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Abstract 

Abstract 

 

Existing structures must be sufficiently managed to balance social, economic, and environmental 

requirements, and the maintenance of such structures has become a major social concern. Among all the 

maintenance approaches, prediction-based maintenance is an increasingly popular method to keep the 

structure sound. Progress has been made in adopting preventive measures, but performing prediction-based 

maintenance remains challenging because of the following four points: (1) prediction-based maintenance 

depends heavily on the accurate prediction of deterioration. For existing structures, deterioration is affected 

by various factors such as chloride, material, and traffic load. However, the relationships between factors 

and deterioration are neither explicitly determined, nor the relative effect of each factor on deterioration is 

well understood; (2) cracks are particularly important for the safety of structures. Although crack images 

were collected from onsite inspection, quantifying the cracks requires considerable time and effort; (3) in 

previous inspection, a large amount of inspection information including cracks was collected, but intuitive 

management of the information is not easy; and (4) a general civil structure is a complicated system, i.e., 

its deterioration situation, the propagation of cracks, and other damages should be comprehensively 

considered when performing the prediction-based maintenance.  

Four types of bridges (PC, RC, steel-concrete composite and steel bridges) were considered in this study 

among civil structures. Onsite inspection databases for these existing bridges collected by engineers during 

regular inspections include abundant information on structural conditions, thus providing the possibility of 

using the database for formulating prediction models. The inspection database in this study includes twelve 

potentially influencing factors and three deterioration grades, grade 1 being the sound situation and grade 3 

indicates the requirement of early intervention. In addition, crack images regarding concrete components 

and experimental samples were collected from onsite inspection and indoor experiment, respectively. 

These images can be used to build models to quantify cracks effectively.  

Firstly, this study explored the feasibility of using the neural network to establish deterioration prediction 

models. Appropriate neural network architectures can be trained using the inspection database to predict 

deterioration situations. If the network parameters are appropriately designed, the network would show 

satisfactory forecasting performance. One of the best-known neural networks is the Multilayer Perceptron 

(MLP), consisting of an input layer, one or several hidden layers, and an output layer. The Recurrent 

Neural Network (RNN) is another type of neural network specialized in learning time-related patterns from 

time-series data. Among the RNNs, Long Short-Term Memory (LSTM) is most widely used, and therefore, 

was applied in this study.  

Testing the MLP and LSTM models on an inspection database of 3,368 bridges indicated that the LSTM 

model achieved the accuracy of exceeding 80 %, i.e., outperformed the MLP model of 65 %. For four 

types of bridges, the LSTM showed the equivalent performance. In addition, the prediction ability of the 

LSTM for bridges in coastal regions was slightly superior to those outside of coastal regions. The LSTM 

showed no significant differences in accuracy between different deck areas.  

Secondly, the Shapely value method and the Sobol indices method were applied to the LSTM to determine 

the contribution of each factor on deterioration by calculating the relative importance of each factor. The 

analysis preliminarily determined the five most important factors affecting the deterioration. They were 
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years in service, traffic volume, deck area, chloride, and lowest temperature. In addition, the analysis 

revealed that the structure type was another significant reason to induce deterioration differences. The 

results also demonstrated significant differences in bridge deterioration between coastal and non-coastal 

regions, which were caused by airborne salt.  

Thirdly, a commonly used probabilistic method-Markov Chain (MC), was proposed using the 

aforementioned inspection database. Then, the MC model was compared with LSTM in terms of bridge 

degradation progress. Specifically, the MC and the LSTM models were compared from four aspects: the 

mean deterioration progress, the deterioration progress of different types of bridges, the deterioration 

progress of a specific bridge, and the influence of each factor on deterioration progress.  

The results indicated no significant differences between these two models, except that the LSTM usually 

predicts deterioration occurring two years earlier than the MC. Both the MC and LSTM models predicted 

that the PC and steel bridges deteriorated slower than RC and composite bridges. The factors affecting the 

deterioration progress were the same as those found by the Shapely value and the Sobol indices methods. 

Fourthly, the onsite and indoor collected images were employed to a Convolutional Neural Network (CNN) 

and a developed application for crack detection and quantification. Specifically, four commonly used 

CNNs (GoogLeNet, AlexNet, ResnNet-18, and VGG-16) were tested, and GoogLeNet was determined for 

this study. Then, the transfer learning and fully training of GoogLeNet were further tested on the testing 

dataset and a public dataset.  

The results showed that the transfer learning GoogLeNet has relatively balanced performances on these 

two datasets, with an accuracy of 96.69 % and 88.39 %, respectively. A new sliding window technique 

(neighborhood scanning) was proposed and almost equivalent to the previous dual scanning method. A 

method for calculating crack widths was presented. The average relative error of this method was 14.58 % 

(0.05 mm), i.e., much smaller than the previous method having 36.37 % (0.14 mm) error.  

An application was then developed to integrate the proposed methods and other techniques (such as edge 

detectors, boundary tracking, and threshold segmentation) to segment, quantify, and analyze cracks. 

Verifications on 23 untrained raw images (eleven with 10240×2048 pixels, twelve with 2592 × 4608 

pixels) showed that: (1) the developed crack identification model and a previous pixel-level segmentation 

model required an average of 9.48 s and 10.35 s; and (2) these two models showed an 80.40 % and a 

78.64 % average Intersection over Union (IoU). Therefore, the proposed crack identification model is a 

cost-effective solution for detecting and analyzing cracks on concrete surfaces.  

Lastly, Building Information Modeling (BIM) was studied for five bridges as examples to integrate the 

deterioration prediction models and the crack identification model to form a collaborated BIM platform. In 

this platform, the crack identification model extracted the crack pixels and located them to the 

corresponding components; the deterioration prediction model determined the deterioration situations and 

reasons. This platform can intuitively visualize each component's crack damage, can determine the 

remaining life of each bridge, and can analyze external factors affecting the deterioration. In conclusion, 

this platform can be taken as a supplementary tool to help the engineer comprehensively evaluate the 

bridges' situations, determine the timing of interventions, and formulate corresponding intervention 

strategies. 

 



List of publications 

List of publications 

1. Journals 

(1) Pengyong Miao, Hiroshi Yokota and Yafen Zhang. Extracting procedures of key data from a 

structural maintenance database. Engineering and Infrastructure Engineering, 2020, 1-11, doi: 

10.1080/15732479.2020.1838561. 

(2) Pengyong Miao, Hiroshi Yokota and Yafen Zhang. Deterioration prediction of existing concrete 

bridges using a LSTM recurrent neural network. Engineering and Infrastructure Engineering. 

(2021): 1-15. https://doi.org/10.1080/15732479.2021.1951778 

(3) Pengyong Miao, Hiroshi Yokota and Yafen Zhang. Prediction-based maintenance of existing 

bridges using neural network and sensitivity analysis. Advances in civil engineering, 2021. 

https://doi.org/10.1155/2021/4598337.  

(4) Miao, Pengyong, and Teeranai Srimahachota. "Cost-effective system for detection and 

quantification of concrete surface cracks by combination of convolutional neural network and 

image processing techniques." Construction and Building Materials 293 (2021): 123549. 

https://doi.org/10.1016/j.conbuildmat.2021.123549. 

(5) Pengyong Miao and Hiroshi Yokota. Comparison of Markov chain and recurrent neural network 

in predicting bridge deterioration under various influencing factors. Engineering and 

Infrastructure Engineering (To be submitted soon). 

(6) Pengyong Miao. Integrated bridge maintenance supporting platform: prototype model-based 

database, crack-pixel extraction, and deterioration prediction. Engineering and Infrastructure 

Engineering (To be submitted soon). 

 

2. Conferences 

(1) Pengyong Miao, Hiroshi Yokota and Yafen Zhang. Development of an artificial neural network 

for the deterioration prediction of existing concrete bridges. 9th Asia-Pacific Young Researchers 

and Graduates Symposium Performance Evolution and Control for Engineering Structures. 

19-20 December 2019, Shanghai, China. 

(2) Pengyong Miao, Hiroshi Yokota and Yafen Zhang. Prediction-based maintenance of concrete 

structures by using an artificial neural network. The 3rd ACF Symposium 2019-Assessment and 

Intervention of Existing Structures,10-11 September 2019, Sapporo, Japan.  

(3) Zhang Y, Yokota H, Miao P and Zhu Y. Application of knowledge management and BIM 

technology for maintenance management of concrete structures, 16th East Asia-Pacific 

Conference on Structural Engineering and Construction (EASEC16), 3-6 December 2019, 

Brisbane, Australia. 

(4) Zhang Y, Yokota H and Miao P. A visual integration information platform for maintenance 

management of concrete structures based on information technology. IABSE Congress – 

Resilient Technologies for Sustainable Infrastructure, February 3-5, 2021, Christchurch, New 

Zealand. (Proceedings: pp.849-857) 

(5) Pengyong Miao, Hiroshi Yokota and Yafen Zhang. A framework for addressing the uncertainty 

of factors influencing the overall deterioration of existing concrete structures. 10th International 

Conference on Bridge Maintenance, Safety and Management (IABMAS 2020), 11 -18 April, 

2021, Sapporo, Japan. 





 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Dedication 

 

 

To 

Prof. Hiroshi YOKOTA, My family, My girlfriend 

& 

All the teachers and friends who have helped me 





Contents 

i 
 

Contents 

Contents ......................................................................................................................................................... i 

List of Figures .............................................................................................................................................. iv 

List of Tables .............................................................................................................................................. vii 

Chapter 1 ....................................................................................................................................................... 1 

Introduction ................................................................................................................................................... 1 

1.1 Overview ........................................................................................................................................... 1 

1.2 Background ....................................................................................................................................... 1 

1.3 Literature review ............................................................................................................................... 2 

1.3.1 Deterioration prediction ......................................................................................................... 2 

1.3.2 Crack identification ................................................................................................................ 4 

1.3.3 Building Information Modeling (BIM) platform ................................................................... 6 

1.4 Problem statements ........................................................................................................................... 6 

1.5 Research objectives ........................................................................................................................... 7 

1.6 Thesis structure ................................................................................................................................. 8 

References ............................................................................................................................................. 10 

Chapter 2 ..................................................................................................................................................... 17 

Applied methodologies ............................................................................................................................... 17 

2.1 Overview ......................................................................................................................................... 17 

2.2 Mathematical representation ........................................................................................................... 18 

2.3 Multilayer Perceptron (MLP) model............................................................................................... 18 

2.4 Recurrent Neural Network (RNN) model ....................................................................................... 20 

2.5 Confirmation of factors affecting deterioration .............................................................................. 22 

2.6 Markov Chain (MC) model ............................................................................................................ 23 

2.6.1 Hazard model formulation ................................................................................................... 24 

2.6.2 Markov transition probability .............................................................................................. 25 

2.6.3 Estimating the hazard model ................................................................................................ 26 

2.7 Crack identification model .............................................................................................................. 27 

2.7.1 Pre-processing ...................................................................................................................... 27 

2.7.2 Crack detection .................................................................................................................... 28 

2.7.3 Post-processing .................................................................................................................... 30 

2.8 Model evaluation ............................................................................................................................ 31 

2.9 Building Information Modeling (BIM) ........................................................................................... 33 

References ............................................................................................................................................. 33 

Chapter 3 ..................................................................................................................................................... 36 

Establishment of deterioration prediction models ................................................................................... 36 

3.1 Overview ......................................................................................................................................... 36 

3.2 Data description .............................................................................................................................. 36 

3.1.1 Potentially influencing factors ............................................................................................. 37 

3.1.2 Inspection results ................................................................................................................. 42 

3.1.3 Data characteristics analysis ................................................................................................ 42 

3.3 Establishment of a MLP model ....................................................................................................... 47 

3.3.1 Model establishment ............................................................................................................ 47 



Contents 

ii 
 

3.3.2 Model evaluation ................................................................................................................. 49 

3.4 Establishment of a RNN model ...................................................................................................... 50 

3.4.1 Performance of the model .................................................................................................... 52 

3.4.2 Error analysis ....................................................................................................................... 54 

3.4.3 Discussions .......................................................................................................................... 57 

3.5 Establishment of a Markov Chain model ........................................................................................ 58 

3.5.1 Markov Chain model ........................................................................................................... 58 

3.5.2 Comparisons on deterioration progresses using the RNN and MC ...................................... 59 

3.5.3 Discussions .......................................................................................................................... 65 

3.6 Estimation of factor importance ...................................................................................................... 66 

3.6.1 Distribution of each potentially influencing factor .............................................................. 66 

3.6.2 Estimated importance for target bridges .............................................................................. 68 

3.6.3 Estimated importance of each grade .................................................................................... 69 

3.6.4 Estimated importance of different structure type ................................................................. 70 

3.6.5 Estimated importance of different environments ................................................................. 72 

Appendix A ........................................................................................................................................... 73 

References ............................................................................................................................................. 75 

Chapter 4 ..................................................................................................................................................... 77 

Establishment of crack identification model ............................................................................................ 77 

4.1. Overview ........................................................................................................................................ 77 

4.2. Building a robust crack classifier ................................................................................................... 77 

4.2.1 Database generation ............................................................................................................. 78 

4.2.2 Optimal model ..................................................................................................................... 78 

4.2.3 Comparisons of scanning approaches .................................................................................. 81 

4.3 Development of the post-processing application ............................................................................ 85 

4.3.1 Application development ..................................................................................................... 85 

4.3.2 Practical comparisons .......................................................................................................... 86 

4.3.3 Crack analysis ...................................................................................................................... 87 

4.4. Discussion and future work ........................................................................................................... 92 

4.4.1 Practical application results ................................................................................................. 92 

4.4.2 Comparison with other studies ............................................................................................. 93 

References ............................................................................................................................................. 94 

Chapter 5 ..................................................................................................................................................... 96 

Collaborated BIM platform for prediction-based maintenance ............................................................. 96 

5.1 Overview ......................................................................................................................................... 96 

5.2 Information acquisition ................................................................................................................... 96 

5.2.1 Overview of targeted bridges ............................................................................................... 96 

5.2.2 Preparations and cautions..................................................................................................... 98 

5.2.3 Onsite information collection ............................................................................................... 99 

5.3 Establishment of 3-D prototype model ......................................................................................... 109 

5.4 Collaborated BIM platform ........................................................................................................... 112 

5.4.1 Integration of cracks to the 3-D models ............................................................................. 112 

5.4.2 Deterioration estimation of targeted bridges ...................................................................... 116 

5.4.3 Estimation of factor importance for the targeted bridges ................................................... 119 



Contents 

iii 
 

5.5 Formulation of the maintenance strategies and discussions.......................................................... 119 

5.5.1 Formulation of the maintenance strategies ........................................................................ 119 

5.5.2 Discussions ........................................................................................................................ 121 

References ........................................................................................................................................... 122 

Chapter 6 ................................................................................................................................................... 123 

Discussions ................................................................................................................................................. 123 

6.1 Overview ....................................................................................................................................... 123 

6.2 Achievements ................................................................................................................................ 123 

6.3 Limitations .................................................................................................................................... 124 

Chapter 7 ................................................................................................................................................... 126 

Conclusions and recommendations ......................................................................................................... 126 

7.1 Overview ....................................................................................................................................... 126 

7.2 Conclusions ................................................................................................................................... 126 

7.2.1 Comparison of MLP and RNN........................................................................................... 126 

7.2.2 Regarding the factor importance ........................................................................................ 127 

7.2.3 Comparison of MC and RNN ............................................................................................ 127 

7.2.4 Regarding the crack identification model .......................................................................... 128 

7.2.5 Regarding the collaborated BIM platform ......................................................................... 129 

7.3 Future potentials and recommendations ....................................................................................... 129 

 

 

 



List of Figures 

iv 
 

List of Figures 

Figure 1.1 Outline of Chapter 1 ...................................................................................................................... 1 

Figure 1.2 Thesis structure .............................................................................................................................. 9 

Figure 2.1 Outline of Chapter 2 ....................................................................................................................17 

Figure 2.2 Configuration of a neural network used for prediction ...............................................................19 

Figure 2.3 A schematic RNN model for deterioration prediction .................................................................20 

Figure 2.4 Configuration of the LSTM unit..................................................................................................21 

Figure 2.5 Time transition of soundness .......................................................................................................24 

Figure 2.6 Example of calibration ................................................................................................................27 

Figure 2.7 Illustration of the AlexNet’s architecture. conv# = convolution; pool# = pooling; Relu #= 

activation function; Norm#= normalization; fc# =full connection; k# = kernel of each operation; 

DP#=Dropout; SM=softmax; ................................................................................................................28 

Figure 2.8 Flow chart for post-processing ....................................................................................................30 

Figure 2.9 Depiction for calculating crack properties ...................................................................................31 

Figure 2.10 Performance evaluation metrics used in this study (Taking Grade 1 for example) ...................32 

Figure 3.1 Outline of Chapter 3 ....................................................................................................................36 

Figure 3.2 Locations of the bridges ..............................................................................................................37 

Figure 3.3 Salt damage area classification in Hokkaido ...............................................................................38 

Figure 3.4 Comparison of estimated chloride ion concentration and the JSCE standard .............................39 

Figure 3.5 Chloride ions concentration for superstructure and pier ..............................................................40 

Figure 3.6 Carbon dioxide concentration versus time ..................................................................................42 

Figure 3.7 Distribudion of each factor’s values ............................................................................................44 

Figure 3.8 Activation functions ....................................................................................................................48 

Figure 3.9 Loss and accuracy. .......................................................................................................................49 

Figure 3.10 Performances of the MLP neural network for different grades .................................................49 

Figure 3.11 Performances of the established neural network for different types of bridges. ........................49 

Figure 3.12 Procedures for establishing RNN model ...................................................................................50 

Figure 3.13 Accuracy and loss with respect to iteration. ..............................................................................51 

Figure 3.14 Mapping between affecting factors and deterioration grades ....................................................52 

Figure 3.15 Comparison of the LSTM and MLP models .............................................................................52 

Figure 3.16 Performance of the LSTM for the PC, RC, steel & concrete composite, and steel bridges ......53 

Figure 3.17 Performance of the LSTM for bridges in costal and non-coastal regions .................................53 

Figure 3.18 Accuracy of the LSTM versus the deck area .............................................................................54 

Figure 3.19 Numbers of incorrect predictions versus years in service .........................................................55 

Figure 3.20 Percentage of incorrectly predictions (Dividing by 30 years) ...................................................55 

Figure 3.21 Time series diagram of all factors .............................................................................................56 

Figure 3.22 Prediction of deterioration grade in the next fifteen years. .......................................................57 

Figure 3.23 Mean deterioration progresses obtained using RNN and MC. ..................................................59 

Figure 3.24 Deterioration progresses for different types of bridges: (a) using MC; (b) using RNN ............60 

Figure 3.25 Deterioration progresses of bridges A and B using MC and RNN ............................................61 

Figure 3.26 Deterioration progresses with the influence of each factor individually. ..................................63 

Figure 3.27 Deterioration progresses with the influence of each factor individually (using RNN) .............63 



List of Figures 

v 
 

Figure 3.28 Sensitivity analysis by Sobol and Shapley value methods. .......................................................66 

Figure 3.29 Estimated importance value for bridges A and B. .....................................................................69 

Figure 3.30 Average importance of each factor, broken down by grade (Grades 1, 2 and 3). ......................70 

Figure 3.31 Average importance of each factor, broken down by the bridge type ........................................71 

Figure 3.32 Average importance of each factor, broken down by coastal/none coastal area. .......................72 

Figure 4.1 Flowchart for establishing the crack identification model ..........................................................77 

Figure 4.2 Typical cropped images: (a) images with crack from experiment; (b) images with crack from 

onsite inspection; and (c) disregarded images ......................................................................................78 

Figure 4.3 Performances of different CNNs .................................................................................................79 

Figure 4.4 Metrics of the GoogLeNet in transfer and full learning ..............................................................80 

Figure 4.5 Performances of the transfer and fully learned GoogLeNet on SDNT2018 ................................81 

Figure 4.6 Loss and accuracy during training and validation .......................................................................81 

Figure 4.7 Crack detection: (a) Dual scanning; and (b) Neighborhood scanning .........................................82 

Figure 4.8 Test results using dual scanning and neighborhood scanning .....................................................82 

Figure 4.9 Crack detection on field image 1 .................................................................................................83 

Figure 4.10 Crack detection on field image 2 ...............................................................................................83 

Figure 4.11 Crack detection on an experimental image ................................................................................84 

Figure 4.12 The developed application for post-processing: (a) processing for every regions; (b) crack 

analysis for each raw image ..................................................................................................................85 

Figure 4.13 Comparative studies using our model and a picel-level segmentation framework. ..................87 

Figure 4.14 (a) Crack scale; (b) Crack measuring. .......................................................................................89 

Figure 4.15 Relative and absolute error distributions. ..................................................................................89 

Figure 4.16 Relative error of those two methods, broken down by crack width of 0.2 mm .........................90 

Figure 4.17 Superimposed images of crack width distribution: (a) front; (b) back; (c) bottom ...................90 

Figure 4.18 Cracks directions statistics from Figures 4.17 (a), (b), and (c) ..................................................91 

Figure 4.19 3-D visualization of a beam .......................................................................................................91 

Figure 4.20 Failure of detection by the trained classifier. .............................................................................92 

Figure 4.21 The superimposed images by the trained CNN and the developed application. .......................93 

Figure 5.1 Flowchart of Chapter 5 ................................................................................................................96 

Figure 5.2 Locations of bridges listed in Table 5.1 .......................................................................................97 

Figure 5.3 Tools used to collect onsite information for the targeted bridges ................................................98 

Figure 5.4 Examples of onsite measuring .....................................................................................................98 

Figure 5.5 Explanation on bridge components (a) 1703, (b) 1704, (c) 1708, and (d) 853& 854 ..................99 

Figure 5.6 Water leakage of bridge 1704 ....................................................................................................103 

Figure 5.7 Corrosion of the bracket on the north and south side. ...............................................................103 

Figure 5.8 (a) Statistics of wind directions in Sapporo; (b) the orientation of the bridge 1708 ..................104 

Figure 5.9 Established 3-D model for bridge 1703 .....................................................................................109 

Figure 5.10 Established 3-D model for bridge 1704 ...................................................................................110 

Figure 5.11 Established 3-D model for bridge 1708 ...................................................................................111 

Figure 5.12 Established 3-D model for bridge 853 &854 ...........................................................................112 

Figure 5.13 Crack details for bridge 1703 ..................................................................................................113 

Figure 5.14 Crack details for bridge 1704. .................................................................................................114 

Figure 5.15 Crack details for bridge 1708. .................................................................................................115 

Figure 5.16 Crack details for bridge 853 & 854 .........................................................................................116 



List of Figures 

vi 
 

Figure 5.17 Estimated deterioration progress for bridges (a) 1703, (b) 1704, (c) 1708, (d) 853, and (e) 854

 ............................................................................................................................................................117 

Figure 5.18 Estimation of factor importance for bridges (a) 1703, (b) 1704, (c) 1708, (d) 853, and (e) 854

 ............................................................................................................................................................118 

Figure 5.19 Formulation of maintenance strategies. ...................................................................................120 

Figure 6.1 Overview of Chapter 6 ..............................................................................................................123 

Figure 7.1 Outline of Chapter 7 ..................................................................................................................126 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



List of Tables 

vii 
 

List of Tables 

 

Table 2.1 Detailed specifications of the AlexNet .......................................................................................... 29 

Table 3.1 Potentially influencing factors ...................................................................................................... 37 

Table 3.2 Suggested materials information for bridge components [12] ...................................................... 40 

Table 3.3 Deterioration grades and corresponding descriptions ................................................................... 42 

Table 3.4 Data characteristics analysis ......................................................................................................... 43 

Table 3.5 The fitted distribution of the histogram......................................................................................... 47 

Table 3.6 Configuration test results .............................................................................................................. 48 

Table 3.7 Configuration test of LSTM model ............................................................................................... 51 

Table 3.8 Percentages of incorrect predictions. ............................................................................................ 55 

Table 3.9 Hazard model based on Markov chain exponential distribution ................................................... 58 

Table 3.10 Information of bridges A and B ................................................................................................... 61 

Table 4.1 Specification of raw images and generation of database .............................................................. 78 

Table 4.2 Performances of the four pre-trained CNN configurations ........................................................... 79 

Table 4.3 Performances of the transfer and fully training of GoogLeNet. .................................................... 80 

Table 4.4 Performances of the transfer and fully training on SDNET2018 .................................................. 80 

Table 4.5 Comparisons of the dual scanning and the neighborhood scanning ............................................. 82 

Table 4.6 Comparison of the developed model and the previous framework ............................................... 86 

Table 4.7 Comparisons of crack width measurement methods ..................................................................... 88 

Table 5.1 Detail information for the targeted bridges ................................................................................... 97 

Table 5.2 Details on partial cracks for bridge 1703 ...................................................................................... 99 

Table 5.3 Details on partial cracks for bridge 1704 .................................................................................... 101 

Table 5.4 Details on partial cracks for bridge 1708 .................................................................................... 104 

Table 5.5 Crack details for bridge 853 & 854 ............................................................................................. 105 

 

 

 

 

 

 

  



Chapter 1 Introduction 

1 
 

Chapter 1 

Introduction 

1.1 Overview 

The outline of Chapter 1 is shown in Figure 1.1. This study’s background was first reported. Later, 

literature reviews were extended from the three points: deterioration prediction of bridges, endeavors in 

crack identification from images, and application of Building Information Modeling (BIM) in practical 

engineering. The issues that arose would be further explained. Finally, the research objectives were 

outlined. The structure of this thesis was illustrated at the end of this chapter.  

