this. 
Next, some additional discussions about the approximate method will 

be given. As represented in the previous part of this paper, the approximate 
methods for the leaking mode are disturbed by two kinds of "anti­

symmetries", namely the sudden sign change of the spectrum and steep 
exponential increase of the period function. The upper figure of Fig. 69 is 
an example of the calculation by two approximate methods. It is obvious 

that the positions of maxima of the spectra are disturbed by sudden changes 
of their sign. The lower figure illustrates the spectrum of synthesized 
amplitude (H2+ V2)1/2, where H and V mean the two components of the 

spectrum. All the maxima of this new spectrum seem to be "symmetrical" 
and close spaced maxima does not disturb each other, namely the spectrum 
has distinct peaks. This synthesized amplitude may have "physically" more 
explicit meaning than each spectral component. This method was especially 
useful when Poisson's ratio was between 0.3 and 004. 

5.2. Analyses of experimental records of wave group II. 

In this section, actual records of wave group II will be analyzed. 
Fig. 70 is the example of wave group II which were observed in the experi­
ment of small explosion seismology at Shirone, Niigata Prefecture 44). 

Epicentral distances are from 101 to 122 m, and records of other epicentral 
distances are not shown here. Shot depths are 2 m (upper figure) and 20 m 

Fig. 70. Actual records of wave group II observed at Shirone. Niigata Prefecture, 
Upper; shot depth 2 m, Lower: shot depth 20 m, 
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Fig. 71. Compressional and shear wave velocity distributions of CASE-I and CASE-I'. 
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Fig. 72. Phase and group velocities of wave group II and theoretical dispersion 

curves. 
(a) CASE-I, (b) CASE-I'. 
Solid and dashed lines represent the dispersion curves of the pressure 
wave and the leaking mode respectively. 

(lower figure) respectively. Predominant wave trains have periods of about 

0.1 seconds in upper records and of 0.06 seconds in lower records. The latter 
one may be a higher mode. 

Phase and group velocities of wave group II were obtained by using the 
records of the epicentral distance from 30 to 122 m. Usual peak and trough 

methods were carried out. Phase and group velocities observed are illustrated 
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Fig. 73. Observed records obtained by small explosions in the ground of Geological 

Survay of Japan. 
(a) vertical component, (b) radial component. 

in Figs. 72 (a) and (b) together with theoretical dispersion curves for the 

models which are shown in Fig. 71. 

The observed dispersion data and theoretical curves for CASE-I are 

shown in Fig. 72 (a). The calculated group velocity from the graphic 

differentiation of the observed phase velocity 0 is also represented with ... 

which agrees very well with the directly observed group velocity. This result 
should suggest high reliability of both observed phase and group velocity data. 

For the higher mode, only phase velocity data are shown for simplicity. 
CASE-I was determined from the result of the refraction analyses in the 

same field. Solid lines in Fig. 72 (a) represent the dispersion curves of the 
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pressure wave for CASE-I. When the total thickness of two surface layers is 

assumed to be 18 m which was determined from the refraction analyses, the 

period of the theoretical curve is, on the whole, smaller than that of observed 

data. If more thicker surface layers are assumed, namely about 29 m in 

total, the better agreement is obtained but it is not enough particularly for the 
group velocity. In Fig. 72 (a), the approximate dispersion curve of the leak­

ing mode for CASE-I is also illustrated by dashed lines which has similar 

features to those mentioned in § 5.1. 

In Fig. 72(b), theoretical dispersion curves for CASE-I' are shown. The 

surface layer of this model has velocity gradient in total, being composed 

of four thin layers as illustrated in Fig. 71. This special structure is proposed 
by the tendency of observed group velocities. As . shown in Fig. 72 (b), 

the agreement between theoretical curves for CASE-I' and observed data 

becomes excellent for both phase and group velocities. Total thickness of the 

layers above the half space of CASE-I' is taken as 18 m and agrees with 

the result from the refraction analyses. The average velocity in the surface 

layers in CASE-I might be overestimated by the refraction analysis. Solid 

and dashed lines represent the dispersion curves of the pressure wave and the 

leaking mode respectively. They are very close to each other. 
This wave group II may be not sensitive to the structure of the shear 

wave2). The shear wa\'e structure must be deduced from analyses of the 

normal mode, such as Rayleigh wave. However, such analyses are not 

given here because the improved velocity structure of the shear wave will 

cause little change of the dispersion curve of the leaking mode. 

Another example is the experiment by small explosions which was carried 

out in the ground of Geological Survay of Japan, Kawasaki, in 1953. This 

was one of the earliest field experiments by Seismic Exploration Group of 
Japan. Figs. 73 (a) and (b) represent some observed records of vertical 

and radial components respectively. These records are obtained mainly 

for the purpose of the analyses of the surface waves, and they are very 

beautiful because of suitable gain arrangement. TAZIME41) analyzed these 
records and proposed the "quarter wave-length low". 

Observed wave trains are clearly divided into three groups, namely 

wave groups II, III and IV, by two lines of the constant group velocity as 

shown in Fig. 73 (a). An additional line, U =37.5 mjs indicates the end of 
wave group IV. In the record of the radial component (Fig. 73 (b)), wave 

group II is very small but wave group III' has large amplitude and long 
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Fig. 74. Travel time diagram of peaks and troughs obtained from the records in 
Fig. 73 (a). 

Fig. 75. Proposed velocity distributions of CASE-II and CASE-II'. 

periods. 

Fig. 74 is the travel time diagram of peaks and troughs in the records of 
the vertical component. In the previous studies of small explosion seismology, 

this kind of the diagram has been drawn usually by picking up untouched 
peaks and troughs on the actual records. But these wave forms are often 
much disturbed by many "noises". In the present study, Fig. 74 was 
obtained after smoothing the wave form. Observed phase and group velocities 
were calculated from this travel time diagram. From the records of the 
radial component, only group velocities of wave group III' were calculated. 

In Fig. 75. two structural models discussed here are shown, and 

theoretical dispersion curves for these models are given in Fig. 76, Fig. 77 and 
Fig. 78. CASE-II is based on the analysis by OHTA et al. 47) of the refraction 

measurement which was carried out in the same field discussed here. As 

mentioned later, this model is satisfactory to explain the dispersion of 

observed wave trains. A revised model, CASE-II', was proposed to get better 
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results. 

The observed and theoretical dispersions of wave group II are shown in 
Fig. 76. Solid and dotted lines indicate theoretical phase and group, 
velocities of the pressure wave, respectively. Better results have been 
obtained from CASE-II', mainly because of the smaller compressional wave 
velocity in the uppermost layer. The approximate phase velocity of the 
leaking mode for CASE-II' was also computed by the usual way, and is 
represented by a dashed line in Fig. 76. The agreement between the disper­
sion curves of the pressure wave and the leaking mode is good. Again this 
result suggests that wave group II observed at "wet" field can be easily 
analyzed by taking it as the pressure wave. Small discrepancies between 
observed and theoretical dispersions at the shorter period may be decreased if 
any velocity gradient is introduced in the surface layer. 

The observed and theoretical dispersions of wave group IV are shown in 
Fig. 77. Solid and dotted lines are theoretical phase and group velocities of 
Mn wave. As to CASE-II, the theoretical group velocity fits to observed one 
very well, but the period of the theoretical phase velocity is formidably larger 
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than that of observed data. Therefore, the group velocity .6. has been 
obtained from the graphic differentiation of the observed phase velocity 

O. But.6. does not agree with the group velocity. observed directly. This 

means that no structural models can be satisfied by both phase and group 
velocities at the same time for wave group IV. This strange situation is 

probably due to the lateral change of the under-ground structure. As to 

CASE-II', the theoretical phase velocity fits very well to the observed data 

because of the thinner surface layer. 
It is remarkable that the shear wave velocity 60 mjs in the surface layer 

was successfully determined by OHTA et al. As illustrated in Fig. 77, observed 

values of phase and group velocities are converged upon a velocity of 57 mjs 

which corresponds to the velocity of the free Rayleigh wave. 