 

Figure 1.1 Outline of Chapter 1 

 

1.2 Background 

Bridges must be prudently managed to balance social, economic, and environmental requirements, and the 

maintenance of such infrastructures has become a major social concern [1]. Despite the several limitations 

of visual inspection, it is a frequently utilized approach in practice for the asset management of buildings 

and bridges [2]. Accordingly, inspection databases are collected by engineers for existing bridges during 

routine inspections.  

Prediction-based maintenance is becoming more common for structural soundness maintenance [3]. 

Although progress has been made in taking preventive measures, performing prediction-based 

maintenance remains difficult, because a targeted prediction-based maintenance strategy relies heavily on a 

reasonable assessment of a structure's past and present conditions, as well as accurate deterioration 

prediction. In other words, prediction-based maintenance strategies need sufficient data on structural 

conditions and a suitable analytical approach. Inspection databases constitute abundant information on 

structural conditions, allowing the database to be used to develop predictive maintenance programs. 

Potential applications of such databases include evaluating structural conditions, predicting deterioration, 
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and developing maintenance strategies [4]. The potential analysis methods for the inspection database are 

elaborated in Section 1.3.1. 

The investigation of concrete flaws, including cracks, is a frequent and required work in determining the 

state of concrete structures during an inspection. Researchers are now attempting to automate the 

inspection process using digital image analysis due to improvements in computer technology [2]. Cracks 

are very essential for the safety of concrete structures, and were therefore underlined in this study. Poor 

repairs, contractions due to fast temperature reductions, oscillations between contractions and expansions 

due to temperature changes, and additional loads are all causes of cracks in concrete buildings. Cracks, for 

whatever reason, can have an impact on the appearance of concrete structures and, more significantly, can 

signal serious structural distress or damage [5]. Even though extensive studied have been conducted in the 

literatures (Section 1.3.2), crack detection and quantification remains a challenging issue, because of: (1) 

some studies only established crack classifier to detect cracks; (2) pixel-level semantic segmentation 

method based on deep learning training requires a database of annotated pixels, generation of which is time 

and labor costly. Therefore, a crack identification model must be developed to analyze cracks efficiently 

and reliably from experimental images or field tests. 

Since existing bridges have been or will be in service for a long time, a wealth of damage data on their 

components has been or will be accumulated. However, intuitively managing this information is not easy 

[6-7]. In other words, managers cannot comprehend the deterioration of a component unless they look for a 

large amount of documentation regarding that component. To address this issue, damage information such 

as cracks must be linked to the corresponding component. Furthermore, the damage information should be 

displayed intuitively on the components. The Building Information Modeling (BIM) of existing bridges is 

an optimal solution to these issues because it can include not only geometry information but also 

non-geometry information.  

The existing bridge is a complicated system, i.e., its deterioration situation, the propagation of cracks, and 

other damages must all be taken into account when performing the prediction-based maintenance. To 

support decision-making, the deterioration prediction models, crack identification models, and the 3-D 

prototype model of existing bridges should be integrated together to constitute a collaborated BIM 

platform. The crack identification model in this platform extracts and locates the crack pixels to the 

corresponding components; the deterioration situations and reasons are determined by the deterioration 

prediction model. This platform is anticipated to easily show the crack damage of each component, 

determine the remaining life, and estimate the impacts of external variables influencing the deterioration.  

1.3 Literature review 

1.3.1 Deterioration prediction 

Since the conditions of an existing bridge are typically dynamically changing, the conditions at a time 

affect its conditions at the subsequent time [8]. In addition, deterioration of existing bridges is associated 

with many factors, such as chloride and snowfall. Therefore, the cumulative effects of these factors on 

deterioration must be evaluated. Furthermore, the time-span of the data for these factors depends on the 

years in-service of the respective bridge. Some values of many time-dependent factors are irregularly 

observed. In summary, it is essential to properly analyze the inspection database when using the database 

for predictive maintenance. The method used to analyze the database should be able to: handle problems 

with many factors, consider the cumulative effects of time-dependent factors, and deal with nonlinear 
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relationships between factors and deterioration. Conforming to the aforementioned requirements, possible 

methods are detailed below. 

Deterministic and probabilistic models are two kinds of approaches commonly used in predicting 

deterioration [9]. The former method deals with certain and known variables. Hyman et al. [10] established 

a piecewise linear regression model to relate deterioration to the age of bridge. Busa et al. [11] used linear 

regression to conclude that bridge deterioration is significantly affected by age and daily traffic. Abu-Tair  

[12] discussed the application of the factor method in predicting deterioration and noted that this method is 

highly subjective. Pan et al. [13] presented a matrix-driven fuzzy linear regression model to predict bridge 

conditions. Taking a similar method, Kim et al. [14] applied a sigmoid function to nondestructive 

evaluation data to evaluate the deterioration of a bridge deck. Jeong et al. [15] developed a non-linear 

regression model for determining the expected service life of a bridge. Although the performance of 

bridges in their service life can be described by the formulas of deterministic models, these models ignore 

the uncertainty of deterioration [16].  

In addition, some studies have focused on probabilistic models, among which the most used model is the 

Markov chain (MC) model. Agrawal et al. [16] compared the Markov Chain with the Weibull distribution 

and concluded the later method would be better. Li et al. [17] and Wellalage et al. [18] used the Markov 

Chain–based deterioration models to predict bridge conditions. Zambon et al. [19] compared different 

Markov Chain based stochastic prediction models. He et al. [20] analyzed bridge deterioration by 

considering multi-factors and divided factors into hazards increased factors and protective factor. 

Except for deterministic and probabilistic models, the neural network has been applied to practical 

maintenance engineering [21-22]. In the application of the neural network to establish a deterioration 

prediction model, Sobanjo [23] used the inspection records for 50 bridge superstructures to predict bridge 

deterioration that inputs only the age of the bridge and outputs the deterioration condition of the bridge 

superstructure. Huang [24] identified eleven significant factors and developed an artificial neural network 

model to predict the deterioration of bridge decks. Using the same operation, Al-Hussein [9] designed a 

neural network to estimate the deterioration considering the structure type, component types, exposure 

environments, and defects. Lim and Chi [25] developed a neural network to predict the number of damage 

occurrences on bridge decks and their severity, considering identification, structural, inspection, and 

environmental factors.  

Appropriate neural network architectures can be trained using the inspection database to predict future 

deterioration situations. If the network parameters are appropriately designed, the network can result in 

satisfactory forecasting performance. One of the best-known neural models is the Multilayer Perceptron 

(MLP) consisting of an input layer, one or several hidden layers, and an output layer. On the other hand, 

the Recurrent Neural Network (RNN) is a type of artificial neural network specialized in learning 

time-related patterns from time-series data. Among the RNNs, Long Short-Term Memory (LSTM) is most 

widely used, and therefore, was applied in this study. Many studies have applied this method to practical 

engineering. Jeong et al. [26] used the method to monitor bridge vibrations caused by loads. Wang et al. 

[27] applied the method to predict the quality problems of structural components in construction projects. 

Razavi et al. [28] used the model to predict the load deflection of carbon fiber reinforced polymer 

strengthened reinforced concrete (RC) slab.  

According to the aforementioned information, Markov Chain and neural network (including MLP and 

RNN) are two typical methods used to perform deterioration prediction. These methods are therefore 



Chapter 1 Introduction 

4 
 

considered to analyze a censored database of bridges. The MLP and RNN were first compared to 

determine the optimal neural network model. Then, the optimal neural network is compared with the 

typical traditional method MC.  

However, one problem occurs when applying the neural network to analyze an inspection database toward 

predicting deterioration of existing bridges to optimize further maintenance strategies. Zhang et al. [29] 

and Caruana et al. [30] noted that the neural network can give rise to a black box problem. Although the 

neural network model can predict deterioration under given influencing factors, the prediction model 

provides only one predicted value without any explanation. This makes it difficult for engineers to trust the 

prediction, to understand what factors affect the prediction, and to determine targeted intervention. To 

solve the difficulties, the Shapley value method and the Sobol indices method are applied to the optimal 

neural network model to determine the contribution of each factor on deterioration by calculating the 

relative importance of each factor.  

 

1.3.2 Crack identification 

Crack detection and quantification are two major challenges for efficiently assessing the severity of cracks 

[31]. Literature reviews regarding those two aspects will be described below. 

Four ways are available to detect cracks from images: manual detection, image processing techniques, 

feature-based machine learning, and deep learning-based algorithms. Manual detection is usually time 

consuming and prone to inaccuracy due to inspector fatigue or human error, and is beyond the scope of this 

study. Study progress on the image processing techniques, feature-based machine learning, and deep 

learning-based algorithms are detailed below.  

Many image processing techniques have been proposed and applied. These techniques include: 

thresholding [32-33]; original or modified edge detection [34-36]; and filter based methods [37-41]. 

Thresholding is performed to partition an image into multiple parts or regions based on the characteristics 

of the pixels in the image. Edge detectors and filter based methods detect crack edges by applying various 

filters to a grayscale image to emphasize discontinuities. However, image processing techniques cannot 

cope with the random shape and irregular size of cracks [5]. In addition, the results of these techniques are 

noticeably influenced by the illumination and distortion of images [42]. Although one de-noising technique 

has been proposed [43] and applied to a study [44], the usage of this technique is limited as images taken 

from the real-world vary extensively.  

Another approach of crack detection is to use machine learning algorithms [45-50]. These algorithms are 

performed by evaluating whether the signals collected from non-destructive testing indicate defects. In 

addition, some researchers combined machine learning algorithms with image processing techniques 

[51-53]. Specifically, image processing techniques are first used to extract features, and then machine 

learning algorithms to classify these features. Although machine learning algorithms are introduced in their 

methods, the results of these methods are inevitably affected by the performance of image processing 

techniques, as image processing is usually the first step in extracting features from images.  

In addition, a recent promising development is the introduction and widespread use of deep learning [54].  

As a kind of deep learning, Convolutional Neural Network (CNN) has been emphasized in image 

recognition, as it does not rely on the expert set threshold, can effectively capture the grid topology of 
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images, has high accuracy, can distinguish a large number of categories, and is robust to image variations 

[44, 55-56]. Many studies have been conducted to demonstrate the feasibility of CNN and achieved 

considerable results. Depending on the level of detail required for prediction, the application of CNN in 

crack detection can be separated into three categories: image classification, object detection, and semantic 

segmentation [46]. Image classification uses the sub-image database cropped out from raw images to train 

a classifier for predicting whether a sub-image is cracked or complete. Target detection classifies targets 

and mark the range and location of each type of target (e.g., crack). Semantic segmentation is to perform 

pixel level prediction by classifying each pixel as a crack or an intact pixel. 

In terms of image classification: Zhang et al. [57] conducted CNN training on pavement images taken by 

smartphone, and concluded a remarkable improvement in accuracy relative to machine learning classifiers 

trained on manual features. Cha et al. [42] trained a CNN classifier to classify images as crack or intact 

regions with help of a slide window. The accuracy of this classifier on cracks exceeds 98%, i.e., 

significantly better than the edge detection methods. Eisenbach et al. [58] trained a CNN to detect asphalt 

crack, and its performance is better than the two baseline models. Gopalakrishnan et al. [59] implemented 

transfer learning to train a classifier on a combination of asphalt and concrete pavement cracking images, 

and concluded that pre-trained VGG-16 CNN yielded the optimal performance. Zhang et al. [60] used 

transfer learning to propose a unified detection model for crack and sealed crack, and presented better 

performance than the three used benchmarks. Li and Zhao [61] established a CNN model with an accuracy 

of 99.06%, which is applicable for complicated images, such as thin cracks, rough surface, and shadows. 

In terms of object detection: Cha et al. [62] used 2366 sub-images cropped from 297 annotated raw images 

to train a region-based CNN architecture for detecting five types of damage including concrete cracks. Its 

average accuracy is 88%. Liu et al. [63] proposed an automatic robot inspection system that using a CNN 

established by transfer learning as detection for three defects including concrete cracks. 

In terms of semantic segmentation: Zhang et al. [64] studied the pixel-level pavement crack detection 

using the three-dimensional (3D) data (including depth information) from a 3D laser system. The method 

yields about 90% accuracy, without the capability of detecting hairline cracks. Dorafshan et al. [65] 

compared the performances of CNN with traditional crack detection methods and concluded that CNN 

shows significant promise for image-based damage detection in concrete. Fan et al. [66] used a CNN to 

learn the crack pixels in pavement images.  Specifically, the model runs with a fixed-size 27×27 window 

at every pixel, and then provides a 5×5 pixel as a pixel-level output at the center of that patch. The 

essential of this approach is same as the image classification CNN. Similarly, Li et al. [67] proposed a 

pixel-level detection approach by using an 18 × 18 window centered at that pixel. Alipour et al. [66] 

reported a pixel-level detector by converting the fully connected layer of the image classification CNN 

architecture into convolutional filters. Then, features extracted from different order convolutional filters 

are up-sampled to generate a heat map for providing pixel-level prediction. Input of the model is a pixel 

annotated dataset. The model over 92% of crack pixels and 99.9% of intact pixels in the validation set. 

Using a similar method, Ni et al. [68] proposed a framework to combine the features extracted from 

different order convolutional filters to achieve pixel-level classification. Kang et al. [69] proposed a hybrid 

method to achieve crack segmentation. Specifically, a faster region proposal convolutional neural network 

(Faster R-CNN) is applied to detect the crack regions. Then, modified tubularity flow field (TuFF) and 

modified distance transform method (DTM) are used to segment the crack pixels and quantify crack 

thickness and length, respectively.  
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In addition to crack detection, crack quantification is also important for assessing the status of in-service 

infrastructure and determining corresponding maintenance measures. Further, many researches attempted 

to correlate detailed crack patterns to the quantitative damage states of concrete beams and panels at 

different loading stages [70-72]. 

According to the aforementioned information, the semantic segmentation can not only achieve crack 

detection but also crack segmentation, making it the optimal approach for detecting cracks. However, 

semantic segmentation algorithms of Fan et al. [65] and Li et al. [67] are not essentially different from 

image classification. Although Alipour et al. [56] and Ni et al. [68] achieved real pixel-level detection, 

crack detection and quantification remains a challenging issue because deep learning training using a 

database of annotated pixels is time and labor costly. 

1.3.3 Building Information Modeling (BIM) platform 

Over the past few decades, the building sector has been increasing interest in the use of Building 

Information Modeling (BIM) due to the many benefits and resource savings in the design, planning, and 

construction of new buildings [73-77]. In the preliminary stage, the use of BIM is mainly focused on 

pre-planning, design, construction, and integrated project delivery of buildings and infrastructure. However, 

in recent years, the research focus has shifted from the early life cycle (LC) phase to maintenance, 

renovation, demolition, and end-of-life considerations [78, 75, 79-83], especially for complex structures. 

Potential benefits of using BIM in facility management seem to be significant [79, 84, 85], e.g. 

management of the valuable documentation [75], maintenance of warranty and service information [79, 84, 

86], quality control [87, 88], assessment and monitoring [75, 79, 84], energy and space management [79, 

89], emergency management [84] or retrofit planning [90, 84]. 

Although BIM is suitable for larger and more complex buildings and has been applied to many new 

buildings [91], there are other challenges to implementing BIM in existing bridges. This challenge occurs 

mainly because incomplete, obsolete or fragmented building information dominates many existing bridges 

[79, 92]. Missing or obsolete building information might result in ineffective project management, 

uncertain process results, and time loss or cost increases in maintenance, retrofit or remediation processes. 

As existing buildings often lack as-built documentation due to omitted updating, limitations of using BIM 

in existing bridges and research challenges are expected. One possible approach is to use information 

gathered by designers and on-site inspections to build a BIM model that is close to the actual situation.  

 

1.4 Problem statements 

(1) Bridge censored databases can be used to analyze and assess structural deterioration conditions, but 

doing so is difficult because of: (i) many factors affect deterioration; (ii) the time span of the data for these 

factors depends on the bridge age; and (iii) the values of some factors are not observed on a regular basis.  

(2) Bridge deterioration is caused by a variety of factors. However, the connection between factors and 

deterioration is not clearly defined, nor is the relative influence of each factor on deterioration well 

recognized. 

(3) Crack detection and quantification remains a challenging issue because deep learning training using a 

database of annotated pixels is time consuming and labor intensive.  

(4) In the past, a great deal of damage information on existing bridge components was gathered. However, 
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intuitive information management is difficult since bridge managers are unable to connect damage 

information to the corresponding components. 

(5) The existing bridge is a sophisticated system that is impacted by materials, surrounding environments, 

and other factors, i.e., its deteriorating status, crack propagation, and other damages should all be taken 

into account while doing prediction-based maintenance.  

1.5 Research objectives 

This work offered in-depth studies on the establishment of the deterioration prediction models utilizing the 

inspection database. Additionally, sensitivity analysis was performed on the established deterioration 

model to clarify the causes of deterioration. Furthermore, a crack identification model was established to 

detect, segment, and quantify cracks from images. Finally, all the developed models were integrated with a 

developed 3-D prototype model to generate a collaborative Building Information Modeling (BIM) 

platform. Specifically, the three main objectives for this research were detailed below: 

(1) Establishment of the deterioration prediction models considering various influencing factors 

Engineers evaluated the deterioration situations of existing bridges as deterioration grades during the 

inspection. Over time, an inspection database was collected. In addition, the meteorological information 

and the information regarding traffic vehicles of each bridge can be obtained from the Japan 

Meteorological Agency (JMA) and the Ministry of Land, Infrastructure, Transport and Tourism (MLIT), 

respectively. Finally, time series data regarding twelve factors were collected.  

The inspection database including twelve potential factors and three deterioration grades were introduced 

to the Multilayer Perceptron (MLP), Recurrent Neural Network (RNN), and the Markov chain (MC) to 

establish deterioration prediction models. The MLP and the RNN belong to neural network. They were 

first compared to select the optimal model for deterioration prediction. RNN was finally confirmed has 

better performance than MLP. Then, the sensitivity analysis method such as the Shapley value method and 

the Sobol indices method were applied to the RNN to evaluate the causes for deterioration. In addition, the 

RNN was further compared with a traditional method MC by the deterioration progresses.  

The inspection database, which included twelve possible variables and three degradation grades, was fed 

into the Multilayer Perceptron (MLP), Recurrent Neural Network (RNN), and Markov chain (MC) models. 

The MLP and the RNN belong to neural network. They were initially compared in order to choose the 

optimal model for degradation prediction. RNN has now been proven to outperform MLP in terms of 

performance. The RNN was then subjected to sensitivity analysis methods such as the Shapley value 

method and the Sobol indices approach to determine the causes of deterioration. Furthermore, the RNN 

was compared to a classic technique MC in the predicted deterioration progresses. 

(2) Establishment of the crack identification model 

Many images with cracks were collected from onsite inspection and indoor experiment. These images were 

cropped into crack or intact sub-images to generate an image dataset. This dataset can be applied to 

establish a crack detection classifier using the Convolutional Neural Network (CNN). This classifier is able 

to detect the image as crack or intact for the new collected image. To support the detection of cracks, a 

novel sliding window approach (neighborhood scanning) was developed. Additionally, a method for 

calculating crack widths was presented. Then, an application was developed to integrate the proposed 

techniques to segment and quantify the crack pixels from the sub-images (detected with crack by the CNN 
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classifier). 

(3) The collaborated BIM platform. 

Plenty of inspection information for existing bridges was collected in the past. To intuitively manage the 

inspection information, the 3-D prototype model of the existing bridges can be built using the onsite 

collected information and documentation-based information. Then, the 3-D model can be integrated with 

the models established in previous two objectives to construct a collaborative BIM platform. The crack 

identification model in this platform can extract the crack pixels and locate these pixels to the 

corresponding components; the deterioration situations and reasons can be identified by the deterioration 

prediction model. Five bridges were selected to conduct case studies. The crack pixels generated by the 

crack identification model were located on the surface of relevant components for the five bridges. 

Furthermore, the deterioration prediction models were utilized to comprehend future deterioration 

scenarios and determine the causes of deterioration. Finally, prediction-based maintenance/intervention 

timing and strategies for these five bridges were proposed. 

1.6 Thesis structure 

This dissertation is split into seven chapters. The first chapter is an introduction, followed by Chapter 2 on 

the applied techniques. The considerations for developing the deterioration models and the crack 

identification model were discussed in Chapters 3 and 4, respectively. In Chapter 5, five bridges were 

explored as examples to create 3-D models. The models from Chapters 3 and 4 were then intergraded to 

the 3-D models to build a collaborative BIM platform. This study's practical accomplishments and 

limitations were explored in Chapter 6. Chapter 7 summarized the findings of this study. Figure 1.2 depicts 

the framework of this dissertation. Details of each chapter were described below:  

Chapter 1 provided the background for this study, including the importance of prediction-based 

maintenance, the management of existing bridges, and the processing of the inspection information (such 

as the inspection database and the collected image). Then, literature reviews are broadened from the three 

points: (1) bridge deterioration prediction; (2) endeavors in crack identification; and (3) building 

information modeling (BIM). Problem statements and the research objectives are described at the end of 

this chapter.  

Chapter 2 listed the approaches used in this study. Specifically, the Multilayer Perceptron (MLP), the 

Recurrent Neural Network (RNN), and the Markov chain (MC) are used to analyze the inspection database. 

To identify the causes of deterioration, the Shapley value technique and Sobol indices are used. The 

Convolutional Neural Network (CNN) is used to create a classifier to determine if an image is cracked or 

intact. The cracks are then segmented, extracted, and analyzed using a created application. All of the 

models are integrated with 3-D models to generate a collaborative BIM platform. 

Chapter 3 explained the considerations for establishing the deterioration model. Specifically, an inspection 

database including twelve potential factors and three deterioration grades is input into the Multilayer 

Perceptron (MLP) model, Recurrent Neural Network (RNN) model, and the Markov Chain (MC) model to 

build deterioration prediction models. The sensitivity analysis method is applied to evaluate the causes of 

deterioration. When establishing the prediction model, the cracking is not considered as a factor, because 

on the one hand, cracking is a typical kind of deterioration, on the other hand, crack identification model is 

anticipated to be established to facilitate the processing of onsite collected images. 
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Chapter 4 included information on the creation and validation of a crack identification model. To 

determine if an image is cracked or intact, a Convolutional Neural Network (CNN) classifier is initially 

built. Then, an application is created to segment, extract, and analyze the crack pixels.  

 
Figure 1.2 Thesis structure 
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Chapter 5 established and verified a collaborated Building Information Modeling (BIM) platform 

combined with case studies. Information collected from onsite inspection and documentation is used to 

build the 3-D prototype models. Then, the 3-D models are integrated with deterioration prediction model 

and the crack identification model to generate a collaborative BIM platform. 

Chapter 6 discussed the achievements and limitations of this study in practical.  

Chapter 7 summarized the findings of this study. In addition, the potential research topics are 

recommended as the future work.  
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Chapter 2 

Applied methodologies 

 

2.1 Overview 

Figure 2.1 depicts this chapter's outline. The techniques employed in this study are depicted by the 

red-dashed boxes. Specifically, the inspection database, which included twelve influencing elements and 

three deterioration grades, was put into the Multilayer Perceptron (MLP), Recurrent Neural Network 

(RNN), and Markov Chain (MC) to develop deterioration prediction models. Then, sensitivity analysis 

methods, such as the Shapley value method and the Sobol indices method, were applied to make clear the 

reasons for deterioration. 

As another main work, the images collected from experiment and onsite inspection were introduced into a 

Convolutional Neural Network (CNN) to establish a classifier to determine whether an image was cracked 

or intact. Following that, the cracked pictures were forced through the created application to segment, 

extract the crack pixels, and analyze the cracks. 

Some model assessment indexes were presented in Section 2.8 in order to get the deterioration prediction 

models and the crack identification model. 

 

Figure 2.1 Outline of Chapter 2 

To manage the inspection information in 3-D and visualize the damage of each component of a bridge, the 

3-D prototype model of the existing bridge was built.  

Then, the deterioration prediction model, the crack identification model and the 3-D model were combined 

to build a collaborative Building Information Modeling (BIM) platform. This platform can be used as a 
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supplementary tool to assist the managers in evaluating the conditions of existing bridges and developing 

appropriate intervention plans. These topics will be discussed in further depth below.  

2.2 Mathematical representation 

The inspection database was first converted into vectors in chronological order to represent data of 

potential factors as computable sequences. Supposing 𝑀 factors are considered, the vector of those 

factors for a bridge can be expressed as:  

                                                (1) 

In practical calculation, bias    (similar to the intercept of a linear equation), is needed to improve the 

accuracy of the model. Therefore, Equation (1) can be expanded as: 

                                                  (2) 

Equation (2) indicates the values of these factors at a time t, specifically shown as:  

   [                      ]                            (3) 

Suppose T observations were collected for each factor of a bridge, the factors and deterioration situation 

are represented as 𝐵𝑑  (𝑋;  𝑦). X is the input that consists of M factors, and 𝑦 is the output indicating the 

deterioration grades. The input is arranged as: 

𝑋               

[
 
 
 
                 

                 

⋮ ⋮ ⋮ ⋱ ⋮
                 ]

 
 
 
                         (4) 

     is the observed/measured value at time t for the m-th factor. 

The matrix X only represents the time series for one bridge. Assuming K bridges are included in the 

inspection database, a corresponding matrix 𝑋𝑘(𝑘  1 2   𝐾) with the same dimension M but a 

different length 𝑇𝑘 will be obtained for each bridge. Therefore, the database can be expressed as: 

𝐷   𝑋𝑘; 𝑦𝑘  (𝑘  1 2   𝐾)                          (5) 

Since different factors are measured on separate scales, their values must be modified to a common scale to 

increase the efficiency of the training process. Therefore, each factor’s value is normalized within 0–1 

using: 

     
    − min (|    |)

max(|    |) − min (|    |)
                          (6) 

where min (|    |) and max (|    |) are, respectively, the minimum and the maximum of the input data 

     among 𝐾 total target bridges.  

2.3 Multilayer Perceptron (MLP) model 

Appropriate neural network architectures can be trained on the inspection databases to predict the future 

values of the dependent variables [1]. The noteworthy characteristic of a neural network is its learning 

ability. During the establishment of a neural network model, the network processes the inputs and produces 

an output, compares the output to the ideal answer, and calculates the errors. Then the parameters of 

connections (   and    in Figure 2.2) are updated according to the errors. If the network paradigm and 

parameters are appropriately designed, satisfactory predictive performance can be produced. One of the 
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best-known neural networks is the Multilayer Perceptron (MLP). For existing bridges, a neural network 

can assist maintenance work by establishing the relationships between the potential factors and the 

deterioration grades to predict the future deterioration. 

 

Figure 2.2 Configuration of a neural network used for prediction 

Given the neural network's learning capacity, it may be used to establish the optimal connections between 

potential factors and deterioration grades. A neural network typically consists of an input layer, one or 

more hidden layers, and an output layer [2].  

The input layer receives data and is made up of many neurons (Figure 2.2). The number of neurons is the 

same as the number of potential factors. As described in Section 2.2, if M factors are considered, the mean 

value of each factor among the T observations constitutes a vector that serves as the input of MLP.  

It is simple to create a linear model between independent and dependent variables using linear 

regression/training the neural network. For the linear model, the hidden layer is unnecessary. However, 

nonlinear problems are usually encountered. Fortunately, a feed forward network with a linear input layer 

and at least one hidden layer with any activation function (such as the Softmax, Relu, and Tanh) can 

handle nonlinear issues if enough hidden neurons are provided. The feed forward network's derivatives can 

also well approximate the derivatives of any arbitrary function [2]. The activation function defines the 

output given an input. Guliyev and Ismailov [3] gave rich examples of the activation function used in a 

neural network.  

The rules for setting the specific number of hidden layers and their neurons remain unknown. Setting the 

hidden layer configuration, however, may follow the guidelines for almost all problems: (i) one hidden 

layer; and (ii) the number of neurons in that layer are between the sizes of the input and output [2].  

As the starting weight values are set at random during training, the predicted grades are frequently 

discordant with the actual grades. Therefore, cross-entropy defined by Equation (7) was used to evaluate 

the error between the predicted grade �̂�and the actual grade 𝑌.    is the number of samples,   is the 

number of classes, 𝜂𝑗  denotes the weight for class j to deal with sample imbalance, and 𝑝𝑗 

represents the probability that a sample belongs to class j. If a sample belongs to class j, 𝑦𝑗  1, 

otherwise 𝑦𝑗  0. 
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 𝑟𝑜𝑠𝑠 𝑒𝑛𝑡𝑜𝑝𝑦  −∑∑𝜂𝑗

𝐶

𝑗= 

𝑦𝑗𝑙𝑜𝑔(𝑝𝑗)

 𝑠

𝑖= 

                       (7) 

Afterwards, the derivatives of the cross-entropy value are allocated to the parameter matrices of    and 

   to update their values by Equations (8) and (9), respectively. 

     −   

  𝑟𝑜𝑠𝑠 𝑒𝑛𝑡𝑟𝑜𝑝𝑦

   
                          (8)  

      −   

  𝑟𝑜𝑠𝑠 𝑒𝑛𝑡𝑟𝑜𝑝𝑦

   
                          (9) 

where    and    are the learning rate coefficients. To obtain the optimal results, the above procedures 

will be iterated to minimize the cross-entropy value. 

In our situation, we may use an MLP model to connect possible factors and deterioration grades. By 

incorporating fresh inspection data and updating the prediction model on a regular basis, the model will be 

constantly improved. As a result, two parameter matrices    and    will be calculated, representing the 

whole connection between the input and the output. The model does not offer precise deterioration 

forecasts, but it may be used as a supplement to design bridge maintenance strategies. However, the 

correlations are difficult to grasp since these two matrices represent the complex nonlinear computation. 

Thus, the neural network is reduced to the status of a black box. The sensitivity approaches will be applied 

to offer insights to understand the prediction model in Section 2.5. 

2.4 Recurrent Neural Network (RNN) model 

As previously stated, the MLP can build relationships between the deterioration grades and the influencing 

factors. However, The time-dependence of some factors' time series cannot be addressed adequately. 

Recurrent Neural Network (RNN) is another type of neural network specialized in learning time-related 

patterns from time-series data. Therefore, the RNN is introduced to perform feasiablity research.  

 
Figure 2.3 A schematic RNN model for deterioration prediction 

Among all RNNs, Long Short-Term Memory (LSTM) [4] and Gated Recurrent Units (GRUs) [5] are most 

commonly used. GRU is structurally similar to, but less complicated than, LSTM. The model used for 
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deterioration prediction in this study is an LSTM-based RNN, as illustrated in Figure 2.3. The LSTM 

accepts an input vector    at time step t and stores the state of the input in the hidden layer ℎ . To classify 

input data, it is necessary to have a layer for predicting grades, which is usually located at the end of the 

LSTM architecture. The most prominent method to date is using the softmax activation function. After the 

entire inspection time series is input into the LSTM, the softmax activation function is applied to the final 

hidden layer ℎ  and produces a value 𝑦  . 𝑦   is the estimated deterioration grade for a bridge. In other 

words, an LSTM-based RNN provides a neural network with a memory function, enabling the neural 

network to achieve good modeling ability on time series data [6]. 

 

Figure 2.4 Configuration of the LSTM unit 

The dashed box of Figure 2.3 refers to the LSTM unit used for processing current and prior information. 

The detailed components of the dashed box in Figure 2.3 are shown in Figure 2.4. The update and usage of 

cumulative information are controlled by three gates: the input gate 𝑖 , the forget gate   , and the output 

gate 𝑜  [6]. 𝑠 , 𝑔  and ℎ  are the state memory cell, input candidate memory cell and hidden layer, 

respectively [7]. The calculation of all gates is affected by both the current input    and the output of the 

previous LSTM cell ℎ − . The input gate is applied to process the impact of the current input on the status 

of the memory cell 𝑠 . The forget gate is used to control the influence of cumulative information on the 

memory cell 𝑠 . The output gate is applied to control the status value of the memory cell 𝑠 . The 

mathematical formulation of Figure 2.4 and the update of the LSTM unit can be divided into the following 

steps [4]: 

(1) Calculate the value of the current candidate memory cell 𝑔 . 

𝑔  tanh( 𝑔𝑥  +  𝑔ℎℎ − + 𝑏𝑔)                        (10) 

(2) Calculate the value of the input gate  it.  

𝑖   i moi ( 𝑖𝑥  +  𝑖ℎℎ − + 𝑏𝑖)                       (11) 

(3) Compute the value of the forget gate ft.  

    i moi (  𝑥  +   ℎℎ − + 𝑏 )                       (12) 

(4) Calculate the state value   t of the current memory cell. 

𝑠  𝑔 ⨀𝑖 + 𝑠 − ⨀                             (13) 

𝑠𝑡−   ⨀  ⨁ 

ℎ𝑡−  
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(5) Calculate the value of the output gate  ot.  

𝑜   i moi (  𝑥  +   ℎℎ − + 𝑏 )                      (14) 

(6) Calculate the value of the current hidden layer ht. 

ℎ  tanh(𝑠 )⨀𝑜                                 (15) 

(7) The output of the last LSTM unit is shown by the dashed part of Fig.3 and is calculated by: 

𝑦    oftmax(ℎ )                                (16) 

In these equations, the tanh, sigmoid, and softmax are three commonly used activation functions in the 

field of deep learning [4].    and 𝑏 are the parameters for calculating the three gates. In LSTM, the 

previous hidden layer ℎ −  and the current input    do not directly affect the value of the current hidden 

layer ℎ . Instead, they change the values for gates 𝑖 ,   , and 𝑜  and the intermediate memory cell 𝑠 . 

Then, the current hidden layer ℎ  is determined by 𝑠  and 𝑜 . In the calculation for 𝑠  and ℎ , ⨀ 

denotes elementwise multiplication. All three gates have values between zero and one: zero means the 

information stored in the gate is ignored, and one means the information is accumulated and passed to the 

next calculation. The architecture of the three gates and separate memory cells enables the LSTM unit to 

save, read, reset, and update long-distance cumulative information. These characteristics of LSTM are 

especially useful because LSTM can process non-linear problems with many factors [8]. In addition, the 

cumulative effects caused by the time-dependent factors can be appropriately solved using the functions of 

the three gates.  

As the initial values of W are randomly assigned during training, the predicted and actual classes do not 

usually coincide. To calculate the amount of deviations between the predicted and actual classes, the loss 

function is defined by Equation (17).  

𝐿(𝑦   𝑦)  
1

𝑇
∑−(𝑦 ∙ lo (𝑦  ) + (1 − 𝑦 ) ∙ lo  (1 − 𝑦  ))

 = 

 = 

                (17) 

The update of the weights is achieved using a Stochastic Gradient Descent (SGD) approach. In addition, a 

momentum algorithm was combined with the SGD to accelerate the convergence process of the training. 

The gradient ∇𝑊𝐿 of loss function is calculated with respect to   at time t. Then the velocity 𝑉 +  in 

Equation (18) is updated (←) by combination of the previous velocity 𝑉  and the gradient ∇𝑊𝐿, where 

momentum 𝜇 and learning rate   are two parameters [9]. Finally, the   are updated using Equation 

(19). 

𝑉 + ← 𝜇𝑉 −  ∇𝑊𝐿                             (18) 

  + ←   + 𝑉 +                              (19) 

The optimal model is determined by iteratively updating the model’s parameters until the minimum error is 

obtained.  

2.5 Confirmation of factors affecting deterioration 

Sensitivity analysis can be applied to overcome the uncertainty of factors on deterioration, because it can 

tell engineers what factors affect the deterioration and their relative importance. A prediction can be 

explained by assuming that each factor is a "player" in a game where the prediction is the "payout". 

Shapley values method tells how to fairly distribute the "payout" among the factors [10]. Next, the Shapley 
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value method was briefly introduced. The set of 𝑀  potentially influencing factors is represented 

by              , and any permutation   of   is a coalition. The characteristic function   maps all 

permutations to "payout", which in our case is the deterioration grade. The function   has the following 

definitions: if   is a permutation (coalition) of all factors; then  ( ) describes the total impact of all 

factors in coalition   [11]. The value of  ( ) is determined by inputting   in the prediction model. 

The importance   𝑖( ) of factor  𝑖 is determined as follows:  

 𝑖( )  ∑
(𝑀 − | | − 1) | | 

𝑀 
( (    𝑖 ) −  ( ))

     𝑖 
              (20) 

where 𝑀 is the total number of factors. The sum extends over all subsets S of N excluding factor  𝑖. The 

formula can be interpreted as follows: the contribution of factor  𝑖 in S is  (    𝑖 ) −  ( ); the average 

of this contribution over the possible permutations is the final contribution of this factor. In our case,  ( ) 

refers to the deterioration grade, and is indicated as: 

 ( )  ∑ 𝑖( )

 

𝑖

                              (21) 

The Shapley value method can calculate the relative importance of each factor, regardless of the 

complexity of the prediction model. Therefore, it can explain any prediction model [11]. Specifically, the 

calculated importance is related to the magnitude of difference in prediction results when a factor is 

considered (such as bridge width) versus when it is not considered (such as when bridge width is 

unknown) [12]. In summary, the Shapley value method identifies all factors and evaluates their relative 

importance, enabling an engineer to identify factors that significantly influence the deterioration and to 

formulate a matching intervention strategy. This is an important step towards putting the neural network to 

practical maintenance because the sensitivity analysis converts abstract and inexplicable predictions into 

the relative importance of factors that are easy for engineers to understand and act on.  

Except for the Shapley value method, Sobol indices [13] is another useful method to detect the sensitivity 

of predictions to inputs. In this study, these two methods will be compared by using an actual case in the 

Section 3.6. Conforming to the descriptions of these two methods, we present the specific steps to perform 

the sensitivity analysis of the predictions. Given values of factors, the predicted grades of a bridge can be 

obtained (Section 3.4), with some predictions being successful (i.e., the same grade as that evaluated by the 

engineer) and the rest being unsuccessful. All correctly predicted bridges are extracted to create a new 

database, because failed predictions may result in inaccurate importance estimations. The Shapley value 

and Sobol indices approaches are applied to the new database to determine the sensitivity of the prediction 

model to each factor.  

2.6 Markov Chain (MC) model  

The MLP and the RNN are two neural network techniques. Aside from the neural network, the Markov 

Chain (MC), an typically probabilistic approach, was utilized to predict the deterioration progresses of 

bridges. To establish a MC model, a hazard model with exponential distribution was first formulated. The 

MC was then used to infer transition probability. Finally, maximum likelihood estimation was performed to 

determine the optimal parameters based on the censored database. These three parts were detailed below.  

 



Chapter 2 Applied methodologies 

24 
 

2.6.1 Hazard model formulation 

To estimate the deterioration conditions of a bridge, the censored data on this bridge is necessary. Figure 

2.5 illustrates the deterioration progress of a bridge. In this section, the problem of bridge deterioration is 

mathematically formulated.  

 

Figure 2.5 Time transition of soundness 

As shown in Figure 2.5, sojourn time 𝑇𝑖   0 ∞) of staying deterioration grade i is a random variable. 

Supposing the probability density function (PDF) of 𝑇𝑖 is  𝑖(T𝑖), the cumulative distribution function  

can be represented as 𝐹𝑖(T𝑖)  𝑃(T𝑖 < 𝑡𝑖)  ∫  𝑖(T𝑖)𝑑T𝑖
 𝑖

 
. 𝐹𝑖(T𝑖) represents the probability that the bridge 

survives less than 𝑡𝑖. The survival function defines the probability that sojourn time 𝑇𝑖 will be 𝑡𝑖 or 

more.  

𝑃(T𝑖 ≥ 𝑡𝑖)  �̃�𝑖(T𝑖)  1 − 𝐹𝑖(T𝑖)                          (22) 

The hazard function represents the risk of failure at time 𝑡𝑖. Specifically, it is the probability that a bridge 

will failure at time 𝑡𝑖, provided that this bridge has survived to time 𝑡𝑖. Therefore, the probability that 𝑇𝑖 

belong to interval [𝑡𝑖  𝑡𝑖 + 𝛿𝑡𝑖  is:  

𝑃(𝑡𝑖 ≤ T𝑖 ≤ 𝑡𝑖 + 𝛿𝑡𝑖|T𝑖 ≥ 𝑡𝑖)  
𝑃(𝑡𝑖 ≤ T𝑖 ≤ 𝑡𝑖 + 𝛿𝑡𝑖)

𝑃(T𝑖 ≥ 𝑦𝑖)
                 (23) 

The derivative of Equation (23) to 𝛿𝑡𝑖 gives the definition of hazard function ℎ(𝑡𝑖), as shown in Equation 

(24).  

ℎ(𝑡𝑖)  lim
𝛿 𝑖→ 

𝑃(𝑡𝑖 ≤ T𝑖 ≤ 𝑡𝑖 + 𝛿𝑡𝑖|T𝑖 ≥ 𝑡𝑖)

𝛿𝑡𝑖
                      (24) 

Furthermore, Equation (24) can be expressed as:  

ℎ(𝑡𝑖)  lim
𝛿 𝑖→ 

{
𝑃(𝑡𝑖 ≤ T𝑖 ≤ 𝑡𝑖 + 𝛿𝑡𝑖)

𝑃(T𝑖 ≥ 𝑡𝑖)
×

1

𝛿𝑡𝑖
} 

 lim
𝛿 𝑖→ 

{
𝐹𝑖(𝑡𝑖 + 𝛿𝑡𝑖) − 𝐹𝑖(𝑡𝑖)

𝑃(T𝑖 ≥ 𝑡𝑖)
×

1

𝛿𝑡𝑖
} 

 lim
𝛿 𝑖→ 

{
𝐹𝑖(𝑡𝑖 + 𝛿𝑡𝑖) − 𝐹𝑖(𝑡𝑖)

𝛿𝑡𝑖
×

1

𝑃(T𝑖 ≥ 𝑡𝑖)
} 
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 lim
𝛿 𝑖→ 

{
𝐹𝑖(𝑡𝑖 + 𝛿𝑡𝑖) − 𝐹𝑖(𝑡𝑖)

𝛿𝑡𝑖
×

1

�̃�𝑖(𝑡𝑖)
} 

 
 𝑖(𝑡𝑖)

�̃�𝑖(𝑡𝑖)
 

𝐹𝑖
′(𝑡𝑖)

1 − 𝐹𝑖(𝑡𝑖)
                              (25) 

Based on Equation (25), the following relationship can be inferred. 

∫
𝐹𝑖

′(𝑡𝑖)

1 − 𝐹𝑖(𝑡𝑖)
 −𝑙𝑜𝑔 (1 − 𝐹𝑖(𝑡𝑖))  −𝑙𝑜𝑔 (�̃�𝑖(𝑡𝑖))                   (26) 

Therefore, the hazard function ℎ(𝑡𝑖) is:  

ℎ(𝑡𝑖)  −
𝑑

𝑑𝑦𝑖
 𝑙𝑜𝑔 (�̃�𝑖(𝑡𝑖))                             (27) 

Assuming the hazard function ℎ(𝑡𝑖) is a variable determined by bridge’s properties such as the material, 

traffic volume, and external environments. ℎ(𝑡𝑖) can be denoted as:  

ℎ(𝑡𝑖)  𝜆𝑖   𝛽𝑖
′
…..                              (28) 

where   (            ) is a characteristic vector that represents the structural characteristics and 

usage environments of the bridge.    represents the observed value of the m-th characteristic variable. 

𝛽𝑖  (𝛽𝑖     𝛽𝑖  ) is a row vector of unknown parameters. The signal   indicates the transpose operation. 

Accordingly, the survival function can be represented as:  

�̃�𝑖(𝑡𝑖)  exp(−∫ ℎ(𝑢)
 𝑖

 

𝑑𝑢)  𝑒− 𝑖 𝜆𝑖                       (29) 

The probability density function  𝑖(𝑡𝑖) is an exponential distribution, as represented in Equation (30) 

 𝑖(𝑡𝑖)   𝜆𝑖𝑒
−𝜆𝑖  𝑖                                (30) 

The expected survival time from the beginning of grade 𝑖 to the next grade 𝑖 + 1 is 𝐸𝑖. 