Dispersions of wave group III are represented in Fig. 78. It may be 

soon understood that wave group III in Figs. 73 (a) and (b) must be any 
higher mode of Rayleigh type surface waves. Theoretical curves of higher 

modes have been calculated only for M2l> M12 and M22 waves, because no 
quantitive discussions seem to be possible about these higher modes. 

Another example of the analysis of wave group II has been given in the 

study by TAZIME, YOSHII and IGARASHI9). In this study, wave group II was 

approximately analyzed as the pressure wave, and good agreement between 
the observation and the theory was also obtained. 
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6. Dispersed water waves observed on the continental shelf 
of East China Sea. 

355 

During the experiment of seismic refraction profiles on the continental 

shelf of East China sea, under US-Japan cooparative science program, two 
records of dispersed water waves were obtained. These records will be 
analyzed in this section. 

In Fig. 79, the locations of the seismic refraction profiles near the N ansei 

Shoto island arc are shown. The crustal structure derived from these profiles 
is shown in Fig. 8048 ). Two records of dispersed water waves were obtained in 

Profile 13 which was located on the continental shelf of East China Sea. 
Traced records are shown in Fig. 81. Shooting and receiving points are 

indicated by Sand R in Fig. 79. Arrival times of direct water waves were 

determined from the records of the high frequency channel. These arrival 

times, 39.91 and 36.33 seconds, give the shot distances of 61.1 and 55.6 km 

respectively. Sound velocity in sea water is 1.530 km/s. Charge sizes of 
explosives were 384 and 288 1 bs (TNT) and these were exploded on the sea 
bottom because of very shallow sea water, about 130 m. 

Receiving and shooting ships were Konan-maru No. 23 and Vema 

respectively. The output signal from the hydrophone was amplified by the 

amplifier having three channels. The records shown in Fig. 81 are those 

from the low frequency channel. 
The records clearly indicate two different features of dispersion, namely 

124° 
2So'r----r----,--rr-.----,s-r----, 

125° 126° 127° 128° 

27 

Fig. 79. Locations of seismic refraction profiles. Rand S indicate the receiving 
and shooting points of the records discussed here. 
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Fig. 81. Traced records of Shot-823 and Shot-824 in Profile 13. Direct water wave 
arrivals were determined from the records of the high frequency channel. 

the inverse and the normal dispersion. These two groups seem to make up 
the Airy phase. In order to separate the wave train of normal dispersion 

having longer periods from that of inverse dispersion, middle points of short 

period swings were traced. Group velocities are represented in Fig. 82. The 

group velocities from two records fit to each other very well, and the accuracy 

of them may be better than ±O.S%. 
Since the longest period of observed data is about 0.3 seconds, these 
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dispersed waves mainly depend on the shallow sedimentary layer, probably 

shallower than 500 m. In general, the shallow sedimentary layer is 
characterized by the small shear wave velocity or small rigidity 49). This 

character allows us to neglect the shear wave in the sedimentary layer, approxi­
mately. This kind of. the dispersed wave is called the pressure wave or the 
liquid wave. 

The theory of the pressure wave has been discussed in detail by 

PEKERIS23), but he gave the period equations only for the one or two layered 

model. These are not enough to discuss the detailed velocity structure in the 
sedimentary layer. Dispersion curves for more complicated models were shown 
by SAT0 50), but his method of the computation was rather complicated. The 

matrix method for this problem has been given by DORMAN 51), and this method 

IS used in the present study after some modifications. 
The layer matrix for m'th layer is 

[ 
COSPtII i(r.m/Pm) sin Pm] 

1m = 
i (Pm/r atll) sin Pm cos P til 

where 

{

((c/am)L 1)112 

ram = -i(l- (C/o.".)2)1/2 

for c> am 

for c < am 

and 

The period equation takes the following form, 

J = ran (L)21 + P,,(L)l1 = 0 . 