𝐸𝑖  ∫ �̃�𝑖(𝑡𝑖)𝑑𝑡𝑖

∞

 

 ∫ 𝑒− 𝑖 𝜆𝑖

∞

 

𝑑𝑡𝑖  −
1

 𝜆𝑖
                      (31) 

2.6.2 Markov transition probability 

This section will infer the transition probability from grade i to grade j, coming with a transition matrix 

finally. The probability that a bridge’s is evaluated to be grade i at inspection time 𝑡𝐴 and is evaluated to 

be grade j at the next inspection time 𝑡𝐵  𝑡𝐴 + 𝑧 is expressed as:  

𝜋𝑖𝑗  𝑃(𝐺(𝑡𝐵)  𝑗|𝐺(𝑡𝐴)  𝑖)                          (32) 

According to TSUDA et al [14], if the probability density function  𝑖(𝑡𝑖) is an exponential distribution, 

the transition probabilities can be summarized as: 

𝜋𝑖𝑖  exp (−𝑧𝜆𝑖) 
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𝜋𝑖𝑗  ∑(∏
𝜆𝑙

𝜆𝑙  

 − 

𝑙=𝑖

∏
𝜆𝑙

𝜆𝑙+   

𝑗− 

𝑙= 
)exp(−𝜆 𝑧)

𝑗

 =𝑖

  

(𝑖  1 2   𝐽 − 2; 𝑗  𝑖 + 1 𝑖 + 2   𝐽 − 1) 

𝜋𝑖𝐽  1 − ∑𝜋𝑖𝑗

𝐽− 

𝑗=𝑖

                               (33) 

where 𝑧 is the inspection interval. 𝜆𝑙 𝑗  𝜆𝑙 − 𝜆𝑗 . ∏
𝜆𝑙

𝜆𝑙 𝑠

 − 
𝑙=𝑖  is 1 when 𝑠  𝑖 . ∏

𝜆𝑙

𝜆𝑙+1 𝑠

𝑗− 
𝑙=  is 1 when 

𝑠  𝑗. In reality, the probability of 𝜋𝑖𝑗 and 𝜋𝑖𝐽 is quite low. 

All transition probabilities conform to the following constraints. 

𝜋𝑖𝑗 ≥ 0 

∑𝜋𝑖𝑗

𝐽

𝑗=𝑖

 1 

𝜋𝑖𝑗  0(𝑖 > 𝑗)                                 (34) 

The state J represents the most serious deteriorated state. If bridges are not repaired, the Markov chain will 

converge to a stationary state, i.e. 𝜋𝐽𝐽  1. Therefore, the Markov Chain transition matrix is:  

𝜋  (

𝜋   𝜋 𝐽

⋮ ⋱ ⋮
0  𝜋𝐽𝐽

)                               (35) 

2.6.3 Estimating the hazard model  

The hazard variable 𝜆𝑖 can be determined by vector   of potentially influencing factors and unknown 

parameters 𝛽𝑖 using Equation (30). In addition, the transition probability is also affected by the inspection 

interval 𝑧. Therefore, the transition probability is a function regarding the inspection data (  𝑧) and 

unknown parameters 𝛽𝑖, as represented as 𝜋𝑖𝑗(𝛽𝑖|  𝑧). Supposing the deterioration of each bridge is 

independent, the simultaneous deterioration of all inspected bridges can be represented as a log-likelihood 

function ln  ℒ(β) .  

ln ℒ(β)  ln [∏∏∏{𝜋𝑖𝑗( 
𝑘 𝑍𝑘  𝛽𝑖)}

𝛿𝑖𝑗
𝑘

𝐾

𝑘= 

𝐽

𝑗=𝑖

𝐽− 

𝑖= 

]  ∑∑ ∑ 𝛿𝑖𝑗
𝑘 ln {𝜋𝑖𝑗( 

𝑘  𝑍𝑘  𝛽𝑖)}

𝐾

𝑘= 

𝐽

𝑗=𝑖

𝐽− 

𝑖= 

     (36) 

Censoring indicator 𝛿𝑖𝑗
𝑘  equals 1 when the deterioration grade of the k-th bridge at time 𝑡𝐵

𝑘 is 𝑗 and that 

at time 𝑡𝐴
𝑘 is 𝑖, otherwise is 0.  

The log-likelihood function is a function of unknown parameter 𝛽. Equation (37) is an nonlinear equations 

of (𝐽 − 1) × 𝑀 used to determine the optimal parameter for ln ℒ(β) .  

𝜗 ln ℒ(β) 

𝜗𝛽𝑖  
 0 (𝑖  1  . 𝐽 − 1;𝑚  1  𝑀)                     (37) 
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The gradient decent method can be used to calculate the optimal values of parameter 𝛽 to satisfy 

Equation (37).  

2.7 Crack identification model 

As explained in Section 1.6, cracking is not considered as a factor of the deterioration prediction model. 

Instead, an independent crack identification model including crack detection and quantification is 

anticipated to be established. Crack detection and quantification aims to detect crack locations and measure 

the extent of surface cracks from the collected digital images, as required for quickly diagnosing crack 

propagation [15]. The entire crack identification model includes three stages: pre-processing, crack 

detection, and post-processing. In the pre-processing phase, images that collected from onsite inspections 

and indoor experiments (Section 4.2.1) were provided to a computer. Then, the images were subjected to 

calibration and database generation. In the crack detection phase, the locations of the cracks were 

identified from the entire image. In the post-processing phase, the characteristics of the cracks, such as the 

width, length, and orientations were analyzed and visualized. Each of these phases is described more fully 

below. Figure 4.1 shows a flowchart of the crack identification model used in this study for detecting and 

quantifying crack conditions. 

2.7.1 Pre-processing 

A digital image is a 2D projection of 3D real-world objects. Images are not necessarily to be orthographic 

projections. Although a Convolutional Neural Network (CNN) classifier can identify cracks from raw 

images without calibration, the perspective error will affect the calculation of the detailed crack properties, 

such as the width. Therefore, the images need to be corrected and calibrated against such perspective errors 

to facilitate post-processing. In this study, the calibration was only performed to the indoor experimental 

images by a composition of rotations, translations, projective transformation, magnifications, and shears, 

according to [16]. Onsite inspection images were not calibrated because of the inability to confirm the 

exact perspective angle and the distance from the camera to the structures.  

 

 

Figure 2.6 Example of calibration 

An example of the calibration is shown in Figure 2.6. In addition, part of these raw images needed to be 

cropped into unified sub-images to generate image dataset for establishing a crack detection classifier 

(Section 4.2.1). In summary, image preprocessing includes calibrating the image and cropping the raw 

image into smaller sub-images. The sub-images were manually annotated as crack or intact to generate the 

Original 

Calibratio
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database for training and validation. 

2.7.2 Crack detection  

As mentioned in Section 1.3.1, a CNN can be used for crack detection in three ways: image classification, 

object localization, or pixel segmentation. Training a CNN classifier is the primary goal of the crack 

identification model to detect whether a sub-image is cracked or intact. Many CNNs are available to fulfill 

this purpose, such as AlexNet [17], GoogLeNet [18], Resnet18 [19], and VGG-16 [20]. In addition, it is 

feasible to establish a classifier on the training dataset by two modes: fully training and transfer learning 

[21]. The former trains the CNN fully from scratch on the training dataset. The latter modifies a few layers 

of the CNN configuration according to the dataset. In this study, transfer training was first performed to the 

CNN architectures of AlexNet, GoogLeNet, ResNet18, and VGG-16 to select a suitable CNN for our 

dataset. Then, the transfer learning and fully training of the selected CNN will be further tested on the 

testing dataset and a public dataset SDNET2018 to determine the optimal generic model. Detailed testing 

procedures and results can be found in Section 4.2.  

(1) Overall configuration 

In general, a CNN architecture includes an input layer, learning layers, and an output layer. The input layer 

reads the image and transfers it to the learning layers. The learning layers perform convolution operations 

by applying filters to extract image features. The output layer classifies the image according to the target 

categories, using the features extracted in the learning layers. The CNN can be trained by assigning target 

categories to images in a training dataset and modifying the filter values iteratively through back 

propagation until the desired accuracy is achieved. 

 

Figure 2.7 Illustration of the AlexNet’s architecture. conv# = convolution; pool# = pooling; Relu #= 

activation function; Norm#= normalization; fc# =full connection; k# = kernel of each operation; 

DP#=Dropout; SM=softmax;  

 

AlexNet was taken as an example to illustrate the modification of CNNs for this study. AlexNet is a 

remarkable CNN for image classification [22]. It is trained on the ImageNet database, and provides an 

output with 1000 classes. Since the number of image classes in this study is two (images with and without 

cracks), the output number of the classes was modified to two. The modified AlexNet is shown in Figure 

2.7; each dimension in the input image indicates the height, width, and channel (red, green, and blue), 

respectively. Table 2.1 presents the detailed specifications of the modified AlexNet CNN. Notably, the 
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Relu activation function is applied after the convolution operation and fully connection operation. In 

addition, normalization and dropout are also implemented. The softmax layer predicts whether each input 

image does or does not contain a crack. Similarly, the last two layers of the GoogLeNet, ResNet18, and 

VGG-16 were modified to classify images as crack or intact.  

Table 2.1 Detailed specifications of the AlexNet 

Layer 

Kernel size 

(Height×Wi

dth×Depth) 

Number of Kernel Stride Pad 

Output size 

(Height×Width×

Depth) 

Input -  - - 227×227×3 

Conv1 11×11×3 96 4 0 55×55×96 

Pool1 3×3  2 0 27×27×96 

Conv2 5×5×48 96 1 2 27×27×256 

Pool2 3×3  2 0 13×13×256 

Conv3 3×3×256 384 1 1 13×13×384 

Conv4 3×3×192 384 1 1 13×13×384 

Conv5 3×3×192 256 1 1 13×13×256 

Pool3 3×3  2 0 6×6×256 

Fc1 6×6×256 4096 - - 1×1×4096 

Fc2 -  - - 1×1×4096 

Fc3 -  - - 1×1×4096 

SM -  - - 1×1×2 

 

(2) Update of the connection weights 

As the initial values of weights are randomly assigned during training, the predicted classes are usually 

inconsistent with the actual classes. The softmax loss function was therefore applied to assess the 

deviations between the predicted and actual classes, as defined by Equation (40).  

𝐿  
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𝑗= 

 
𝑖= )] +

𝑝

 
∑  𝑗

 𝑘
𝑗=                      (38) 

where   and 𝑘  are the number of samples and that of classes, respectively.   are weights. 

∑ 𝑒𝑊𝑚
𝑇𝑥(𝑖)𝑘

 =  is independent of ∑ (∙)𝑘
𝑗= . The parameter 𝑝 is a regularization to penalize large weights 

for preventing overfitting [17]. 

To minimize the deviation during training, the weights are updated to obtain true classes. The update of the 

weights is achieved using a Stochastic Gradient Descent (SGD) approach. In addition, a momentum 

algorithm is combined with the SGD to accelerate the convergence process of the training. As shown in 

Equation (41), the gradient ∇𝑊𝐿 of loss function is calculated with respect to   at time t. Then the 

velocity 𝑉 +  in Equation (42) is updated (←) by combination of the previous velocity 𝑉  and the 

gradient ∇𝑊𝐿, where momentum 𝜇 and learning rate   are two parameters [9]. Finally, the   are 

updated using Equation (43). 

∇𝑊𝐿( ;  (𝑖) 𝑦(𝑖))  
 

 
∑ [ (𝑖)(−𝑝(𝑦(𝑖)  𝑗(𝑖)| (𝑖); ))] 

𝑖= + 𝜆 𝑗              (39) 

𝑉 + ← 𝜇𝑉 −  ∇𝑊𝐿( ;  (𝑖) 𝑦(𝑖))                        (40) 

  + ←   + 𝑉 +                              (41) 

The CNN is tuned by repeating the described procedures until desired accuracy is achieved. During the 

training, the training dataset is usually separated into sub-training sets to speed up the training. These 
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sub-sets are called batch sizes. Each complete update out of a batch size is called an iteration, and each 

complete update out of the entire training dataset is called an epoch. 

2.7.3 Post-processing 

The crack identification model’s second objective is to segment and quantity cracks after the established 

CNN classifier detect sub-images with cracks, because cracks information (such as width, length, and 

orientations) is important for assessing structural damage conditions. The post-processing procedures are 

shown in Figure 2.8. Firstly, the sub-images are converted to grayscale. Then, the contrast of the grayscale 

image is enhanced. Mask processing is used for reducing noise and smoothing image. Next, edge detectors, 

boundary tracking and threshold segmentation are performed to segment the image. More details regarding 

these techniques have been shown in Gonzales and Woods [23]. Finally, the crack properties such as crack 

thickness, length, and orientation can be obtained, as detailed in (1) and (2) of this section. Commercial 

software is available to achieve such functions, but the use of commercial software makes: (i) the 

combination of the CNN classifier and post-processing techniques difficult; (ii) the use of different 

software will increase the learning costs for human. In addition, it is time and labor consuming to process 

all of the sub-images, as every raw image is cropped to thousands of sub-images. To simplify the 

processing procedures, an application was developed to integrate these techniques. The details of this 

application are described in Section 4.3, along with validation with practical examples.  

 
Figure 2.8 Flow chart for post-processing 

(1) Crack quantification 

Once the crack has been delineated, an automatic algorithm can be applied to measure the properties of the 

crack [16]. The calculable properties include crack width, crack length, crack orientations, and the others.  

Crack width is the most important information for quantifying the cracking of a concrete component. In a 

previous study [24], the crack’s mean width is calculated to represent its width. To obtain the crack width 

more precisely, a different method was proposed, as shown in Figure 2.9. 

To utilize this method, a neighborhood value δ is pre-defined.    and     are the edges of a crack. The 

steps for calculating crack width at point P are summarized in Algorithm 1: (i) forming a dataset using the 

points between the neighborhood lines on edges    and    ; (ii) performing linear regression to the 

dataset for getting a fitting line l; (iii) acquiring line l’ that perpendicular to l through point P; and (iv) 

Sub-image with crack 

Convert to grayscale  

Image contrast enhancement 

Image filtering and smoothing 

Image segmentation 

Image properties calculation 
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computing the distance from point P to point P’. 

 

Figure 2.9 Depiction for calculating crack properties 

 

Algorithm 1 Crack width calculation. 

Input: neighborhood 𝛿, 𝑃(   𝑦 ),   ,    

Output: distance d 

for i between   − 𝛿 and   + 𝛿 

      dataset ←{  (𝑖);   (𝑖)} 

end for 

l ← linear regression(dataset) 

l’ ← line perpendicular to l through P  

P’ ← intersection of l’ and     

d←distance(P,P’) 

 

In the calculation of the crack width, the points between the neighborhood lines on the edges    and     

are applied to obtain a fitting line. If the entire points on the edges    and     are used, the orientation of 

the crack can be obtained. The ratio of the crack pixels in the raw image can be easily obtained, as all 

sub-images with cracks are segmented in the post-processing. The crack length can be obtained by 

calculating the length of the crack skeleton, as indicated in Figure 2.9. Details regarding crack skeleton can 

be found in Gonzales and Woods [23]. 

(2) Crack statistics and visualization 

For each raw image, all cracks can be counted to obtain the statistical characteristics of the cracking. If raw 

images of the same structural component are collected in chronological order, the crack propagation can be 

inferred using a wind rose map. In addition, if cracks are detected on each surface of the structural 

component, crack characteristics can be visualized in 3D [16, 25-26]. These functions are elaborated in 

Section 4.3 with practical examples.  

 

2.8 Model evaluation 

Because the MLP, RNN and the CNN models belong to neural network, the performance of these three 

models will be evaluated using five metrics. The definitions in terms of these metrics are introduced in 

Figure 2.10 by seperating the bridges into two groups : bridges being grade 1 and bridges beling in grade 2 

& 3. TP, TN, FP, and FN refer to true positives, true negatives, false positives, and false negatives, 

respectively. Recall or true positive rate (TPR) is the ratio of correct predictions to all grade 1 bridges. 
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Precision is the ratio of correct predictions to all predictions of grade 1. The F1 score is the harmonic mean 

of the recall and precision. The true negative rate (TNR) indicates the ratio of correct predictions on other 

grade bridges to the total number of other grade bridges. The definition of accuracy (ACC) is shown in 

Figure 2.10. A model is considered better performance with higher the values of these metrics. Details 

about these metrics can refer to Goodfellow et al [2]. 

 

Figure 2.10 Performance evaluation metrics used in this study (Taking Grade 1 for example) 

In addition, comparative researches will be conducted, as stated below. 

The MLP and RNN model will be compared to select the optimal prediction model in terms of five metrics 

mentioned above. Since a perfect prediction model is usually infeasible, the predictions for some bridges 

will inevitably fail. Therefore, error analysis will be performed to the optimal model to determine the 

reasons of failure (Section 3.4.2). 

Two sensitivity analysis methods, Shapley value method and Sobol indices, will be compared to provide 

insights into the optimal model between MLP and RNN. In addition, case studies will be performed to 

verify the proposed models and methods, as described in each section.  

To establish a robust classifier for the cracks, four transfer learned CNN configurations (AlexNet, 

GoogLeNet, Resnet18, and VGG-16) are compared to select the optimal CNN. Then, the transfer learning 

and the fully training of the optimal CNN configuration will be tested on our testing dataset and a public 

dataset SDENT2018 [27]. In addition, the performance of the model for crack identification will be 

compared with a previous crack pixel level framework [20] on 23 raw images. Detail implementation can 

refer to Chapter 4.  

The MC approach is a typical probabilistic model. To evaluate the performance of the RNN in predicting 

deterioration, the RNN and MC methods will be compared in terms of the mean deterioration progress, the 

deterioration progresses of different types of bridges, the deterioration progress of a specific bridge, and 

the influence of each factor on deterioration progresses.  
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2.9 Building Information Modeling (BIM) 

Traditional building design was largely reliant upon two-dimensional technical drawings (plans, elevations, 

sections, etc). Building Information Modeling (BIM) extends the three primary spatial dimensions (width, 

height and depth), incorporating information about time (so-called 4-D BIM) [28], cost (5-D BIM) [29], 

asset management, sustainability, etc. BIM therefore covers more than just geometry.  

As described in the introduction, BIM has been greatly used in the design, construction stages, but seldom 

in the maintenance stage. However, BIM can contain more information than just geometry; therefore, it is 

the optimal solution for managing inspection and intervening information.  

Inspired by the concept of 4-D BIM and 5-D BIM, it is feasible to integrate the 3-D prototype model of the 

existing bridges with the inspection information, the deterioration prediction model, and the crack 

identification model to form a collaborative BIM platform. This platform can reduce mistakes and can 

enhanced the management efficiency of existing bridges.  
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Chapter 3 

Establishment of deterioration prediction models 

 

3.1 Overview 

The outline of this chapter is shown in Figure 3.1. At the beginning, the applied database was described 

from the influencing factors, inspection results, and the characteristics of these data. Secondly, three 

models were established to establish relationships between these affecting factors and the inspection results 

(deterioration grade). The Multilayer Perceptron (MLP) was used to establish simple relationship between 

influencing factors and deterioration grade. The Recurrent Neural Network (RNN) was applied to consider 

the time dependence of time related factors, and to improve the relationship between the influencing 

factors and deterioration grades. Since the functions of the three gates described in Section 2.4, the RNN is 

especially efficient to process the time series data. Different from MLP and RNN models, the Markov 

Chain (MC) is a typical probabilistic model usually applied to in predicting deterioration [1]. Later, 

deterioration progresses obtained by the MC model and the RNN model were compared with each other. 

Afterwards, two sensitivity analysis methods (Shapley value and Sobol indices methods) were applied to 

the optimal model between MLP and RNN to recognize the reasons for deterioration. In addition, the 

sensitivity analysis was conducted by modifying the value of each factor to observe the influence of each 

factor on the deterioration. Details on these procedures were explained blow.  

 

Figure 3.1 Outline of Chapter 3 

3.2 Data description 

A bridge inspection database of 3,386 bridges in Hokkaido, Japan was employed to verify the feasibility of 

MLP, RNN, and MC models. The locations of these bridges are shown in Figure 3.2. We eliminated 

incomplete and unreasonable data from the database and selected 3,368 out of 3,386 bridges. Specifically, 

the bridges with unknown age were discarded. In conjunction with the age constrain, the constraint of 

non-decreasing deterioration grade were introduced. For example, a bridge was assessed grade 2 in an 

inspection and assessed grade 1 in the next inspection, this kind of bridges was not considered. 
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Furthermore, only bridges with consecutive series data were considered, such as some bridges whose 

traffic volume was counted only once were unconsidered. Then, we divided the data of the selected bridges 

into two categories: potentially influencing factors and deterioration grades. Details on these two 

categories are described in the following subsections. Since the years in service of the bridge vary from a 

few years to a few decades, the annual average value of each factor is taken as the value of this factor at a 

certain moment in the time series. Accordingly, a time series is obtained for each factor of each bridge. The 

time span of the time series is the bridge age.  

 

Figure 3.2 Locations of the bridges 

3.1.1 Potentially influencing factors 

Factors that may affect deterioration are regarded as inputs in the prediction model. The bridge features, 

such as the bridge length, bridge width, elevation, and years in service were extracted from the inspection 

database. In addition, factors of the temperature, rainfall, snowfall and carbon dioxide concentration were 

derived from Japan Meteorological Agency [2]. The traffic volumes were retrieved from MLIT [3-5]. 

Airborne salt and carbonation were calculated according to previous studies [6-9].  

Table 3.1 Potentially influencing factors 

 Attributes (units) 

Bridge geometry factors 
Length (m)  

width (m) 

Environment factors 

Elevation (m)  

Yearly highest and lowest temperatures (C)  

Carbon dioxide concentration (ppm) 

Airborne salt concentration (mdd•NaCl),  

Yearly average snowfall (cm) 

Yearly average rainfall (cm) 

Loading condition 
Daily traffic volume (vehicles/day)

*
 

Rate of the large-size vehicles (%/day) 

Bridge age Years in service (years)  
*
 Statistics on traffic volume include large and small vehicles [10]. 

In summary, the potentially influencing factors considered in this study included bridge geometry factors, 
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environmental factors, bridge age, and loading conditions, as summarized in Table 3.1. This study 

considered four types of bridges, including PC bridges, RC bridges, steel and concrete composite bridges, 

and steel bridges. But only the concrete components of the above four bridge types were considered when 

calculating the carbonation and the penetration of chloride ions. Discussions regarding the performance of 

the models on different types of bridges were descripted in the discussion of each model. Many other 

factors were not considered due to the inability to collect relevant data.  

Factors such as the geometry and elevation of the bridge are constant. More details were described for the 

factors of the traffic volume, airborne salt, and carbon dioxide concentration. 

(1) Traffic volume 

According to the survey of the daily traffic volume [10], the proportion of large-sized vehicles (including 

buses, lorries, construction heavy equipment and other special equipment) 𝑅𝑉  can be calculated by 

Equation (1). Since the inspection database includes the data of  𝑅𝑉, this equation can be used to calculate 

the number of the large-size vehicles.  

𝑅𝑉   
 𝑢𝑚𝑏𝑒𝑟 𝑜  𝑙𝑎𝑟𝑔𝑒 𝑠𝑖𝑧𝑒  𝑒ℎ𝑖𝑐𝑙𝑒𝑠 𝑑𝑎𝑖𝑙𝑦

𝐷𝑎𝑖𝑙𝑦 𝑡𝑟𝑎  𝑖𝑐  𝑜𝑙𝑢𝑚𝑒
× 100%               (1) 

(2) Airborne salt 

The bridges within 1 km of a coastline were considered influenced by the airborne salt. The airborne salt 

concentration can be calculated using Equation (2) [6]: 

 𝑎𝑏    ∙  −𝑏                                (2) 

where  𝑎𝑏: Airborne salt concentration (m  ∙ NaCl), 

  : 1 km equivalent airborne salt concentration (mdd·NaCl), 

 : Distance from a coastline (km), and 

b: Degree of distance attenuation (b = 0.6). 

 
Figure 3.3 Salt damage area classification in Hokkaido 
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   for areas B and C shown in Figure 3.3 are 1.174 and 0.072, respectively [6]. Then, Equation (3) [7] can 

be used to compute the concentration of chloride ions that adheres on the surface of the concrete. Only the 

situation of  𝑎𝑏≤30 was considered because all  𝑎𝑏  data considered in this study conform to this 

constrain. 

   −0.016 ×  𝑎𝑏
 +  𝑎𝑏 + 1.7( 𝑎𝑏 ≤ 30)                 (3) 

where   : Chloride ions concentration of concrete surface (k  m ), and 

 𝑎𝑏: Air-borne salt content at the bridge location (m  ∙ NaCl). 

Figure 3.4 shows the relationship between the concentration of chloride ions on concrete surface and the 

distance from a coastline. For comparison, the chloride ions concentration on the concrete surface obtained 

according to the Standard Specifications for Concrete Structures [7] was also displayed. Figure 3.4 shows 

that the concentration of chloride ion in areas B and C decreases with the increase of distance from the 

coastline. 
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Figure 3.4 Comparison of estimated chloride ion concentration and the JSCE standard 

The estimated chloride ions concentrations in area B are slightly larger than the JSCE standard and those in 

area C are lower than the standard. One possible reason is that the standard considers the results from all 

regions in Japan. The reason that the value in area B is greater than that of area C is that the wind is 

stronger on the side of the Sea of Japan and is relatively weak on the Pacific Ocean side [6]. Then, Fick’s 

second law was applied to determine the penetration of chloride ions into concrete: 

 (  𝑡)    (1 − erf (
 

2√𝐷𝑐 ∙ 𝑡
)) +  (  0)                     (4) 

where  (  𝑡) is the chloride ions concentration (k  m ) at a depth of   after 𝑡 (year);    is the 

chloride ions concentration on the concrete surface (k  m ) and can be obtained from Equation (3); 

 (  0) is the initial chloride ions content (k  m ), for which the value is usually 0.3 k  m  [8]; and 𝐷𝑐 

is the diffusion coefficient (cm  year).  

Deterioration is characterized by the corrosion of the rebar or crack propagation. The chloride ions 
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concentration at the surface of the rebar was calculated and used as a criterion to identify deterioration. 

According to previous experimental studies, the corrosion threshold concentration of chloride ions for 

ordinary steel in concrete in Japan is 1.2 to 2.5 kg/m
3 

[11]. In addition, in previous surveys of existing 

bridges, almost no steel corrosion was observed when the chloride ions concentration was less than 1.2 

kg/m
3
 [8]. Therefore, 1.2 kg/m

3
 was thought to be the chloride ions concentration for the onset of rebar 

corrosion. 

Furthermore, Equation (5) was used to calculate the diffusion coefficient 𝐷𝑐  (cm
  year):  

lo (𝐷𝑐)  −3.9(W C)⁄  
+ 7.2(W C⁄ ) − 2.5                   (5) 

where W C⁄  is the water-to-cement ratio. 

In this study, there are few structures with a clear water-to-cement ratio. However, Tamakoshi [12] 

suggested that if there are no specific data, materials information can be obtained according to Table 3.2. 

Therefore, the values of water-to-cement ratio and thickness of the concrete cover were extracted from 

Table 3.2.  

Table 3.2 Suggested materials information for bridge components [12] 

Built Year Item 
Salt damage 

countermeasure 
category 

Structure type 
Pier Abutment 

RC PC 

Before 1983 
Protective Cover(cm) - 3.5 2.5 7 7 

W/C (%) - 55 35 60 60 

After 1983 
Protective Cover(cm) 

0~100m* 7 7 7 7 

100~300m 7 5 7 7 

300~500m 5 3.5 7 7 

others 3.5 2.5 7 7 

W/C (%)  - 50 35 55 55 

* 0~100m denote distance from a coastline. 
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Figure 3.5 Chloride ions concentration for superstructure and pier 
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For each bridge, the chloride ions concentrations on the surface of all bridge components were calculated. 

According to the inspection guideline [13], the bridge is considered corroded once any component is 

corroded. Figure 3.5 was an example to show the chloride ions concentrations on the surface of the rebar 

for a bridge superstructure and pier. The results revealed that the corrosion of the pier occurs slightly 

earlier than that of the superstructure. Therefore, the corrosion time of the pier was considered to be the 

initial corrosion of the bridge.  

(3) Carbonation 

According to the investigation of Kishitani [14], the carbonation depth of concrete structures in the natural 

environment can be estimated by Equation (6): 

𝑑  𝐴 ∙ √𝑡                                     (6) 

where d is the carbonation depth(mm), 

      A is the deterioration index for carbonation (mm /√year), and 

      t is the years in service. 

The deterioration index A is calculated by:  

𝐴  𝑅(4.6W  ⁄ − 1.76) √7.2                           (7) 

where R is related to the type of cement, aggregate, and admixture. In this study, R is 1 according to 

Kawakami [15] and NRA [9]. W/C can be obtained from Table 3.2.  

Equation (6) was obtained assuming the CO2 concentration was constant. However, the CO2 concentration 

was observed to increase with time in the past decades, as shown in Figure 8. In addition, the measured 

carbonation depth for a concrete structure was very different from the value estimated by Equation (6) [9]. 

Therefore, the equation was modified as: 

𝑑  𝑘(𝑡) ∗ 𝐴 ∙ √𝑡                                 (8) 

where 𝑘(𝑡) is the correction factor. According to Uomoto [16], the carbonation depth is related to the 

square root of the CO2 concentration, and the factor 𝑘(𝑡) is therefore defined by:  

𝑘(𝑡)  
√𝐶( )

√𝐶𝑡0
                                 (9) 

where     is the CO2 concentration in the study of Kishitani [14], and the value of  (𝑡) can be obtained 

from the Japan Meteorological Agency [2]. Figure 3.6 shows the CO2 concentration over time in 

Hokkaido. 

Accordingly, the carbonation depth of a concrete structure that served for T years was modified as: 

𝑑  ∫
𝑘( )∙𝐴

 √ 
 𝑑𝑡

 

 
                             (10) 

If 𝑘(𝑡) is a constant value, Equation (10) is simplified as Equation (8). 
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Figure 3.6 Carbon dioxide concentration versus time 

 

3.1.2 Inspection results 

The deterioration grades of bridges are used to understand the conditions of the bridges. Based on the 

inspection guidelines [13], bridges are required to be visually inspected every five years, the results of 

which are categorized as: (i) grade 1: healthy; (ii) grade 2: preventive maintenance required; (iii) grade 3: 

prompt action required; and (iv) grade 4: emergency action required. The grades and corresponding 

descriptions are given in Table 3.3. Since the grade 4 is considered critical condition, meaning that these 

bridges has to be subjected to a repair timely, this philosophy results in infrequent occurrence of grade 4. 

Therefore, the grade 3 is considered to be the upper threshold, because the grade 3 indicates the necessary 

of early actions. This urges us to build a predictive model to predict the situation before an emergency 

occurs. 

Table 3.3 Deterioration grades and corresponding descriptions 

Grade Conditions Descriptions 

1 Healthy A state that the function of the structure is not disturbed. 

2 Preventive action required 

Although the function of the structure is not hindered, it is 

desirable to take measures from the viewpoint of preventive 

maintenance. 

3 Early action required 
The function of the structure has interfered and measures 

should be taken as soon as possible. 

4 Emergency action required 

A condition in which the function of the structure has been or 

is likely to be impaired, and measures should be taken 

urgently. 

3.1.3 Data characteristics analysis 

Twelve factors that have the potential to influence deterioration are listed in Table 3.1. The deck area is the 
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value of bridge length multiplies bridge width. All factors were scaled to the range of 0-1 according to 

Equation (6) in Section 2.2 to accelerate the convergence of training. The results were listed in Table 3.4. 

The type of bridge was excluded when establishing the MLP, RNN, and MC models, as it is irrational to 

represent different bridge types with a number. Although it is feasible to create unique models for different 

types of bridges, this endeavor is hampered by a lack of data on different types of bridges. Discussions 

regarding the performance of the established models on different types of bridges were described in 

Section 3.3, Section 3.4 and Section 3.5, respectively. 

Table 3.4 Data characteristics analysis 

  After scaled 

Factor 
Original data 

range Mean 
Standard 
deviation 

Deck area (m
2
) 6 27,216 0.0253 0.05376 

Elevation (m) -0.3 1,106 0.0909 0.1347 

Carbon dioxide (ppm) 348.86 409.87 0.3933 0.2413 

Chloride (kg/m
3
) 0 11.79 0.0490 0.1238 

Rainfall (cm) 776 1,491 0.3617 0.2268 

Snowfall (cm) 12.0 1,263.8  0.4493 0.2166 

Highest temperature (C) 16 26 0.7025 0.1737 

Lowest temperature (C) -11 -3 0.5851 0.2361 

Traffic volume (daily) 0 56,874 0.0946 0.1143 

Large-size vehicles (daily)  0 13,906 0.3076 0.1786 

Years in service (years) 1 84 0.3833 0.2008 

In addition, we counted the distribution of each factor divided by the three deterioration grades. 

Specifically, the histogram of each factor was firstly obtained. Then, the Gamma, exponential, and the 

normal distributions were used to fit the histograms to select the optimal distribution. The results were 

shown in Figure 3.7. The detailed parameters for the fitted distributions were shown in Table 3.5. The 

results show that:  

(1) For the elevation, there were no obvious differences in distribution between of the three 

deterioration grades.  

(2) The deterioration grade was positive related to the deck area, because the mean deck area increaed 

from grade 1 to grade 3.  

(3) Similarly, the mean years in service was positive related to the deterioration grade.  

(4) The deterioration grade was negative related to avergae CO2 concentration. Because the serviced 

years of bridges being grade 1 is shorter, and the CO2 concentration is increasing.  

(5) There is no necessary relations between the deterioration grades and the chloride ions, because the 

deteriration has many reasons and the content of chloride ions is decided by the bridges’ location.  

(6) The deterioration grade was positive related to number of average large-size vehicles.  

(7) Similarly, the deterioration grade was positive related to the number of average traffic volume.  

(8) The deterioration grade was not necessarily related to the average rainfall. 

(9) The deterioration grade was negative to the average snowfall. However, the histogram of grade 3 

does not fit well with any distribution; it can only concluded that deterioration grade was not 
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necessarily related to average snowfall. 

(10) The deterioration grade has no absolute relationships with average highest temperature and average 

lowest temperature. 

 

 

 

 

Figure 3.7 Distribudion of each factor’s values  
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Figure 3.7 Distribudion of each factor’s values (Contiue) 
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Table 3.5 The fitted distribution of the histogram 

Factor Grades Distribution 
Parameters [95% confidence intervals] 

Mean 
Shape(Mu) Scale(Sigma) 

Elevation 

Grade 1 Gamma 0.509 [-Inf, Inf] 172.758 [-Inf, Inf] 87.935 

Grade 2 Gamma 0.520 [-Inf, Inf] 248.956 [-Inf, Inf] 129.573 

Grade 3 Gamma 0.219 [-Inf, Inf] 364.051 [-Inf, Inf] 79.717 

Deck Area 

Grade 1 Gamma 3.703 [3.466, 3.958] 3.129 [2.914, 3.360] 11.5890 

Grade 2 Gamma 1.401 [1.207, 1.626] 1400 [1171.57, 1672.97] 1961.5 

Grade 3 Gamma 0.736 [0.615,0.881] 3288.34 [2563.54,4218.06] 2420.6 

Years in 

service 

Grade 1 Gamma 2.665 [2.462, 2.885] 6.989 [6.405, 7.626] 18.628 

Grade 2 Gamma 3.092 [2.645, 3.614] 9.900 [8.356, 11.729] 30.611 

Grade 3 Gamma 16.535 [13.437, 20.347] 2.897 [2.347, 3.577] 47.909 

CO2 

Grade 1 Gamma 629.057[586.966, 674.166] 0.599 [0.559, 0.642] 376.882 

Grade 2 Gamma 785.434 [666.529, 925.55] 0.4769 [0.405, 0.562] 374.576 

Grade 3 Gamma 2293.47[1859.95, 2828.02] 0.157 [0.127, 0.194] 360.430 

Chloride 

ions 

Grade 1 Exponential 841.018 [801.295,883.784] - 0.707 

Grade 2 Exponential 1161.42 [1037.56, 1309] - 0.406 

Grade 3 Exponential 1585.17[1374.23, 1848.97] - 2.131 

Large-size 

vehicles 

Grade 1 Exponential 841.018[801.295, 883.784] - 841.018 

Grade 2 Exponential 1161.42 [1037.56, 1309] - 1161.4 

Grade 3 Exponential 1585.17 [1374.23,1848.97] - 1585.2 

Traffic 

Vehicles 

Grade 1 Exponential 4230.44[4030.63, 4445.55] - 4230.44 

Grade 2 Exponential 6296.62[5625.07, 7096.7] - 6296.62 

Grade 3 Exponential 12051.7 [10448, 14057.4] - 12051.7 

Rainfall 

Grade 1 Gamma 41.943[39.146, 44.939] 24.513 [22.869, 26.275] 1028.1 

Grade 2 Gamma 39.071 [33.178, 46.0111] 25.544 [21.669, 30.113] 998.046 

Grade 3 Gamma 65.405[53.069, 80.607] 17.542 [14.222, 21.637] 1147.3 

Snowfall 

Grade 1 Normal 531.934 [519.189, 544.68] 260.002[251.298,269.335] 531.934 

Grade 2 Normal 461.00 [431.469, 490.537] 253.305[234.076, 276.002] 461.003 

Grade 3 Normal 411.548[363.499,459.598] 322.054 [291.478,359.851] 411.548 

Highest 

temperature 

Grade 1 Gamma 182.682[170.466,195.773] 0.12614 [0.118, 0.136] 23.044 

Grade 2 Gamma 22.674 [22.460, 22.888] 1.837 [1.698, 2.002] 22.674 

Grade 3 Gamma 24.189[23.982, 24.395] 1.3829 [1.252, 1.545] 24.189 

Lowest 

temperature 

Grade 1 Normal -6.380 [-6.472, -6.289] 1.862 [1.799, 1.9285] -6.3804 

Grade 2 Normal -6.547 [-6.738, -6.357] 1.634 [1.5103, 1.781] -6.5474 

Grade 3 Normal -5.268 [-5.551, -4.986] 1.894 [1.714, 2.117] -5.2686 

 

3.3 Establishment of a MLP model 

3.3.1 Model establishment 

Conforming to the descriptions in Section 2.3, the mean value of each factor among all its observations is 

taken as the input value of this factor. As a result, the input consist of eleven factors was obtained for each 

bridge. Using the database including eleven factors (Table 3.4) and the three deterioration grades in Table 



Chapter 3 Establishment of deterioration prediction models 

48 
 

3.3, the MLP neural network prediction model was constructed. The optimal configuration of the 

prediction model was determined by trial and error. The accuracy is used as an indicator with a higher 

identification competence. In the trial and error, various values were tested for each parameter [17], as 

listed in Table 3.6. Figure 3.8 depicts the nonlinear activation functions used in the trial and error. The 

Softmax was applied between the hidden layer and the output layer. Relu and Tanh were applied between 

the input and hidden layers. 

 

Figure 3.8 Activation functions 

 

Table 3.6 Configuration test results 

Parameters Parameters 

p-value 

Training Testing 

Number of hidden layers 1, 2 5.48910
-1

 1.15410
-1

 

Number of hidden neurons 5, 10 4.23610
-1

 8.45410
-1

 

Learning rate 0.01, 0.001 3.22210
-4a

 3.86010
-2a

 

Learning algorithm 
SGD, RMSProp, Adagrad, 

Adadelta, Adam, Adamax, Nadam 
5.51310

-14a
 8.49010

-15a
 

Hidden activation function Relu, tanh 4.90410
-1

 7.62210
-1

 
a 

Significant at 95% level of confidence 

Considering all combinations of the five parameters, 112 cases were tested (Appendix A). In each trial, 

stratified sampling was used to randomly divided dataset into the training, testing, and validation subsets, 

which accounted for 70%, 15%, and 15% of the maintenance database, respectively. Then each case was 

tested three times to obtain an average value to eliminate the differences in each test. Analysis of variance 

(ANOVA) is an tool used in statistics to observe whether the independent variables have a significant 

impact on the dependent variable. Therefore, ANOVA analysis was applied to the testing results to 

examine the significance of each parameter on training/testing accuracy. A p-value of 0.05 or less means 

that a factor is considered to have a significant influence on deterioration. The p-value summarized in 

Table 3.6 indicated that the learning rate and learning algorithm influence training/testing accuracy 

significantly. Looking through the testing results, the MLP produces higher accuracy when it has one 

hidden layer of ten neurons, has the activation function of Relu, and it is trained with adaptive moment 

estimation (Adam) algorithm with the learning rate of 0.01. 

The expected MLP consisted of a 3,368×12 matrix as the inputs (including the bias), and a 3,368×1 matrix 

as the output. As the initial values of    and    (Figure 2.2) are randomly assigned during training, the 

predicted grades are usually inconsistent with the actual grades. The cross-entropy value expressed in 
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Equation (7) in Chapter 2 was used to calculate the error between the actual grades and the predicted 

grades.  

The training calculation iterated 2000 times, and the error between the predicted and the actual grades 

was evaluated using the cross entropy. As shown in Figure 3.9, the accuracy converged to approximately 

65%, and the error converged to approximately 0.2.  
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(a)                                            (b) 

Figure 3.9 Loss and accuracy. 

3.3.2 Model evaluation 

 

Figure 3.10 Performances of the MLP neural network for different grades  

 
Figure 3.11 Performances of the established neural network for different types of bridges. 
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Figure 3.10 shows these metrics' values of the MLP model for the three deterioration grades. The results 

indicated that the established MLP model has equivalent performance for the three deterioration grades. In 

addition, the model was applied to PC, RC, steel & concrete composite, and steel bridges to evaluate the 

performance of the model for corresponding types of bridges. Figure 3.11 shows that the model has 

equivalent performance regardless of the types of bridges. Although the established MLP model is not yet 

perfect, the model is unbiased for the different deterioration grades and different types of bridges. 

3.4 Establishment of a RNN model 

A further overview of the steps taken to establish a RNN model and to perform deterioration prediction is 

given in Figure 3.12. In the training phase, we first converted the influencing factors from the inspection 

database to vectors and normalized the vectors to the range of 0-1. The training and validation sets are then 

applied to train a deterioration prediction model using the LSTM-based RNN. The model is optimized by 

iteratively updating the weights between the potential influencing factors and the predicted results [18]. In 

the prediction phase, the testing data of a bridge are first converted into normalized vectors, and the vectors 

are then introduced into the trained model, which in turn will calculate the grade of deterioration. 

According to previous studies [18-19], the LSTM model was trained on 70% of the data and validated on 

15% of the data, and the remaining 15% was used as the testing set. The training algorithm of the adaptive 

moment estimation (Adam) was adopted to speed up the training operations.  

 
Figure 3.12 Procedures for establishing RNN model 

Using the inspection database, we explored the ability of the LSTM-based RNN to model the relationships 

between potentially influencing factors and bridge deterioration. The optimal configuration of the LSTM 

model was determined by trial and error, as summarized in Table 3.7. The accuracy of the model was first 

tested using from 50 to 200 hidden units. The results showed that 150 hidden layers yield better results for 

this database. Different batch sizes were then tested with 150 hidden units as a second step to determine 

the LSTM configuration. The results indicated that the LSTM model performed better when the model had 

150 hidden units and a batch size of 1024.  
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Table 3.7 Configuration test of LSTM model 

LSTM 
type 

Accuracy rate 
(%) 

(training/testing) 

Average accuracy 
rate (%) 

(training/testing) 
Number of hidden units 

50 

66.2/69.3 

66.97/68.57 67.3/66.9 

67.4/69.5 

100 

70.7/72.4 

70.07/70.23 69.1/69 

70.4/69.3 

150 

81.19/80.8 

80.70/80.79 80.06/80.5 

80.86/81.08 

200 

75.2/72.2 

75.43/72.43 77.3/72.4 

73.8/72.7 
Batch size 

256 

55.2/54.7 

55.2/54.19 55.18/54.69 

55.23/53.2 

512 

68.1/64.4 

68.67/66.0 67.8/66.6 

70.1/67 

1024 

81.19/80.8 

80.70/80.79 80.06/80.5 

80.86/81.08 
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Figure 3.13 Accuracy and loss with respect to iteration. 

The training calculation iterated 6000 times, and the error between the predicted value and the ground truth 

was evaluated by using the cross-entropy. As shown in Figure 3.13, the accuracy converged to 

approximately 80%, and the error converged to approximately 0.35. Future endeavors are necessary to 

improve the established model by actions described in Section 3.4.3.  

As eleven factors are considered to affect the deterioration, the relationship between the affecting factors 

and the deterioration grades is a 12-D model. To intuitively reflect this relationship determined by the 

LSTM model, Figure 3.14 shows the mapping between the affecting factors and the deterioration grades. 

The results in Figure 3.14 and the performance of the model in Section 3.4.1 reveal that the complicated 

relationships are preliminarily established.  
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Figure 3.14 Mapping between affecting factors and deterioration grades 

3.4.1 Performance of the model 

The performance of the LSTM-based RNN was evaluated from two aspects: (1) the performance of the 

LSTM compared with the MLP model; and (2) the performance of the LSTM for different bridge types, 

different environments, and different deck area.  

(1) The performance of the LSTM compared with the MLP model 

The performance of the LSTM model was first compared with that of the MLP model. Figure 3.13 showed 

that the accuracy of the LSTM model exceeded 80%. As a comparison, an MLP model obtained an 

accuracy of 65% on the same database in Section 3.3. Obviously, the prediction accuracy of the 

LSTM-based RNN model exceeds that of the MLP model by approximately 17%.  
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Figure 3.15 Comparison of the LSTM and MLP models 
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In addition, the recall, precision, TNR, and F1 score of the two models were calculated, as shown in Figure 

3.15. These four indexes showed that the LSTM model obtained greater values regardless of the grades. 

Therefore, it can be concluded that the grades estimated by the LSTM model is more accurate than those 

estimated by the MLP model. Through comparative research of the LSTM and MLP models, the results 

show that the LTSM model yields considerable improvement and has a relative superiority compared to the 

MLP model. However, it should be remembered that the LSTM architecture is much more complicated. In 

other words, although an LSTM-based RNN prediction model is more robust, the complex architecture and 

calculations make it difficult for engineers to establish such a model easily. 

(2) The performance of the LSTM for different bridge types, environments, and deck area 

Furthermore, the model was applied to PC, RC, steel & concrete composite and steel bridges to evaluate 

the performance of the model for corresponding types of bridges. Figure 3.16 showed that the model has 

the equivalent performance regardless of the types of bridges.  
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Figure 3.16 Performance of the LSTM for the PC, RC, steel & concrete composite, and steel bridges 
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Figure 3.17 Performance of the LSTM for bridges in costal and non-coastal regions  
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Similarly, the performances of the LSTM model for bridges in coastal and non-coastal regions were 

evaluated, as displayed in Figure 3.17. The results showed that prediction ability of the model for coastal 

bridges were slightly outperforms that for the non-coastal bridges. One possible reason is that de-icing salt 

was not considered for non-coastal bridges because relevant data cannot be collected.  

The accuracies of the model versus the deck area were also assessed, as shown in Figure 3.18. The 

evaluation implies that there is no significant difference in accuracy between different deck areas. The 

reason is that the established model is unbiased for the different deck areas, although the LSTM model is 

not yet perfect. 
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Figure 3.18 Accuracy of the LSTM versus the deck area 

3.4.2 Error analysis 

(1) Distribution of incorrect predictions 

The percentages of incorrect predictions made by the LSTM model in various situations were calculated, 

as summarized in Table 3.8. For example, the situation where an actual grade 1 bridge is predicted to be 

grade 2 accounts for 17.3% of all incorrect predictions. As Table 3.8 shows, predicting actual grade 2 

brides to be grade 1 and predicting actual grade 1 bridges to be grade 2 accounts for more than half of all 

incorrect predictions. The confusion between actual grade 2 and predicted grade 3 is another major source 

of incorrect predictions. The percentages of incorrect predictions in other conditions do not show obvious 

differences.  