(9) 

(10) 
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Suffix n indicates the value in the half space. L is the product of layer 
matrixes, namely 

(11) 

The phase velocity curve is obtained from the solution of the equation (10). 
The group velocity was calculated analytically in the present study in 

the following manner46). The fundamental equation is 

u = c+k.~ = c-k. oA(c, k) / oA(c, k) 
dk ok oc 

(12) 

Now, we assume that (A)' indicates a matrix whose elements are 
partial derivatives of the elements of a matrix A. "Differentiated matrix" F' 
can be written as follows, 

(13) 

If we allow a relation, Ls =/s' .. . /1, then 

(s=2,3, ... ,n-l) . (14) 

When we substitute roots of A=O into the equation (14), we can finally 
obtain (Ln- 1)', namely (L)'. Using this (L)' and equation (13), we can 
calculate the group velocity by (12). 

"Differentiated matrixes" are 

(15) 

o c [-kHmY"m-1SinPm iPm-1(Ytsm-1sinPm+kHmCOSPm)] 
-(/)- --
oc m - a 2. -2 -1 . -1 . '" ~p",Yts'" (-Y"m sm Pm+kHm cos Pm) -kHmYam smP", . 

(16) 
In the case of c = am 

0[0 -(I",) = 
ok ip H 

m '" 

(17) 

o [-(kH",}2 2ikHmpm-1] 
- (1m) =c-1 

oc -ipm(kHm)3/3 -(kHm)2 • 
(18) 

The structure of Profile 13 shown in Fig. 80 has the sedimentary 

layer having sound velocities of .2.0 and 3.2 km/s. In general, the deep 
sea seismic refraction measurement is not enough to determine the detailed 
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Fig. 83. Velocity distributions of five liquid models. The detail is illustrated only 
for Model 9011. 

Table 11. Elastic constants of five models. 

9012 9013 
m H 

a I p a I p 

1 0.13 1.53 1. 02 1.53 1. 02 1.53 1.02 1.53 1. 02 1.53 1. 02 
2 0.025 1. 725 1. 77 1. 625 1. 70 1. 825 1. 83 1. 715 1. 765 1. 73 1. 77 5 
3 0.025 1. 765 1.80 1.665 1. 73 1.865 1.85 1.745 1.79 1.785 1.81 
4 0.05 1. 825 1.83 1. 725 1. 775 1. 925 1.875 1. 79 1. 81 1. 865 1. 85 
5 0.05 1. 91 1. 865 1. 81 1. 82 2.01 1.91 1. 85 1.84 1. 975 1. 89 5 
6 0.05 2.00 1. 905 1. 90 1. 86 2.10 1.945 1. 91 1. 865 2.085 1. 94 
7 0.1 2.125 1. 95 2.025 1.91 2.225 1.985 2.00 1. 905 2.25 2.00 
8 0.1 2.295 2.015 2.195 1. 975 2.395 2.045 2.12 1. 95 2.47 2.07 
9 INF 2.50 2.08 2.40 2.05 2.60 2.105

1

2.26 2.00 2.73 2.14 

m; layer number, H; layer thickness (km) , 
a; compressional wave velocity (kmjs), p; density (gjcm3). 

structure of the sedimentary layer. Probably, the shallow sediment such 

as in Profile 13 has a kind of velocity gradient. NAFE and DRAKE52 ) 

proposed the average velocity distribution in the shallower sea sediment as 

a=1.70+1.70z where z is depth in km. In the present study, the 

velocity distribution was assumed to be given by a linear relation, a=a+bz. 
Five models were proposed for the theoretical calculation of the 

dispersion curve. 

1) Model 9011; 

2) Model 9021 ; 

3) Model 9031 ; 
4) Model 9012: 

a=1.70+1.70 z (NAFE and DRAKE'S model) 

a=1.60+1.70 z 

a=1.80+ 1.70z 
a=1.70+ 1.20 z 
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5) Model 9013; a=1.70+2.20 z 
For the calculation by the matrix method, these velocity distributions were 
approximated by many thin layers as illustrated in Fig. 83. Detailed elastic 
constants of these models are tabulated in Table 11. The density in this 

table is based on NAFE and DRAKE'S study. 
Fig. 84 (a) gives the theoretical group velocity curves for Models 

9011, 9021 and 9031 together with the observed data. These models have a 
same value of the velocity gradient, namely b=1.70 S-1. When we restrict 
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Table 12. Elastic constants of Model 901. 