For the dark marked area in Table 3.8, the predicted grades are usually larger than the actual grades, which 

mean that the predictions are aggressive. Under aggressive conditions, timely maintenance can be 

conducted to ensure the soundness of the bridge, but this will increase costs. For the non-dark marked 

areas, the predicted grades are smaller than the actual grades, which mean that the predictions are 

conservative. If suggestions under conservative conditions are followed, the timely maintenance of the 

bridge may be ignored. Aggressive and conservative situations accounted for 45.7% and 55.3% of all 

incorrect predictions, respectively. It is believed that using more abundant information (such as 

quantitative deterioration grades) will assist in overcoming this challenge and yield fewer incorrect 
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predictions. 

Table 3.8 Percentages of incorrect predictions. 

   Predicted 
grade 

Actual grade 

1 2 3 

1 - 17.3% 10.4% 

2 34.4% - 17.0% 

3 10.7% 10.2% - 
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Figure 3.19 Numbers of incorrect predictions versus years in service 

(2) Related factors 

In addition, we also assessed which factors result in incorrect predictions for these bridges. Among all 

considered factors in this study, other factors do not necessarily have relationships with the incorrect 

predictions except for the factor of years in service. The numbers of incorrect predictions versus the years 

of in service are shown in Figure 3.19. If incorrect predictions are divided into two parts by 30 years in 

service, the calculations show that almost 85% of all incorrect predictions are bridges that have been in 

service for more than 30 years.  

Correct Predictions

1314 (92.99%)

Incorrect Predictions

99 (7.01%)

Bridges serviced less than 30 years Bridges serviced more than 30 years

Correct Predictions

1366 (70.92%)

Incorrect Predictions

560 (29.08%)
 

Figure 3.20 Percentage of incorrectly predictions (Dividing by 30 years) 
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Furthermore, the inspection database was divided into two groups. One group is aged from 0 to 30 years, 

and the other is aged 31 and above. Then, the percentages of incorrect predictions in the corresponding 

groups were calculated, as shown in Figure 3.20. Among the first group, incorrect predictions account for 

7.01%, while that rate is up to 29.08% for the second group. Interventions are thought of as the main 

reasons that lead to the differences between the two groups. This occurs because interventions were mainly 

implemented for bridges that have been in service more than 30 years, but relatively few interventions are 

implemented for bridges that have been in service less than 30 years. In addition, the observations of some 

factors 30 years ago were the estimated values. The observed values in the last three decades were more 

convincing given that the improvement of observation methods and techniques. Therefore, caution should 

be exercised when making predictions for bridges that have been in service for more than 30 years.  

0 2 4 6 8 10 12

0

2

4

6

8

10

12

0 2 4 6 8 10 12
13.0

13.5

14.0

14.5

0 2 4 6 8 10 12
32.0

32.5

33.0

33.5

34.0

0 2 4 6 8 10 12
5.0

5.5

6.0

6.5

7.0

0 2 4 6 8 10 12
30

31

32

33

34

35

0 2 4 6 8 10 12
-14

-13

-12

-11

-10

-9

-8

0 2 4 6 8 10 12
-1

0

1

2

3

4

5

6

7

8

9

10

11

12

0 2 4 6 8 10 12
-1.0

-0.5

0.0

0.5

1.0

1.5

2.0

2.5

0 2 4 6 8 10 12

450

500

550

600

650

700

750

0 2 4 6 8 10 12

900

1000

1100

1200

1300

1400

1500

1600

0 2 4 6 8 10 12

15800

16000

16200

16400

16600

16800

17000

17200

17400

0 2 4 6 8 10 12
13.0

13.2

13.4

13.6

13.8

14.0

14.2

14.4

14.6

 

 

Y
e

a
rs

 I
n

 S
e

rv
ic

e

Years In Service

L
e

n
g

th
 (

m
)

Years In Service

W
id

th
 (

m
)

Years In Service

 

 

E
le

v
a

ti
o

n
 (

m
)

Years In Service

 

 

H
ig

h
e

s
t 

T
e

m
p

e
ra

tu
re

 (
°C

)

Years In Service

 
 

L
o

w
e

s
t 

T
e

m
p

e
ra

tu
re

 (
°C

)

Years In Service

 

 

C
a

rb
o

n
a

ti
o

n
 d

e
p

th
 (

m
m

)

Years In Service

 

 

C
h

lo
ri
d

e
 i
o

n
 c

o
n

c
e

n
tr

a
ti
o

n
 (

k
g

/m
3

)

Years In Service

 

 

S
n

o
w

fa
ll 

(c
m

)

Years In Service

 

 

R
a

in
fa

ll 
(c

m
)

Years In Service

 

 

T
ra

ff
ic

 V
o

lu
m

e 
(V

eh
ic

le
 n

u
m

b
er

s)

Years In Service

 

 

R
a

te
 o

f 
la

rg
e

 s
iz

e
 v

e
h

ic
le

s
 (

%
)

Years In Service
 

Figure 3.21 Time series diagram of all factors 
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Figure 3.22 Prediction of deterioration grade in the next fifteen years. 

3.4.3 Discussions 

(1) Usefulness 

The results indicated that the prediction model could guide the quality inspection of existing structures. 

Specifically, provided the time series of all factors for a bridge, future deterioration can be estimated. 

Figure 3.21 shows the time series diagram of all factors for an RC bridge. The latest inspected 

deterioration grade is 1.  

Using the prediction model, the deterioration conditions of the bridge in the next fifteen years were 

predicted, as shown in Figure 3.22. It can be inferred from the predicted results that the condition of the 

bridge in the next five years will not deteriorate significantly. Therefore, the inspection of the bridge can be 

postponed. Of course, if the bridge deteriorates significantly in the next five years, the bridge can be 

inspected in advance, and corresponding intervention measures can be taken. The prediction model makes 

it possible for the decision-makers to formulate a flexible inspection schedule according to the 

deterioration situation. 

In addition, the initial achievements in this study provided a case to explore the deterioration prediction for 

other infrastructures. Then, we can integrate all these deterioration prediction models into the infrastructure 

management system (IMS) to enable managers or local authorities to manage and formulate intervention 

strategies for infrastructure. Furthermore, the limitations revealed in this study (Section 3.4.3 (2)) will 

prompt the collection of more detailed data during the inspection process in the future.  

(2) Insufficiency 

Our proposed model focused on the goal of making accurate and robust predictions relying on time series 

data of many potential factors. Therefore, the outcome of the model is closely related to the data quality of 

each factor. If the information of some factors is missed/incomplete, or the inherent collation between 

factors and deterioration is not clear, our model may achieve limited improvements or even fail. This 

means that it is necessary to check the quality of the data for each factor. In addition, although our 

proposed model considered twelve potentially influencing factors, it does not mean these factors 

necessarily influence deterioration, or other factors that are not considered in this model may also impact 

deterioration. One good thing is that we can include more influencing factors or remove some factors by 
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updating the rows of the input matrix and by modifying the configuration (size of input   ) of the LSTM 

model (Section 2.4). 

Although the performance of the LSTM model is improved relative to an MLP model, the architecture of 

the LSTM-RNN model is much more complicated than that of the MLP. In addition, more data are needed 

to train an LSTM-RNN model. Therefore, it is not easy to establish a model such as that in this study 

considering the availability of the database, especially in practical engineering. In the calculation of 

chloride ions penetrating into concrete, the diffusion coefficient 𝐷𝑐  is considered a constant. This 

assumption is inconsistent with the actual situation, which makes the LSTM model deviate from reality to 

a certain extent. In addition, error analysis found that the model is prone to be confused between grades 1 

and 2 bridges, because the misclassification between these two grades accounts for half of the failed 

predictions. It should be cautious when applying the model for predicting conditions of bridges that are 

more than 30 years old. Incorrect prediction increases greatly when applying the model for predicting 

conditions of bridges that are more than 30 years old. 

The proposed model is evaluated by using a database formed using past inspection data. However, a good 

prediction model should be generalizable. This means that the LSTM-based RNN in the study should fit 

future observations well but cannot be verified now. The requirements will motivate us to improve data 

collection strategies to acquire more valuable data. In addition, other time series approaches such as 

Bayesian approach will be verified and compared with the model in this study. 

3.5 Establishment of a Markov Chain model 

As described in Section 2.6, Markov Chain (MC) is a probabilistic method. In this section, an MC model 

was built using the inspection database mentioned in Section 3.2. Later, the MC model was compared with 

the LSTM model in the deterioration progresses. These contents were detailed below.  

3.5.1 Markov Chain model 

The hazard variable can be obtained according to Equation (11). Therefore, 20 unknown parameters 

regarding the deterioration grades are need to be estimated. According to Equation (38) in Chapter 2, the 

maximum log-likelihood is considered the optimal parameters combinations of the hazard model. Table 3.9 

shows the estimated values for these parameters. Interval 1-2 means deterioration from grade 1 to grade 2, 

and 2-3 means deterioration from grade 2 to grade 3. 

𝜆𝑖
𝑘    

𝑘𝛽𝑖  +   
𝑘𝛽𝑖  +  +    

𝑘 𝛽𝑖    (i  1 2 3; k  1 2   K)            (11) 

Table 3.9 Hazard model based on Markov chain exponential distribution 

 Deterioration intervals 

1-2 2-3 

Number of Samples 2273 1331 

Deck area 𝛽𝑖   0.1034 0.1623 

Elevation 𝛽𝑖   0.4890 0.2658 

Carbon dioxide 𝛽𝑖   0.4063 0.1052 

Chloride 𝛽𝑖   0.3380 0.2881 

Rainfall 𝛽𝑖   0.1307 0.0468 

Snowfall 𝛽𝑖   0.0474 0.1467 

Highest temperature 𝛽𝑖   0.2436 0.0591 

Lowest temperature 𝛽𝑖   0.5923 0.0451 

Traffic volume 𝛽𝑖   0.5783 0.0350 

Large-size vehicles 𝛽𝑖    0.5803 0.0396 
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Afterwards, the Markov transition probability matrix can be obtained using the estimated values based on 

Equation (33) in Chapter 2, as shown in Equation (12). As described, the probability of a direct 

deterioration from grade 1 to grade 3 is low.  

𝜋  (

𝜋   𝜋  

⋮ ⋱ ⋮
0  𝜋  

)  (
0.8055 0.1738 0.0207

0 0.6704 0.3296
0 0 1

)                (12) 

In addition, the expected survival time were calculated according to Equation (31) in Section 2.6. As a 

result, the average survival time being in grade 1 and grade 2 are 24.2555 and 10.5121 years, respectively. 

In other words, the bridge cost an average time of 24.2555 years to deteriorate from grade 1 to grade 2, and 

cost an average time of 34.7626 years to deteriorate from grade 1 to grade 3. 

3.5.2 Comparisons on deterioration progresses using the RNN and MC 

Comparisons of the RNN and MC will be elaborated from: (1) the mean deterioration progresses; (2) the 

deterioration progresses of different type of bridge; (3) the deterioration progress of a specific bridge; and 

(4) the influence of each factor on deterioration progresses.  

(1) Mean deterioration progresses  

A deterioration progress represents the deterioration process in which the years required to transfer from 

one grade to the next grade are exhibited. Figure 3.23 shows the average deterioration progresses obtained 

using the MC and RNN models. The MC model predicts bridge will deteriorate to grade 2 and grade 3 in 

24.26 and 34.77 years, respectively. The results of the RNN show that the bridge will deteriorate to grade 2 

and grade 3 at 22.50 and 32.52 years, respectively. The results indicate that no significant differences can 

be found from the deterioration progresses by these two models, except that the deterioration obtained by 

the RNN model is slightly earlier than that by the MC model. Therefore, it can be concluded that the 

deterioration tendency by those two approaches are approximately the same.  

 

Figure 3.23 Mean deterioration progresses obtained using RNN and MC. 

 

(2) Deterioration progresses of different types of bridges 

To assess the influence of bridge type on the deterioration, the deterioration progresses of the four types of 

bridges were plotted, as shown in Figure 8. The mean deterioration progresses in Figure 3.24 (a) and (b) 

correspond to that in Figure 3.23. The results of these two approaches all indicate that: (i) the deterioration 
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of PC and the steel bridges are approximately the same; (ii) the RC and steel & concrete composite bridges 

deteriorate earlier than the rest two types of bridges; and (iii) the RC shows a worse durability compared to 

the remaining three types of bridges.  

 

 

(a) 

 
(b) 

Figure 3.24 Deterioration progresses for different types of bridges: (a) using MC; (b) using RNN 

Quantitatively, the MC model estimates that the PC bridge will deteriorate to grade 2 and 3 in 25.75 and 36. 

81 years, this is not significantly deviated from the 24.55 and 34.81 years estimated by the RNN model. In 

terms of RC bridge, similarly tendency can be found, with 20.89 and 30.83 years by the MC model and 

with 20.17 and 29.50 by the RNN model. The steel & concrete composite bridge will deteriorates into the 

next two grades in 22.87 and 32.39 years by the MC model, and in 21.62 and 31.23 years by the RNN 

model. For steel bridges, the MC model obtained the deterioration moments of 25.43 and 37.86 years, and 

the RNN model achieved deterioration moments of 24.64 and 34.68 years. In summary, the estimated 

service time of the two methods for each type of bridge differs by no more than 5 years. In addition, the 

RNN model usually obtained a shorter lifetime than the MC model. Since MC and RNN models adopt all 

types of bridges, the deterioration progress of each type of bridge is averaged. As a result, the deterioration 

progress of each type of bridge obtained by these two approaches is almost the same. In addition, the type 

of bridge is a cause of the deterioration differences.  

(3) Deterioration progress of a specific bridge 

Further, bridges A and B with properties summarized in table 3.10 were selected. Then, the MC and RNN 
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were used to predict and compare their deterioration progresses for these two the two newly inspected 

grade 1 bridges. Because the bridges are inspected every five years, two approaches were used to predict 

deterioration conditions every five years, as shown in Figure 3.25.  

Table 3.10 Information of bridges A and B 

 Bridge A Bridge B 

Deck area (m
2
)  332.5 137.94 

Elevation (m) 3 2.9 

Years in service (years) 12 50 

Carbon dioxide (ppm) 393.32 356.38 

Chloride (kg/m
3
) 2.2 2 

Rainfall (cm) 954 1060 

Snowfall (cm) 345.77 635.60 

Highest temperature (C) 19 24 

Lowest temperature (C) -3 -3 

Traffic volume (Daily) 1057 13233 

Large-size vehicles (Daily) 162 2686 

 

Figure 3.24 shows that the deterioration progresses of bridge A and B obtained by MC and RNN, 

respectively. Bridge A just been in service for 12 years; therefore, the bridge will deteriorate gradually. 

Since bridge B has been in service for 50 years, both approaches conclude that bridge B will deteriorate to 

grade 3 rapidly. Similar with the findings in (1) and (2) of this section, the time from one grade to the next 

grade obtained by the RNN is earlier than that by the MC model. However, the results indicate that the 

overall tendencies by these two methods are approximately the same. 

 

 

Figure 3.25 Deterioration progresses of bridges A and B using MC and RNN  
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Figure 3.26 Deterioration progresses with the influence of each factor individually. 

  

  

Figure 3.27 Deterioration progresses with the influence of each factor individually (using RNN)  
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Figure 3.26 Deterioration progresses with the influence of each factor individually (using RNN) 

(Continue) 

 

(4) Influence of each factor on deterioration progresses 

The influence of each factor on the deterioration progress was analyzed by changing the value of each 

factor. Figures 3.26 and 3.27 are the results using the MC and RNN model, respectively. The mean 

deterioration progress is the same as Figure 3.23, the minimum deterioration progress is obtained by 

setting the value of the corresponding individual factor to 0, and the maximum deterioration progress is 

obtained by setting the value of the corresponding individual factor to 1.0.  

Figure 3.26 shows that: (i) a bigger deck area deteriorates earlier. This finding is the same as another study 

[20]; (ii) the elevation, rainfall, highest temperature has no significant influence on the deterioration 

progresses, because there are no remarkable differences between the mean, maximum, and minimum 

deterioration progresses; (iii) the deterioration progresses of carbon dioxide, chloride ions and the snowfall 

have no significant differences between the deterioration progresses from grade 1 to grade 2. However, the 

maximum deterioration progresses of these factors are deviated from grade 2 to grade 3 because the 

cumulated effect of the corresponding factors; (iv) heavy traffic volume will make the bridge deteriorates 

earlier. One another finding is that the mean and the minimum deterioration progress are almost same 

because the influence of normal traffic volume is tiny; and (v) the deterioration progresses of other factors, 

including lowest temperature and large-size vehicles, reveal that these factors have an impact from the 

beginning.  
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Similar findings can be determined when using the RNN model. One difference is that the mean and the 

minimum deterioration progresses of factors, such as deck area, chloride ions, snowfall, and traffic volume 

are quite different. Another difference is that the influence of rainfall obtained by the RNN model is more 

significant than that obtained by the MC model. 

3.5.3 Discussions 

Although the effectiveness of the MC model and RNN model proposed in this study were verified through 

a censored database, it is necessary to perform more application research and updating our models in the 

future. The concerns of this study were summarized as follows:  

In actual inspection work, the soundness is usually evaluated by visual inspection, and it is inevitable that 

the soundness includes a subjective error. Therefore, it is necessary to develop an estimation method that 

can take this kind of subjective error into consideration. In addition, the routine maintenance makes the 

estimated model produce values later than the reality. Since the amount of data on each type of bridge is 

insufficient, data on all types of bridges are used to build two models, enabling the estimated deterioration 

progress for each bridge type to be averaged. Therefore, these two models may have certain errors for each 

type of bridge. It is necessary to compare and evaluate these two models with the models established for 

each type of bridge. This insufficient can be solved by collecting mode high quality data. Although our 

proposed model considered twelve potentially influencing factors, it does not mean these factors 

necessarily influence deterioration, or other factors that are not considered in this model may also impact 

deterioration.  

Although the assumption of the time range in which a bridge stays in a certain grade is more like an 

engineering way of thinking than the concept of transition probability, these estimates are still subjective 

and their influence on the prediction results is crucial. Another drawback of Markov process models is that 

they do not take into account the length of the structural element already being in current condition state, 

and presume it just entered this state. The transition probabilities have nothing to do with time, which is 

unrealistic, especially when determining the transition probabilities of old bridges, because these 

probabilities change over time. Therefore, stationary transition probabilities in the transition matrix are 

difficult to be obtained and to assess non-subjectively.  

In Markov chain, the time is not continuous, but discrete and finite. Instead, the RNN model can process 

continuous time serial data and provide continuous predictions. Since variations in inspection periods are 

frequent, continuous-time models have a significant advantage compared to discrete-time models. In 

addition, Markov exponential process does not include the age of the bridge, just the probability of staying 

in a certain state for a certain sojourn time. Markovian chain assumes duration independence for simplicity, 

i.e. the future facility condition depends only on the current facility condition and not on the facility 

condition history, which is unrealistic. Conversely, the RNN model can consider the cumulative effect 

along the whole time serial data through the three gates described in Section 2.4. In other words, the RNN 

can consider the age of bridges and the historical information. However, the established RNN model is far 

from perfect, and need more improvements.  

This study assumes that periodic inspection data can be obtained at multiple time points. In reality, it is 

often the case that only once inspection is available. Even in such cases, the time when the civil 

engineering facilities are put into use and the time of the first inspection can be used as two time points for 

obtaining deterioration grade information. Then, The MC and RNN model can be estimated. To improve 
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the work of this study, future works will emphasis on collecting more quality data and modifying our 

models. 

 

3.6 Estimation of factor importance 

Using the LSTM prediction model, successful predictions were made for 2,695 out of the 3,368 bridges. 

Therefore, a new database of 2,695 bridges was set up. The Shapley value and Sobol indices methods were 

then applied to perform the sensitivity analysis of each factor from the new database. The calculated 

sensitivities were normalized to show their relative importance, as indicated in Figure 3.28. The five most 

important factors determined by the Sobol indices and Shapley value method are the same, although their 

values are different. Deck area (bridge length ×bridge width) and years in service were determined to be 

the most important factors affecting the deterioration. In addition, traffic volume, lowest temperature and 

chloride ions are the three external factors affecting deterioration, which is consistent with known findings. 

Therefore, the Shapley value method was considered a suitable solution to determine the contribution of 

factors on deterioration. Furthermore, the Shapley value method was applied to analyze the new database 

from other perspectives.  

 

 

Figure 3.28 Sensitivity analysis by Sobol and Shapley value methods. 

 

3.6.1 Distribution of each potentially influencing factor 

According to the Shapley value method, the estimated importance of all factors was calculated for each 

bridge, as shown in Figure 3.29 separated by each factor. The estimated importance indicates the relative 

importance of each factor for a bridge. For the estimated importance, the positive value represents that the 

factor will accelerate the deterioration, and the negative value means that the factor will slow down the 

deterioration. Therefore, factors, such as years in service, carbon dioxide concentration, and the chloride 

ion show accelerated effects on deterioration. Other factors such as elevation, deck area, and bridge width, 

rate of the large-size vehicles, rainfall, and highest temperature do not show consistent effects. Another 

finding is that the number of the large size vehicles will affect the deterioration, even though rate of the 

large-size vehicles is not necessarily related to deterioration. Since the total traffic volume is found with 

obvious effect, the number of the large size vehicles will not be considered independently. In summary, six 
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factors with acceleration are discussed hereafter, as other factors do not show the consistent relationships 

with deterioration. In addition, Figure 3.28 reveals that the estimated importance of lowest temperature 

negatively related to the measured value. The estimated importance of other five accelerated factors, such 

as years in service, traffic volume, are positive correlated with the measured values.  
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Figure 3.29. Estimated importance of each factor for all bridges (Continue) 

 

3.6.2 Estimated importance for target bridges 

Figure 3.30 shows the estimated importance of each factor for bridges A and B (Section 3.5.2). The results 
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these bridges. The other three factors have relatively fewer influences.  

However, the estimated importance for the two bridges shows significant differences. For bridge A, the 

most significant factor is the traffic volume, the other factors are relatively lower. This is because bridge A 

has been in service for only 12 years, the natural degradation of the material is not obvious, and the impact 

of carbonation and chloride ion is still tiny. Considering bridge A will remain in grade 1 for the next 20 

years (Section 3.5.2), no special maintenance is necessary for bridge A in ten years. As bridge B has been 

in service for 50 years and has recently accommodated many large-size vehicles, the lowest temperature, 

traffic volume, chloride ion have all had important impacts except for years in service. In addition, the 

deterioration of bridge B will be worse from grade 1 to 3 soon, according to the deterioration curve in 

Figure 3.24. Therefore, the bridge B should be fully maintained in five years. The results indicate that even 

though the deterioration of bridges A and B are both evaluated being grade 1, the calculated relative 

importance of all factors is different. Obviously, the estimated relative importance can reflect the bridges 

properties and the reasons for deterioration. Additionally, corresponding maintenance strategies can be set 

up.  

 

  
Figure 3.29 Estimated importance value for bridges A and B. 

 

3.6.3 Estimated importance of each grade 

To compare the difference between the grades, the average importance of each factor for its respective 

grade was computed, as shown in Figure 3.31. Unlike the explanations shown in Figure 3.30, which are 

specific to individual bridges, Figure 3.31 shows the mean estimated importance for bridges with the same 

deterioration grade.  

Of all the factors, years in service and traffic volume are the two most significant factors for all grades. 

Other factors have relatively fewer impacts. As bridges in grade 1 are generally relatively short in service, 

environmental factors such as the lowest temperature and the chloride have not had significant impacts. 

Therefore, the years in service and the traffic volume are the most significant factors. As time goes by, the 

importance gap between the years in service and the traffic volume traffic has narrowed, as shown in grade 

2. It is indicated that the relative importance of the traffic volume has increased, and its impact on 

deterioration has also increased. Further, the importance of the years in service and the traffic volume is 
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almost the same in grade 3. In addition, the influences of the lowest temperature and the chloride are 

increased. Owing to the bridges in grade 3 have been in service for an average of more than 46 years, a 

relatively smaller importance of a factor does not mean the factor is unimportant, as the cumulative effects 

of these factors were not considered. Therefore, various factors should be comprehensively considered to 

provide recommendations for future maintenance. In addition, intervention was performed for some 

bridges from construction to the latest inspection, which is difficult to be considered in our model.  

 

 

  

Figure 3.30 Average importance of each factor, broken down by grade (Grades 1, 2 and 3). 

 

3.6.4 Estimated importance of different structure type 

The deterioration differs for different types of bridges. To observe whether the estimated importance can 

reflect the differences caused by different types of bridges, the average estimated importance of all factors, 

broken down by structure types is shown in Figure 3.32.  

Similar to the findings in previous sections, the years in service and the traffic volume are the two most 

significant factors for all the bridge types. The distribution of these factors differs in different bridge types. 
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For the PC bridges, other factors are less important relative to the years in service, as PC bridges are 

generally able to withstand harsher conditions and have better durability. Compared with the PC bridge, 

the importance of the RC bridge is more uniformly distributed. Because RC bridges are more susceptible 

to loads (traffic volume) and environmental factors (lowest temperature and chloride ion). The steel & 

concrete composite bridge is almost in the middle of the PC and RC bridges. For steel bridges, the 

importance of traffic volume is increased because the average daily traffic volume of this type of bridge in 

the applied database is usually more than 10,000 (vehicles/day) and usually accommodates many large 

vehicles (3,337 vehicles/day). 

 

 

Figure 3.31 Average importance of each factor, broken down by the bridge type 

As a result, the bridge type is determined another reason to affect the deterioration. As for other 

researcher’s finding [21], material and surrounding environment should be the most significant factors. 

Since the database regarding the bridge materials is unavailable, the differences induced by the material 

will not be considered in this study. In terms of the environment, bridges will be divided into two groups 

depending on they are located in coastal or outside of coastal regions, which will be discussed later. 
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3.6.5 Estimated importance of different environments 

Since concrete bridges (components) in coastal areas are exposed to extremely severe environments for 

materials [22], bridges are divided in terms of their location, such as in coastal and non-coastal areas, and 

average importance for these two environments is calculated, as shown in Figure 3.33. For the bridge in 

non-coastal areas, the distribution of these factors is the same as the previous sections except for the value 

of chloride ion been zero, as de-icing salt is not considered. Compared with non-coastal conditions, the 

impact of chloride ions is greatly increased. In addition, the order of importance of the traffic volume and 

lowest temperature are the same.  

As results, the influence of air-borne salt is the main reason for the differences of the two environments. In 

addition, the results indicate that the bridges in coastal areas are more strongly affected by air-borne salt, 

and the estimated importance of the sensitivity analysis methods conform to reality. In general, there is a 

reasonable agreement between the estimated factors with accelerated effects and factors already known to 

affect the deterioration, which means that the sensitivity analysis can identify factors influencing 

deterioration and can calculate their relative importance. 

 

 

Figure 3.32 Average importance of each factor, broken down by coastal/none coastal area. 
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Appendix A 

 

No. 

ANN type 
Average 
training 

loss 

Average 
training 
accuracy 

Average 
validation 

loss 

Average 
validation 
accuracy 

Number 
of hidden 

layers 

Number 
of hidden 
neurons 

Lr Algorithm AcFun 

1 1 5 0.01 SGD relu 0.8288 0.6063 0.8870 0.5669 

2 1 5 0.01 SGD tanh 0.8208 0.6073 0.8645 0.5751 

3 1 5 0.01 RMSProp relu 0.8194 0.6055 0.8756 0.5658 

4 1 5 0.01 RMSProp tanh 0.7586 0.6335 0.8483 0.5972 

5 1 5 0.01 Adagrad relu 0.8301 0.5985 0.8855 0.5693 

6 1 5 0.01 Adagrad tanh 0.8223 0.6105 0.8815 0.5658 

7 1 5 0.01 Adadelta relu 0.9482 0.5571 0.9850 0.5363 

8 1 5 0.01 Adadelta tanh 0.9241 0.5607 0.9710 0.5336 

9 1 5 0.01 Adam relu 0.7826 0.6164 0.8462 0.6050 

10 1 5 0.01 Adam tanh 0.7608 0.6379 0.8592 0.5968 

11 1 5 0.01 Adamax relu 0.7836 0.6252 0.8245 0.6244 

12 1 5 0.01 Adamax tanh 0.7731 0.6262 0.8513 0.5949 

13 1 5 0.01 Nadam relu 0.7733 0.6193 0.8382 0.6119 

14 1 5 0.01 Nadam tanh 0.7637 0.6367 0.8397 0.6088 

15 1 5 0.001 SGD relu 0.8333 0.5953 0.8743 0.5767 

16 1 5 0.001 SGD tanh 0.8307 0.5960 0.8883 0.5708 

17 1 5 0.001 RMSProp relu 0.8029 0.6136 0.8521 0.5910 

18 1 5 0.001 RMSProp tanh 0.7784 0.6205 0.8565 0.5937 

19 1 5 0.001 Adagrad relu 0.8632 0.5911 0.9037 0.5588 

20 1 5 0.001 Adagrad tanh 0.8446 0.5976 0.8975 0.5642 

21 1 5 0.001 Adadelta relu 0.9663 0.5594 1.0021 0.5359 

22 1 5 0.001 Adadelta tanh 0.9503 0.5589 0.9999 0.5289 

23 1 5 0.001 Adam relu 0.8259 0.6041 0.8741 0.5743 

24 1 5 0.001 Adam tanh 0.7756 0.6224 0.8623 0.5894 

25 1 5 0.001 Adamax relu 0.7993 0.6164 0.8529 0.5918 

26 1 5 0.001 Adamax tanh 0.7905 0.6203 0.8563 0.5902 

27 1 5 0.001 Nadam relu 0.8104 0.6136 0.8600 0.5856 

28 1 5 0.001 Nadam tanh 0.7852 0.6143 0.8515 0.6026 

29 1 10 0.01 SGD relu 0.8284 0.6045 0.8751 0.5716 

30 1 10 0.01 SGD tanh 0.8258 0.6076 0.8835 0.5661 

31 1 10 0.01 RMSProp relu 0.7748 0.6271 0.8633 0.5820 

32 1 10 0.01 RMSProp tanh 0.7661 0.6410 0.8382 0.5991 

33 1 10 0.01 Adagrad relu 0.8516 0.5975 0.8993 0.5530 

34 1 10 0.01 Adagrad tanh 0.8377 0.5983 0.8830 0.5623 

35 1 10 0.01 Adadelta relu 0.9534 0.5626 0.9920 0.5410 

36 1 10 0.01 Adadelta tanh 0.9408 0.5642 0.9955 0.5289 

37 1 10 0.01 Adam relu 0.7780 0.6262 0.8458 0.5968 

38 1 10 0.01 Adam tanh 0.7618 0.6360 0.8414 0.6054 

39 1 10 0.01 Adamax relu 0.7782 0.6294 0.8421 0.6046 

40 1 10 0.01 Adamax tanh 0.7812 0.6214 0.8573 0.5953 

41 1 10 0.01 Nadam relu 0.7707 0.6261 0.8411 0.5999 

42 1 10 0.01 Nadam tanh 0.7527 0.6467 0.8479 0.6022 

43 1 10 0.001 SGD relu 0.9139 0.5624 0.9597 0.5386 

44 1 10 0.001 SGD tanh 0.9046 0.5644 0.9513 0.5402 

45 1 10 0.001 RMSProp relu 0.7943 0.6184 0.8455 0.5976 
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No. 

ANN type 
Average 
training 

loss 

Average 
training 
accuracy 

Average 
validation 

loss 

Average 
validation 
accuracy 

Number 
of hidden 

layers 

Number 
of hidden 
neurons 

Lr Algorithm AcFun 

46 1 10 0.001 RMSProp tanh 0.7972 0.6153 0.8778 0.5692 

47 1 10 0.001 Adagrad relu 0.9413 0.5647 0.9936 0.5320 

48 1 10 0.001 Adagrad tanh 0.9377 0.5592 0.9788 0.5359 

49 1 10 0.001 Adadelta relu 0.9690 0.5597 0.9943 0.5367 

50 1 10 0.001 Adadelta tanh 0.9780 0.5607 1.0038 0.5382 

51 1 10 0.001 Adam relu 0.7739 0.6284 0.8222 0.6077 

52 1 10 0.001 Adam tanh 0.7819 0.6205 0.8504 0.5948 

53 1 10 0.001 Adamax relu 0.8018 0.6081 0.8507 0.5953 

54 1 10 0.001 Adamax tanh 0.8009 0.6135 0.8489 0.5952 

55 1 10 0.001 Nadam relu 0.8129 0.6105 0.8669 0.5755 

56 1 10 0.001 Nadam tanh 0.7877 0.6163 0.8690 0.5891 

57 2 5 0.01 SGD relu 0.8379 0.5946 0.8846 0.5627 

58 2 5 0.01 SGD tanh 0.8291 0.6018 0.8814 0.5658 

59 2 5 0.01 RMSProp relu 0.7862 0.6216 0.8925 0.5875 

60 2 5 0.01 RMSProp tanh 0.7737 0.6276 0.8649 0.5964 

61 2 5 0.01 Adagrad relu 0.8459 0.5940 0.8836 0.5716 

62 2 5 0.01 Adagrad tanh 0.8390 0.5895 0.8905 0.5685 

63 2 5 0.01 Adadelta relu 0.9678 0.5562 1.0007 0.5343 

64 2 5 0.01 Adadelta tanh 0.9566 0.5561 0.9878 0.5359 

65 2 5 0.01 Adam relu 0.7929 0.6115 0.8557 0.5902 

66 2 5 0.01 Adam tanh 0.7588 0.6301 0.8639 0.5956 

67 2 5 0.01 Adamax relu 0.8241 0.6043 0.8821 0.5701 

68 2 5 0.01 Adamax tanh 0.7891 0.6145 0.8571 0.5957 

69 2 5 0.01 Nadam relu 0.7877 0.6050 0.8395 0.6120 

70 2 5 0.01 Nadam tanh 0.7681 0.6244 0.8660 0.5879 

71 2 5 0.001 SGD relu 0.9496 0.5622 0.9933 0.5371 

72 2 5 0.001 SGD tanh 0.9399 0.5621 0.9813 0.5371 

73 2 5 0.001 RMSProp relu 0.8268 0.6101 0.8883 0.5778 

74 2 5 0.001 RMSProp tanh 0.8014 0.6093 0.8596 0.5953 

75 2 5 0.001 Adagrad relu 0.9574 0.5632 0.9952 0.5363 

76 2 5 0.001 Adagrad tanh 0.9591 0.5612 0.9997 0.5335 

77 2 5 0.001 Adadelta relu 1.0376 0.5592 1.0472 0.5153 

78 2 5 0.001 Adadelta tanh 1.0048 0.5637 1.0321 0.5320 

79 2 5 0.001 Adam relu 0.8149 0.5978 0.8589 0.5743 

80 2 5 0.001 Adam tanh 0.8024 0.6095 0.8497 0.6026 

81 2 5 0.001 Adamax relu 0.8255 0.6060 0.8767 0.5743 

82 2 5 0.001 Adamax tanh 0.8217 0.6073 0.8813 0.5689 

83 2 5 0.001 Nadam relu 0.8063 0.6036 0.8589 0.5887 

84 2 5 0.001 Nadam tanh 0.7973 0.6130 0.8665 0.5852 

85 2 10 0.01 SGD relu 0.8167 0.6068 0.8800 0.5770 

86 2 10 0.01 SGD tanh 0.8205 0.6075 0.8752 0.5673 

87 2 10 0.01 RMSProp relu 0.7522 0.6427 0.8756 0.5941 

88 2 10 0.01 RMSProp tanh 0.7334 0.6612 0.8897 0.5906 

89 2 10 0.01 Adagrad relu 0.8402 0.5938 0.8898 0.5708 

90 2 10 0.01 Adagrad tanh 0.8226 0.6048 0.8680 0.5770 

91 2 10 0.01 Adadelta relu 0.9373 0.5587 0.9804 0.5339 

92 2 10 0.01 Adadelta tanh 0.9340 0.5586 0.9747 0.5332 
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No. 

ANN type 
Average 
training 

loss 

Average 
training 
accuracy 

Average 
validation 

loss 

Average 
validation 
accuracy 

Number 
of hidden 

layers 

Number 
of hidden 
neurons 

Lr Algorithm AcFun 

93 2 10 0.01 Adam relu 0.7580 0.6301 0.8598 0.5890 

94 2 10 0.01 Adam tanh 0.7265 0.6612 0.9027 0.5918 

95 2 10 0.01 Adamax relu 0.8024 0.6121 0.8759 0.5697 

96 2 10 0.01 Adamax tanh 0.7094 0.6675 0.9310 0.5712 

97 2 10 0.01 Nadam relu 0.7449 0.6470 0.8868 0.5801 

98 2 10 0.01 Nadam tanh 0.6999 0.6720 0.9382 0.5693 

99 2 10 0.001 SGD relu 0.9172 0.5616 0.9579 0.5316 

100 2 10 0.001 SGD tanh 0.9306 0.5607 0.9703 0.5417 

101 2 10 0.001 RMSProp relu 0.7927 0.6180 0.8684 0.5875 

102 2 10 0.001 RMSProp tanh 0.7996 0.6118 0.8673 0.5871 

103 2 10 0.001 Adagrad relu 0.9396 0.5597 0.9764 0.5409 

104 2 10 0.001 Adagrad tanh 0.9303 0.5652 0.9719 0.5390 

105 2 10 0.001 Adadelta relu 1.0238 0.5609 1.0294 0.5402 

106 2 10 0.001 Adadelta tanh 0.9915 0.5519 1.0128 0.5270 

107 2 10 0.001 Adam relu 0.8108 0.6056 0.8618 0.5852 

108 2 10 0.001 Adam tanh 0.8000 0.6116 0.8584 0.5922 

109 2 10 0.001 Adamax relu 0.7866 0.6184 0.8457 0.6065 

110 2 10 0.001 Adamax tanh 0.7854 0.6148 0.8584 0.5871 

111 2 10 0.001 Nadam relu 0.8147 0.6048 0.8826 0.5704 

112 2 10 0.001 Nadam tanh 0.7909 0.6163 0.8573 0.5964 
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Chapter 4 

Establishment of crack identification model  
 

4.1. Overview 

Conforming to the procedures described in Section 2.7, this chapter provided details on the establishment 

and verification of a crack identification model. Figure 4.1 shows the flowchart applied to establish the 

crack identification model used for detecting and quantifying crack conditions. The entire procedures 

include three stages: pre-processing, crack detection, and post-processing. Pre-processing is used to 

calibrate the raw images, as described in Section 2.7.1. In this chapter, we detailed the considerations to 

build a robust crack classifier (Crack detection) and to develop an application to segment and analyze 

cracks (Post-processing).  

 

Figure 4.1 Flowchart for establishing the crack identification model 

 

4.2. Building a robust crack classifier 

This section introduced the considerations when generating the database and setting the basic 

hyperparameters, and the procedures of acquiring a robust a CNN. The optimal hyperparameters were 

confirmed by trial and error, according to Bengio et al. [1]. All of the study was performed on a personal 

computer with two GPUs (CPU: Intel© Core© i5-8300H CPU@2.30GHz, RAM: 32GB and GUP 

NVIDIA GeForce GTX 1050).  
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4.2.1 Database generation 

In this study, a total of 150 raw images from indoor experiments and onsite bridge inspections were used, 

as summarized in Table 4.1. The experimental images were captured with a distance of 1.0 m during the 

beam bending test. Before the test, these beams have been exposed in the field for one or two years. The 

pictures collected during the bridge inspection were shot without knowing the distance from the camera to 

the object. The combination of images from experiments and inspections was intended to make the 

classifier general and practically applicable. The experimental raw images were calibrated. Then 58 

experimental and 69 onsite inspection images were randomly selected from the corresponding groups. The 

remaining 11 and 12 images in corresponding groups were used for testing, respectively. The 127 raw 

images were cropped into sub-images with 256×256 pixel resolution to build the database for training and 

validation. Totally, the database includes 30,480 sub-images, with the ratio of crack and intact images at 

1:1; and includes a broad range of images variances for establishing a robust classifier, as shown in Figures 

4.2 (a) and 6(b). In addition, sub-images with cracks on the edge of images and with other kinds of 

damages are disregarded, based on the study of Cha et al. [2], as shown in Figure 4.2 (c).  

Table 4.1 Specification of raw images and generation of database 

Source 
Raw Images  Database 

No Size Training/Validation Testing  Pixel Training/Validation 

Experiment 69 10240×2048 58 11  
256×256 30,480 

Field  81 2592×4608 69 12  

 

Figure 4.2 Typical cropped images: (a) images with crack from experiment; (b) images with crack from 

onsite inspection; and (c) disregarded images 

4.2.2 Optimal model 

(1) Performance evaluation 

To obtain a CNN model with excellent robustness, four commonly used CNNs from other studies were 

tested: AlexNet [2], GoogLeNet [3], Resnet18 [4], and VGG-16 [5]; the results were summarized in Table 

4.2. The performances of these CNNs were evaluated using five metrics, as depicted in Section 2.8. For a 

crack classifier, Recall or true positive rate (TPR) is the ratio of correct predictions to total crack 

sub-images. Similarly, the true negative rate (TNR) indicates the ratio of correct non-crack predictions to 

the total number of non-crack sub-images. Precision is the ratio of correct crack predictions to all crack 

predictions. Accuracy (ACC) is the ratio of correct crack or intact predictions to the total number of 

(a) (b) 

(c) 
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sub-images. The F1 score is the harmonic mean of the recall and precision. In addition, time cost is used as 

an index to evaluate these four CNNs.  

(2) Hyperparameters 

All of the CNNs were trained using an SGD algorithm with a mini-batch size of 256 out of 30,480 images. 

The last layers of all of the CNNs were modified to two outputs, as the output of our dataset was "crack" or 

"intact". A logarithmically decreasing learning rate was applied in the training, according to Cha and Choi 

[2]. The dropout rate at the dropout layer was 0.5. The other hyperparameters remained at default values.  

(3) Comparisons 

The database was divided into 70% for training and 30% for validation. The four commonly used CNNs 

were trained for 80 epochs on the training set until the loss function reached a plateau, which showed the 

convergence of the weights. Table 4.2 presents the detailed performance of the four transfer learning CNNs 

on the training and validation sets. Figure 4.3 shows that the accuracies of the models increase from the 

AlexNet to the best performing VGG-16. However, VGG-16 spends 346 minutes per epoch in the training 

of the model. In addition, there is no significant difference in performance between GoogLeNet and 

RestNet18 on the applied database. The GoogLeNet was therefore chosen to analyze the rest of this study. 

 

Table 4.2 Performances of the four pre-trained CNN configurations 

 
Re TNR Pre ACC F1 Time per epoch (min) 

AlexNet 0.9377 0.9831 0.9819 0.9606 0.9593 24.84 

Googlenet 0.9604 0.9736 0.9737 0.9669 0.9670 38.82 

Resnet18 0.9661 0.9678 0.9678 0.9689 0.9670 45.33 

VGG-16 0.9724 0.9680 0.9683 0.9740 0.9704 346.6 

Re TNR Pre ACC F1

0.91

0.92

0.93

0.94

0.95

0.96

0.97

0.98

0.99

1.00

 

 

 AlexNet  Googlenet  Resnet18  VGG-16

 

Figure 4.3 Performances of different CNNs 
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Furthermore, the performances of the fully training and transfer learning using the GoogLeNet were tested, 

as summarized in Table 4.3. Figure 4.4 clearly indicates that fully training outperforms transfer learning. 

Table 4.4 shows the testing results of the transfer learning model and the fully training model on a public 

database SDNET2018 [6]. On this public database, the performance of the transfer learning model is 

superior to that of the fully training model (Figure 4.5), which is contrary to the test results on the testing 

dataset of this study. In addition, the test results of fully training on SDNET2018 are greatly compromised 

compared with that on the testing dataset of this study. One possible reason is that the transfer learning can 

avoid overfitting to some extent. Therefore, the transfer training GoogLeNet was considered the optimal 

model to implement further analysis. 

 

Table 4.3 Performances of the transfer and fully training of GoogLeNet. 

 
Re TNR Pre ACC F1 

Transfer 0.9603 0.9735 0.9737 0.9669 0.9670 

Fully 0.9720 0.9758 0.9761 0.9709 0.9740 

 

Re TNR Pre ACC F1

0.950

0.955

0.960

0.965

0.970

0.975

0.980

0.985

 

 

 Transfer

 Fully

 

Figure 4.4 Metrics of the GoogLeNet in transfer and full learning 

 

Table 4.4 Performances of the transfer and fully training on SDNET2018 

 
Re TNR Pre ACC F1 

Transfer(SDNET2018) 0.8905 0.8772 0.8798 0.8839 0.8851 

Fully(SDNET2018) 0.8100 0.8004 0.8048 0.8133 0.8074 
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Re TNR Pre ACC F1
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Figure 4.5 Performances of the transfer and fully learned GoogLeNet on SDNT2018 

Figure 4.6 shows the loss and accuracy during training and validation. Each epoch of training and 

validation took approximately 39 minutes. The accuracy converged to 95%, and the error converged to 0.1. 

The trained GoogLeNet was further tested below. 
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Figure 4.6 Loss and accuracy during training and validation 

4.2.3 Comparisons of scanning approaches 

Extensive tests were conducted to validate the optimal CNN from the previous section. Owing to the 

random distribution of the cracks, it was difficult to locate cracks depending only on lump-sum scan in a 

large image. Therefore, other algorithms were required to locate the crack positions. In addition, a 

sub-image with cracks on the edge of it can cause misclassification. To correctly identify the cracks, a 256 

× 256 pixel window was designed for scanning the image twice [2], as shown in Figure 4.7(a). This 

method is hereafter referred to as "dual scanning". Except for the dual scanning method, a new scanning 

method called "neighborhood scanning" was proposed, as depicted in Figure 4.7(b). The first scanning of 

this novel scanning method is the same as the previous method. The only difference is that the second 

scanning of the proposed method is not performed on the entire image, but rather only on the 

neighborhood of the cracks identified in the first scanning. To avoid repeat scanning in the second 
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operation of the proposed method, the same region is scanned only once.  

 

Figure 4.7 Crack detection: (a) Dual scanning; and (b) Neighborhood scanning 

To compare the proposed and previous scanning methods, 23 of the raw images that were not used to build 

the training and validation sets were scanned according to the abovementioned procedures. Using the 

evaluation metrics in Section 2.8, the performances of the two scanning methods are summarized in Table 

4.5. Neighborhood scanning shows a performance equivalent to that of the previous dual scanning method 

in terms of the five metrics, as shown in Figure 4.8. In addition, the achieved accuracy of the two methods 

are quite remarkable with around 95.5 %, i.e., nearly identical to the accuracy (96.69%) of the validation in 

the previous section. Encouragingly, the performance of the trained CNN is still impressive, even though 

field and experimental images are used for testing. The average recorded testing time required for each 

image using the neighbourhood and dual scanning methods are 6.48 s and 7.11 s, respectively.  