H 

0.13 
0.20 
INF 

a 

1.53 
1. 90 
2.40 

fJ 

0.80 
1.20 

fJ ; shear wave velocity (km/s) 

p 

1. 02 
1.80 
2.30 
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our attention to the shorter period portion, we can find the best agreement 
between the theory and the observation for Model 9011. This result suggests 
that the best value of a is about 1.70 km/s, because this shorter period portion 
may depend mainly on the shallower structure. 

Theoretical group velocity curves for Models 9011, 9012 and 9013 are 
shown in Fig. 84 (b). Since these curves are abruptly converged in the 
shroter period, the determination of a=1.70 in Fig. 84 (a) seems to be good. 
In the period range of 0.04-0.25 seconds, the best result was obtained for 
Model 9012 whose velocity distribution is a=1.70+ 1.20 z. Beyond about 

T =0.25 seconds, the theoretical curve for Model 9012 deviates from observed 

data. Probably, it is due to the deeper structure or the influence of the 
shear wave. 

When we consider the influence of the shear wave in the discussion of the 
water wave, this wave must be treated as a kind of the leaking mode because 
the shear wave velocity in the shallower sediment may be less than the sound 
velocity in sea water. A simple model 901, shown in Fig. 85 and Table 12, 
was proposed for the analysis of the i~fluence of the shear wave. 111 thi$ 
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Fig. 86. Calculated examples of absolute values of the period function for Model 
901. The ordinate is the arbitrary linear scale. 

model, the shear wave velocity in the half space is less than the sound velocity 
in the water layer, and the period equation has no real roots in the region of 

c>a1>{J3' 
Calculated examples of the absolute value of the period function for 

Model 901 are illustrated in Fig. 86. A 4 X 4 elements matrix for the liquid 
layer used in this calculation is as follows 53) , 

1 0 0 0 

0 cosP", ir"m(Pmc2)-1 sin P '" 0 
a = (19) 
'" 0 ir"",-lpmc2 sin Pm cosP", 0 

0 0 0 

The abscissa of this figure means period and the ordinate is the arbitrary 
linear scale. Two pairs of sharp minima of 141 can be found in this figure, and 

the minima of the longer period may correspond to the water wave discussed 

here. Those of the shorter period may be a higher mode. 

In Fit? 87, 141 is illustratecj. with contour lines, A very sharp "trou9'h" 



Analyses of Some Leaking Modes 

MODEL 901 
2.3r---~~r-~,,-n>T~A~----~--rT--~~~~~~~----' 

~2.2 
E 

.><: 
~2.1 

> 
I-

u2.0 
o 
-' 
uJ 
> 1.9 
uJ 
If) 

~1.8 
Il. 

1.7 

o 4 6 10 
FREQUENCY (cps) 

363 

Fig. 87. Distribution of the absolute value of the period function represented with 
contour lines for Model 901. The dispersion curve of the leaking mode is 
obtained by tracing a sharp "trough". 
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Fig. 88. Theoretical phase velocity curves for Model 901. Solid and dashed lines 
indicate the pressure wave and the leaking mode respectively. 

designated by A corresponds to the water wave. This trough is also shown in 
Fig. 88 as the dispersion curve of the leaking mode. The solid line in this 
figure is the dispersion curve of the pressure wave calculated by neglecting the 

shear wave in Model 901. These two curves are very clQ~e to ea.ch other except 
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Fig. 89. Phase velocity perturbations with respect to small changes of parameters 
for Model 90l. 

in the longer period. This result suggests that the approximation of water 
wave as the pressure wave is reasonable at least in the shorter period. 

In Fig. 89 the phase velocity perturbation with respect to small changes 
of four parameters, a2, a3, f32 and f33 for Model 901 are given. These perturba­
tions can be calculated analytically for Love and Rayleigh waves 54).55), but 
no methods have been given for the leaking mode. Curves in Fig. 89 were 
calculated by the numerical method 56). 

The accuracy of these curves is not so high because they were calculated 
from small differences of the "approximate" dispersion curves. As shown 
in Fig. 89, perturbations with respect to the compressional wave are a few 
times of those with respect to the shear wave, i.e., the dispersion of the 
water wave is almost controlled by the compressional wave distribution. This 
property of the water wave is very similar to that of PL wave. 

The dispersion curve of the leaking mode for a more realistic model 
9012L is shown in Fig. 90. Elastic constants of this model are tabulated 
in Table 13, and are exactly same to those of Model 9012 except for the 
shear wave. A solid line is the phase velocity of the pressure wave for 
Model 9012. Solid and open circles represent the three sets of observed 

phase velocities obtained under an assumption of the same source condition 
for two explosive shots. Since this assumption is somewhat doubtful, no 

detailed discussions on this figure will be given here. But; the dispersion 

curve of the leaking mode appears to well explain the observed data. 
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Fig. 90. Theoretical phase velocity curves for Models 9012 and 9012L. Open and 
solid circles are observed phase velocities. 

Table 13. Elastic constants of Model 9012L. 

m' H a p IT 

1 0.13 1.53 - 1. 02 (0.5) 
2 0.025 1. 715 0.66 1. 765 0.413 
3 0.025 1. 745 O. 70 1. 79 0.404 
4 0.05 1. 79 O. 75 1. 81 0.393 
5 0.05 1. 85 0.82 1. 84 0.378 
6 0.05 1. 90 0.89 1. 865 0.361 
7 0.1 2.00 0.99 1. 905 0.338 
8 0.1 2.12 1.13 1. 95 0.302 
9 INF 2.26 1. 30 2.00 0.253 

IT; Poisson's ratio 

No comparisons between the observed group velocity and the theoretical 
one of the leaking mode are given in the present study. As shown in Fig. 

82 observed group velocities have very high accuracy. On the other hand, 

such an accurate theoretical curve as observed one cannot be calculated by 
the approximate method. 

Since the determination of the velocity distribution in the sedimentary 
layer is a very important problem, many methods have been developed for 

this purpose. NAVE and DRAKE'S study is based on the refraction II\easure-
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ments and the rock smapling. An well known technique is that using the 

wide angle reflection in the sedimentary layer. This method was first 
represented by HILL 57). 

Surface waves also have been analyzed in order to study the property of 

the sedimentary layer. It is well known that the existence of the sedimentary 
layer of low rigidity causes the great effect on the dispersion of higher 

Rayleigh modes on the oceanic path58 ). But this kind of the observation is 
not enough to determine the detailed structure of the sediment. DAVIES59) 

observed Stone ley waves by the hydrophone on the sea bottom, and deter­

mined the velocity distribution in the very shallow sediment. 
The common weak point in surface wave methods is that the effect of 

the compressional wave and the shear wave cannot be separate. Also in 

the present study, the effect of the shear wave on the dispersion of the water 

wave is very small but cannot be neglected particularly in the longer period. 
Since the accurate calculation of the leaking mode is very difficult, the 

"pressure wave approximation" is the best way to analyze the water wave, 
at present. 

7. Some comparisons of complex roots and approximate solutions. 

The main aim of the present study is to represent the utility of two 
approximate methods for the leaking mode. As shown in the previous sections, 

approximate dispersion curves were successfully applied to the dispersion 

analyses of various leaking modes. However the discussions on excitation 
or attenuation of the leaking mode may need more "strict" solutions. It was 
already mentioned in § 2 that there was a big problem in the complex root 

solution. This problem may be expressed in another way as follows; what is 
the most reasonable additional condition under which complex roots of the 

period equation should be calculated? We must discuss this problem in the 
field of the observation as well as of mathematics. 

In spite of the vagueness mentioned above, it was also represented in § 4.2 
that observed attenuation of a leaking mode could be well explained by the 

imaginary part of the complex root. In the present section, some comparisons 

of complex roots and approximate solutions are given. These complex 
roots were calculated under the condition of Im(k) =013). Since complex 

roots for PL waves were discussed by GILBERT and the other authors, the 

discussions in this section are confined mainly in high velocity layer 

models. The computer program of the present author is written by using the 
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matrix method, and the complex root is traced by refering to approximate 

solutions. 
The calculated example for Model JW-I is shown in Fig. 91. Since the 

period equation can be expressed as .d(k, ], j) =0 under GILBERT'S condition, 
the abscissa and the ordinate are taken as k and] or j, respectively. The 

scale for j is largely exaggerated because j is much smaller than]. Complex 

roots illustalted in this figure are all on the (+, -) sheet. 
The comparison of this figure and GILBERT'S result for a single layered 

model leads us to following conclusions; the dispersion curve of PL22 is almost 

equivalent to that of ]5_+ mode in GILBERT'S paper, but the PL21 and PL12 

are connected to each other and are made into a single curve. This situation 

is clearly illsutrated in Fig. 92. In this figure, phase velocity c was defined as 

c=2nflk by using the real part of complex frequency. 
LASTER et aP4) computed complex roots for a single layered model 

under their additional condition Im(f) =0 and GILBERT'S condition Im(k) =0/ 
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and founa much difference between two results. They concluded that this 

difference might be due to the additional condition. However the solution 
by LASTER et al. obtained under the former condition is similar to that shown 

in Fig. 92 which was calculated under the latter condition. This result may 

suggest that the situation is not so simple as that mentioned by LASTER et al. 

As illustrated in Fig. 92, dispersion curves from the complex root well 

consist with approximate solutions except for a transition from PL21 to PL12• 

No complex roots corresponding to approximate solutions of PL21 in c<6.5 

could be found on the (+, -) sheet. It is an interesting problem how is 

the continuation of M21 wave in the leaking mode region. 

Complex roots for AL-PL model are shown in Fig. 93. The complex root 

on the (+, -) sheet has already been represented in Fig. 56. Approximate 

solutions in c>a2 correspond to complex roots on the (-, -) sheet. The 
leaking mode in this region must leak its energy of the compressional wave 

as well as that of the shear wave. This special nature is also suggested by the 

rather large imaginary part of the complex root. This large imaginary part 

may cause remarkable attenuation which is equivalent to Q= 10. 

The phase velocity in Fig. 94 was also defined by the real part of the 

complex root. For the complex root on the (+, -) sheet, large deviation 

from the approximate ;;olu.tion can be found especially in the hi~her 
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frequency region. It is also remarkable that the observed phase velocity 
from model seismology (§ 4.2) is more consistent with these approximate 

solutions than the "strict" dispersion curve (see Fig. 54). 
Dispersion curves for AL-LAM model are given in Figs. 95 and 96. 
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The form of j is similar to that for AL-PL model. The agreement between 
dispersion curves from complex roots and from approximate solutions is 
very good. 

In Figs. 97, 98 and 99, the comparisons of approximate solutions and 
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complex roots for PAL-models are represented. The agreements are remark­
able. It is very interesting that the imaginary parts of P AL-5 and P AL-2 are 

very small where dispersion curves for these models are very close to that for 

PL-AL model. Leaking modes in these parts may have the nature of the 
"quasi-normal mode". In Fig. 99 the period function for PAL-I is illustrated 
with contour lines as in Fig. 40. The dispersion curve defined by the real 

part of the complex root is located just at the centre of a sharp trough. 

8. Summary 

As represented in the previous sections, it became obvious that two 

approximate methods were very useful tools for the analyses of leaking modes. 

Though the theory of the leaking mode is vague at present. many records of 

leaking modes have been accumulated. This situation may allow us to make 

use of these two methods. In order to reduce the vagueness of the theory, 

model experiments are very important because they provide the "ideal" 

observed data. Since the agreement between "approximate" solutions and the 
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observed data of the model experiments (§ 3.1 and § 4.2) was remarkable, now 

the adjective "approximate" seems to be unnecessary. It is very interesting 
that the complex root solution is not always strict physically in the leaking 
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mode problem. 
PL wave is the most popular leaking mode but Japan islands is not a 

suitable field for the analysis of this wave because of its structural complexity. 

In § 3.2.2 theoretical curves for only JW-I were compared with observed 
data. More detailed discussions on the crustal structure may be possible by 

making use of accurate observed data of the phase velocity. 
The problem of wave propagation on high velocity layer models in 

the present paper is very interesting and unique. Wave propagation on the 

sandwiched high velocity layer models has very strange characteristics and 

this problem may be good as a theme in model seismology. 
One of the most exciting part in this report is model seismology on wave 

propagation on the superficial high velocity layer models. Dispersions and 

attenuation of the wave trains were well explained by approximate solutions 
and complex roots. 

The discussions on wave group II represented in § 5 made it obvious 

that this wave can be analyzed approximately as the pressure wave, though 
this has been understood vaguely. The approximate methods have not so 

good resolution power in the problem like wave group II. But the most 

"effective" part of the dispersion curve was emphasized by this "poor" 
resolution. The result that wave group II in the "wet" field can be treated 
approximately as the pressure wave allows us to study the P wave structure 

by using the surface wave. 

Appendix; Summary of the approximate dispersion curve of the 
leaking mode. 

As mentioned in the previous part of this paper, OLIVER and MAJOR'S 

method is carried out by tracing the minimum of the absolute value of the 

period function A. HASKELL17) has used the matrix method to express this 

period function for Rayleigh type surface waves. 

(A-I) 

where Iij is the element of following matrix I, 

(A-2) 

Symbols En -1 and am indicate the 4 X 4 elements matrixes where suffix m is 

the layer number and n corresponds to the half space. 
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and, 

where, 

E -I_ n -

-2 (p,./a,.) 2 

o 
(y,.-l)/y,.r/l,. 

o 

T. YOSHIt 

o 

o 
1 

(a"')l1 = y", COSP",-(y",-l) cos Q", 

o 

(a"')12 = i((y",-l)res", -1 sin P", +y",rll", sin Q",) 

(a"')13 = _(p",C2)-1 (cos P ",-cos Q",) 

(a",)14 = i(p",C2)-1 (res", -1 sin P", +rllm sin Q",) 

(a"')21 = -i(y",ra", sin P '" + (y",-l) rll", -1 sin Q",) 

(a",)22 = - (y",-l) cos P '" +y", cos Q", 

(a",)23 = i(p",C2)-1 (res", sin P '" +rll", -1 sin Q",) 

(a",)24 = (a",h3 

(a"')31 = Pmc2y",(y",-I)(cos P ",-cos Qm) 

(amla2 = ipmc2((Ym-1)2 r .. ", -1 sin Pm +Ym2rllm sin Qm) 

(amlas = (am)22 

(am)34 = (a",h2 

(am)41 = ipmc2(y",2ram sin Pm + (y",-1)2 rllm -1 sin Q",) 

(a",)42 = (a",)S1 

(a"')43 = (am )21 

(am)44 = (a"')l1 

{

((c/a",)2_ 1)1/2 

ram = -i(1-(c/a",)2)1/2 

{

((c/P",)Z_1)1/Z 

rll
m = _i(1_(c/P",)2)1/2 

Ym = 2(Pm/c)2 

c> p", 
c < p", 

o 

o 
(A-3) 

(A-4) 

(A-S) 

(A-6) 

(A-7) 

(A-8) 

(A-9) 
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Su and DORMAN'S method is based on HASKELL'S surface displacement 
spectrum16) due to incident P or SV waves from the half space to the layers. 

For incident P waves, 

and for incident SV waves, 

Up = F 1U42- 1a2)/d 

WI =F2U41-1al)/d 

U. = F aU12- 122)/d 

Ws = F 4U2C 111)/d 

(A-tO) 

(A-ll) 

where U and W indicate the horizontal and vertical components of the 
surface displacement spectrum. 

F j are as follows; 

Fa = 2y,. -1 '/3,.-1 

F4 = 2y,.-1 

(A-12) 

In this case, e means the phase velocity or the apparent velocity of the incident 
wave. 

Su and DORMAN introduced a small modification on F,. but this modifica­
tion is only due to the difference of the normalization and is not essential. 
Su and DORMAN'S modified F j are, 

F1 = F2 = 2e/a,. 
(A-13) 

Fa = F, = c/{3,. . 

Dispersion curves of the leaking mode are determined by tracing the maximum 
of spectra (A-tO) and (A-ll). 
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