Table 4.5 Comparisons of the dual scanning and the neighborhood scanning 

 
Rec TNR Pre ACC F1 Average time(s) 

Neig 0.9533 0.9526 0.9651 0.9555 0.9592 6.48 

Dual 0.9517 0.9587 0.9672 0.9551 0.9594 7.11 

Rec TNR Pre ACC F1

0.92

0.93

0.94

0.95

0.96

0.97

0.98
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 Dual

 

Figure 4.8 Test results using dual scanning and neighborhood scanning 
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            (a) Original                     (b) Dual (Number of crack position =28) 

 

 (c) Neighborhood (Number of crack position =19) 

Figure 4.9 Crack detection on field image 1 

 

 

             (a) Original                     (b) Dual (Number of crack position =34) 

 

 (c) Neighborhood (Number of crack position =28) 

Figure 4.10 Crack detection on field image 2 

Because the raw images used in this study were collected from bridge inspections and beam bending tests, 
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the inspection and experimental images were separately applied to verify the classifier. Figures 4.9 and 

4.10 show the testing results of two onsite images. These images can provide a clear understanding of how 

the classifier functions. For inspection images, all evident cracks can be identified by these two scanning 

methods. In addition, the unions of the detected crack regions using these two methods are almost the same. 

However, the numbers of crack regions detected by the neighbourhood are less than that by the dual 

scanning method. This occurs because the dual scanning method detected more sub-images with cracks on 

the edges of them. The false positive and false negative regions (positions) were marked in Figures 4.9 (b) 

and (c) and Figures 4.10 (b) and (c). Most false positives are distributed at: (i) the interface between the 

pier and background, as shown in FP-1~FP-4 in Figure 4.9 (b) and FP-1~FP-3 in Figure 4.9 (c); (ii) the 

edges of the pier, as shown in FP-5~FP-7 in Figure 4.9 (b) and FP-4~FP-6 in Figure 4.9 (c); and (iii) the 

corners, as shown in FP-1~FP-4 in Figure 4.10 (b) and FP-1~FP-3 in Figure 4.10 (c). Most false negatives 

are caused by insufficient illumination (FN-1 in Figures 4.9 (b) and (c), FN-4~FN-5 in Figures 4.10 (b) and 

(c)), and tiny cracks (FN-2 in Figures 4.9 (b) and (c), FN-1~FN-3 in Figures 4.10 (b) and (c)). These occur 

because our database included insufficient samples regarding these situations.  

 
(a) Original 

 

(b) Dual (Number of crack regions =139) 

 

(c) Neighborhood (Number of crack regions =122) 

Figure 4.11 Crack detection on an experimental image 

Figure 4.11 shows testing results for an experimental image using the two scanning methods. Figures 4.11 

(b) and (c) show that both scanning methods can detect thick cracks, even though the numbers of detected 

regions in those two methods are different. The dual scanning and neighbourhood scanning methods 

detected 139 and 122 regions, respectively. In Figures 4.11 (b) and (c), all false negatives are found to be 

caused by the tiny cracks, because illumination conditions in the laboratory are more ideal than the onsite 
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conditions. Some false positive regions are located at the interface between the fresh and elder cement, as 

shown at FP-3 and FP-4 in Figures 4.11 (b) and (c). The rest false positive regions are distributed where 

thin and long voids exist (FP-1 in Figures 4.11 (b) and (c)), and where shellfish growth linearly (FP-2 in 

Figures 4.11 (b) and (c)). 

The testing results indicate that the built classifier can correctly detect most cracks or intact regions, by 

combining with the dual or neighborhood scanning methods. However, the classifier will cause 

misdetections in the previously mentioned situations. In addition, there are no significant differences 

between the dual and neighborhood scanning methods in terms of the evaluation metrics. The former 

method can detect more edge cracks. The latter method usually takes less time to scan the same raw image. 

Considering the unions of the regions detected by these two methods are almost the same, the performance 

of the neighborhood scanning method is acceptable for the post-processing described below. 

4.3 Development of the post-processing application 

The trained CNN can be used to classify a new image combined with the neighborhood scanning method, 

but the specification of the crack pixel cannot be determined. In addition, the misidentified regions must be 

addressed in post-processing. As a result, an application was developed to fulfil these purposes. Image 

processing techniques described in Section 2.7 are included in the application. Therefore, different 

processing techniques can be used depend on images to obtain the optimal segmentation effect. In addition, 

the crack property acquisition methods including the algorithm described in Section 2.7.3 were integrated 

in the developed application. The introductions and verifications of this application were described below. 

  

(a)                                          (b) 

Figure 4.12 The developed application for post-processing: (a) processing for every regions; (b) crack 

analysis for each raw image 

4.3.1 Application development 

Figure 4.12 shows screenshots of the developed application for post-processing. The developed application 

mainly includes two modules: module 1 for processing the detected crack regions, and module 2 for 

providing the crack analysis of the raw image. Specifically, the first model is mainly used for rapidly 

processing of crack regions detected by the optimal classifier in Section 4.2, so as to obtain crack pixels. 

Once all of the crack pixels are obtained, they are stitched together and transferred to the second module 

for calculating other properties of the crack, such as the crack width, length, and orientation. These two 

modules are shown in Figures 4.12 (a) and (b), respectively. The application can be run automatically or 



Chapter 4 Establishment of crack identification model 

86 
 

manually. The former analyzes images according to the default settings and the latter according to the 

settings of the operator. Verification of the developed application was conducted based on practical 

examples, as described below.  

4.3.2 Practical comparisons 

On the raw images in the testing set (Section 4.2.1), the practical performances of the developed crack 

identification model were compared with that of a previous pixel-level crack segmentation framework [5], 

using Intersection over Union (IoU) and time cost as evaluation indexes. The equation of IoU is: 

IoU  
tar et ∩  pre iction

tar et   pre iction
                             (5) 

 

Table 4.6 Comparison of the developed model and the previous framework 

Image 
IoU Time cost 

This  Previous This  Previous 

im1 0.7535 0.6958 7.0209  7.6364 

im2 0.7005 0.6523 7.0114  7.6142 

im3 0.8184 0.8301 7.0030  7.6435 

im4 0.8350 0.8385 7.0373  7.6772 

im5 0.7583 0.5540 7.0436  7.6369 

im6 0.8427 0.8456 7.0591  7.6207 

im7 0.8266 0.8192 7.0398  7.6466 

im8 0.8389 0.8270 6.9890  7.6141 

im9 0.7544 0.7573 6.9825  7.6854 

im10 0.8301 0.8211 7.0557  7.6059 

im11 0.8030 0.8015 7.0241  7.5988 

im12 0.8265 0.8165 7.0181  7.6024 

im13 0.8206  0.8292  12.2009  13.2951 

im14 0.7585  0.7603  12.1531  13.3312 

im15 0.8441  0.8127  12.1458  13.3013 

im16 0.8069  0.8184  12.1485  13.3193 

im17 0.8424  0.8159  12.1506  13.3248 

im18 0.8228  0.8123  12.1455  13.2847 

im19 0.7888  0.7652  12.1369  13.3349 

im20 0.7933  0.7993  12.1436  13.3010 

im21 0.8359  0.8042  12.2002  13.3236 

im22 0.7840  0.7956  12.1751  13.3112 

im23 0.8076  0.8165  12.1552  13.3408 

 

The results show that the developed crack identification model and the previous framework exhibited an 

80.40% and a 78.64% average IoU, respectively. The developed model took an average of 9.48s, and the 

previous framework took an average of 10.35s. Specifically, the performances of the developed model and 

the previous framework vary with image conditions. Experimental images take more time than onsite 

images because of the larger size of the images. For the same raw image, the developed model usually 

takes less time than the previous framework. IoU shows that the developed model is comparable to the 

previous framework for the experimental images. The reason is that the images taken in the laboratory 

have less interference; enabling both methods achieve good results. These two methods also show 

approximately the same IoU values for the onsite images except for im1, im2, and im5.  

On these three images, the IoU of the development model is 0.05 greater than that of the previous 
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framework. Therefore, these three images with complex backgrounds were detailed in Figure 4.13. 

Although the previous framework shows good performance on trained images with monotonous 

backgrounds and good illumination, its performance is inferior to our developed model when the method is 

tested on untrained complex backgrounds (Figure 4.13).  

 

Ground truth This study  Segmentaion 

   

 IoU=0.7535 IoU=0.6958 

   

 IoU=0.7005 IoU=0.6523 

   

 IoU=0.7583 IoU=0.5540 

Figure 4.13 Comparative studies using our model and a picel-level segmentation framework. 

These 23 examples show that the performance of the developed model is not inferior to the previous 

framework. In addition, the developed model usually cost less time than the previous framework. 

Therefore, the developed model is a cost-effective solution that can detect and quantify cracks from images 

collected from onsite inspections or from experiments.  

 

4.3.3 Crack analysis 

Detailed information such as crack patterns, width and length are also crucial for understanding the 

damage in structures, because this information can be used to track the damage status of different 

components in civil structures. Therefore, the crack analysis focuses on the accurate acquisition of detailed 
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crack information.  

Table 4.7 Comparisons of crack width measurement methods 

No 
This study 

(mm) 

Mean 

(mm) 

Measured 

(mm) 

Relative 

Error of 

predicted 

values 

(%) 

Relative 

error of 

mean 

values 

(%) 

No 
This study 

 (mm) 

Mean 

(mm) 

Measured 

(mm) 

Relative 

Error of 

calculated 

values 

(%) 

Relative 

error of 

mean 

values 

(%) 

1 0.30 0.38 0.22 35.08 71.15 30 1.60 1.56 1.15 38.93 35.55 

2 0.25 0.34 0.23 8.96 49.32 31 0.43 0.50 0.34 26.87 46.54 

3 0.23 0.32 0.25 8.34 29.84 32 0.44 0.49 0.37 19.46 33.40 

4 0.40 0.43 0.34 18.10 25.78 33 0.48 0.54 0.41 17.01 31.72 

5 0.35 0.43 0.30 17.63 42.97 34 0.15 0.26 0.21 27.50 21.95 

6 0.08 0.21 0.06 33.60 245.30 35 0.89 0.76 0.65 35.39 16.79 

7 0.11 0.23 0.15 29.15 52.54 36 0.26 0.36 0.27 2.54 32.78 

8 0.22 0.34 0.22 1.58 56.65 37 0.73 0.76 0.74 0.77 2.89 

9 0.93 0.98 0.72 28.61 36.42 38 0.21 0.29 0.18 18.96 63.14 

10 0.40 0.51 0.32 24.65 60.87 39 0.73 0.69 0.67 9.48 2.78 

11 0.23 0.34 0.23 0.31 48.33 40 0.30 0.38 0.28 6.97 36.93 

12 0.36 0.31 0.30 19.31 1.70 41 0.32 0.41 0.34 6.34 20.26 

13 0.24 0.33 0.27 12.18 21.83 42 1.51 1.48 1.19 26.42 24.09 

14 0.26 0.34 0.23 14.41 48.67 43 0.16 0.24 0.16 2.63 51.33 

15 0.25 0.33 0.26 4.22 25.39 44 0.16 0.28 0.17 6.21 63.18 

16 0.32 0.39 0.31 3.03 27.28 45 0.88 0.76 0.92 3.75 16.93 

17 0.10 0.25 0.16 34.94 55.32 46 0.22 0.30 0.19 18.13 56.39 

18 0.13 0.22 0.17 23.60 26.78 47 0.46 0.52 0.51 8.33 2.70 

19 0.17 0.27 0.17 2.73 56.94 48 0.40 0.39 0.35 15.71 11.79 

20 0.69 0.70 0.67 3.88 5.14 49 0.18 0.29 0.22 15.69 36.05 

21 0.65 0.60 0.63 2.93 3.56 50 0.26 0.34 0.28 7.32 22.48 

22 0.63 0.65 0.52 22.57 26.11 51 0.13 0.25 0.15 15.99 68.03 

23 0.40 0.50 0.41 2.99 21.28 52 0.12 0.22 0.14 12.20 58.52 

24 0.45 0.53 0.37 22.16 42.74 53 0.25 0.32 0.27 8.70 19.78 

25 0.65 0.65 0.60 7.70 7.04 54 1.76 1.69 1.52 15.97 11.33 

26 0.41 0.51 0.33 23.70 53.51 55 0.64 0.74 0.56 12.94 32.41 

27 0.20 0.24 0.18 12.77 35.15 56 0.21 0.27 0.27 21.65 1.19 

28 0.18 0.29 0.20 7.98 46.83 57 0.21 0.21 0.21 0.76 1.65 

29 0.28 0.36 0.29 1.27 26.26 Average 0.42 0.48 0.38 14.58 36.37 

 

(1) Crack width comparison 

To verify the accuracy of the crack width obtained from the proposed algorithm, the algorithm (with a δ 

value of 7) was applied to calculate the crack widths at 57 positions selected from the eleven untrained 

experimental images. Then the calculated results of these 57 positions were compared with the measured 

results by the crack scale shown in Figure 4.14. In addition, Adhikari et al. [7] utilized the mean width to 

quantify cracks according to Eq. (6).  

Mean wi th  
crack area

crack perimeter 2⁄
                          (6)  

Therefore, the mean width method will also be used for comparison to verify the effectiveness of the crack 

identification model for measuring crack widths. All cracks were quantified in units of mm. 
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(a)                                  (b) 

Figure 4.14 (a) Crack scale; (b) Crack measuring. 

Table 4.7 shows the comparisons of the proposed algorithm, mean width, and the measurements. The 

relative error and absolute error of the proposed algorithm and that of the mean value method were 

calculated taking the measured values as truths. Figure 4.15 shows the relative and absolute error 

distributions of these positions. The relative error of the proposed algorithm is less than 20% at more than 

40 positions, but that of the mean value method is greater than 40% at more than 20 positions. Similarly 

tendency can be found for the absolute error. The absolute error of 35 positions obtained using the 

proposed algorithm is less than 0.05 mm, while that of 25 locations obtained by the mean method is greater 

than 0.1 mm. The average relative error (Table 4.7) of the proposed algorithm is 14.58% (0.05 mm), i.e., 

the same as the thinnest crack width measurable by the crack scale (Figure 4.14 (a)). In addition, the 

average relative error of this method is much smaller than the 36.37% (0.14 mm) of the mean value 

method.  
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Figure 4.15 Relative and absolute error distributions. 

Crack widths greater than 0.2 are considered detrimental to concrete structures according to Japan road 

association [8]. Therefore, the relative errors of these two methods were respectively divided into two 

groups broken down by crack width 0.2mm, as shown in Figure 4.16. The method of this study has a 

balanced performance for both cracks smaller or larger than 0.2 mm with relative error of 16.84% and 

13.91%, respectively. However, the mean value method produces a relative error of almost 70% for cracks 

smaller than 0.2 mm, and produces that of nearly 30% for the cracks greater than 0.2 mm. As a result, the 

proposed method is effective in measuring both thin and thick crack widths, and is more accurate than the 

previous mean value method at these 57 positions. However, it should be mentioned that more verifications 
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of this algorithm are necessary in the future.  
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Figure 4.16 Relative error of those two methods, broken down by crack width of 0.2 mm 

(2) Crack width distribution 

 

(a) 

 

(b) 

 

(c)  

Figure 4.17 Superimposed images of crack width distribution: (a) front; (b) back; (c) bottom 

Figure 4.17 shows the crack width distribution at the front, back, and bottom of a beam obtained by the 
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developed application and algorithm. These three images were taken and calibrated after the beam failed in 

a bending test. Various crack shapes can be found in these images. Different from previous studies [7, 9] 

that use the mean width of a crack as its width, the proposed algorithm can calculate the crack width at 

each position along the crack, as can be clearly seen from Figure 4.17. In addition, these three images can 

be stitched to provide a 3-D visualization of the beam, as described in (4) of this section.  

(3) Crack direction statistics. 

Field inspections require determining the locations and orientations of cracks. Therefore, after the cracks 

are identified, the crack orientations can be counted to obtain the statistical characteristics of the crack 

orientation distribution in polar coordinates. Figures 4.18 (a), (b), and (c) show the counted results for 

Figures 4.17 (a), (b), and (c), respectively. In Figure 4.18, the crack orientation distributions of the 

corresponding image can be clearly determined. In addition, if the raw images of the same component are 

collected in chronological order, a crack propagation trace can be inferred by combining the findings in 

Figures 4.17 and 4.18.  

  

    (a)                      (b)                         (c) 

Figure 4.18 Cracks directions statistics from Figures 4.17 (a), (b), and (c) 

(4) 3-D visualization 

If the cracks on each surface of a component are obtained, the developed application can present and 

analyze the surface damage in 3-D [7, 10]. The results of the images in Figure 4.17 are stitched to generate 

a 3-D model of a beam. Figure 4.19 shows cracks on the front and bottom faces, respectively.  

 

Figure 4.19 3-D visualization of a beam 

Obviously, the magnitudes and orientations of cracks can be intuitively observed based on the cracks 

directions statistics in 3-D visualization. Based on this model, additional information (such as crack 

density) can be calculated to determine the severity of cracks and cracking patterns. If the crack 
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information are provided and shown in the 3-D model of Figure 4.19 in chronological order, the model can 

be used for tracking the crack development at various stages of loading. In the real world, images collected 

from inspections can be analyzed and projected onto the 3-D model of the structure. Infrastructure 

managers can be notified when the crack exceeds limitations, or can formulate intervention strategies 

according to crack propagation patterns, thereby facilitating the effectiveness of the management.  

4.4. Discussion and future work 

4.4.1 Practical application results 

Once the proposed model is put into use in structures, it is possible to detect and quantify cracks based 

only on digital images. Thus, the inspection efficiency and reliability are enhanced. However, from the 

viewpoint of practical applications, it is not feasible for the developed model to extract any object 

attributes from any image. To further describe the applicable range of the proposed model, Figure 4.20 

shows some complicated images that will cause the classifier to fail in detection. Failure detections are 

distributed at: (i) the interface between the backgrounds and infrastructure (Figures 4.20 (a) and (b)); (ii) 

the bonding position between the elder and fresh cement (Figure 4.20 (c)); (iii) the long-thin void (Figure 

4.20 (d)); (iv) the linear growth traces of shellfish (Figures 4.20 (e) and (f)); and (v) sub-images with tiny 

cracks (Figure 4.20 (g)) or without sufficient illumination (Figure 4.20 (k)). The failure of the trained 

classifier in these situations can be traced to the fact that there are insufficient similar sub-images in the 

training dataset.  

    

(a) (b) (c) (d) 

    

(e) (f) (g) (k) 

Figure 4.20 Failure of detection by the trained classifier. 

In addition, some sub-images with cracks can be correctly detected by the classifier, but these sub-images 

are difficult to be further processed for the developed application, owing mainly to uneven illumination 

and thin cracks. In Figure 4.21 (a), only the crack pixels with good illumination can be determined by the 

developed application. For the thin cracks, only some scatter debris can be obtained (Figure 4.21 (b)), or 

only a part of the pixel is retrieved (Figure 4.21 (c)). These drawbacks can be avoided to some extent by 

providing images with higher resolution and better illumination, or by improving the developed 
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application.  

Original 

 

   

CNN+ 

Developed 

application 

 

   

 (a) (b) (c) 

Figure 4.21 The superimposed images by the trained CNN and the developed application. 

Furthermore, the neighborhood scanning method was proposed for identifying all crack regions from a raw 

image. However, the second scanning depends largely on the accuracy of the first scanning. In other words, 

the second scanning may fail if some positions are misjudged in the first scanning. The neighborhood 

scanning method takes less time than the dual scanning method, and can detect the union of the crack 

regions that is almost the same as the dual scanning method. However, the former method is inferior to the 

latter method in detecting the sub-images with edge cracks. In addition, it is difficult to determine the 

optimal size of the scanning window, as the testing images may have various sizes and scales. Although the 

proposed algorithm outperforms the mean width method, the effectiveness of this algorithm is affected by 

the performance of the crack segmentation. A 3-D model is established using the images from a beam after 

failure, but no images at various stages of loading are used to verify the applicability of the model to 

observe the evolution of crack patterns. In addition, the original image still requires calibration to correctly 

calculate the crack width and other crack characteristics. We hope that these limitations can be resolved by 

improving our model.  

4.4.2 Comparison with other studies 

The developed model is a semi-automatic method. Specifically, the trained CNN classifier can 

automatically identify the crack regions. Then, the developed application can be run automatically or 

manually to quantify cracks. Compared with the traditional image classification CNN which only realizes 

crack detection, this model can not only realize crack detection, but also quantify cracks. In addition, the 

CNN classifier and the developed application can be used independently to suit the demands at various 

phases. Although the model is not as automated as semantic segmentation, it reduces the cost of building 

the pixel-level annotation databases for deep learning training. Kang et al. [11] proposed a similar two 

steps method. In this two steps method, three independent algorithms including Faster R-CNN, modified 

TuFF, and modified DTM are integrated. The integration and modification of this hybrid method is 

superior to our model in two points: (i) this hybrid method is more automated than our model; (ii) the 

performance of crack segmentation by this hybrid method is improved compared with that of our model. 
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However, our model shows advantages in three aspects: (i) the two parts of our model can operate 

independently, and can provide more crack information except for crack width and crack length; (ii) the 

calculated results of crack properties are shown in mm instead of pixels; (iii) verification images are more 

complex than those of Kang et al. (most images contain only one crack).  

Furthermore, our model takes less time, and is not inferior to a previous pixel-level crack segmentation 

framework [5]. Therefore, it can be concluded that the model proposed in this study is a cost-effective 

solution for crack detection and analysis.  

Although the crack identification model is tested on 23 complex images from both onsite and experiment, 

this study is only the first step in building a robust model. Because not all possible crack patterns, 

background materials, textures and color appearances are included in the database. Therefore, an important 

part of the required work is to enlarge the database to include a wider variety of crack patterns and 

background characteristics. Another task is to improve the proposed model by verifying with more 

examples, by tuning hyperparameter, and by modifying the proposed algorithm. In the future, other 

classifiers will be developed to detect various types of superficial damage, such as voids, spalling, and 

corrosion. In addition, the model is expected to collaborate with the bridge management systems (BMSs) 

to facilitate the processing of inspection images, as manual processing of onsite inspection images is time 

consuming and costly. Furthermore, the information obtained by our model can be used to understand the 

preliminary situation of a bridge, and can provide the basis for detailed investigations if any abnormalities 

exist.  
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Chapter 5 

Collaborated BIM platform for prediction-based maintenance 

 

5.1 Overview 

In this chapter, a collaborative Building Information Modeling (BIM) platform was established and 

verified by case studies. The procedures to establish this platform is shown in Figure 5.1. Specifically, the 

procedures include five steps: (i) to select the targeted bridges; (ii) preparations; (iii) onsite information 

collection; (iv) to build the 3-D prototype models; (v) and to formulate a collaborated Building Information 

Modeling (BIM) platform. This collaborated platform is finally used to visualize the damages of bridges 

intuitively, and to assist the managers or local authorities in scheduling the intervention timing and 

formulating maintenance strategies. These steps will be detailed below.  

 

Figure 5.1 Flowchart of Chapter 5 

 

5.2 Information acquisition 

5.2.1 Overview of targeted bridges  

Since many bridges were included in the inspection database, bridges are needed to be onsite inspected in 

batches while building the collaborative BIM platform. Considering the accessibility of the bridges by 

bicycle and the feasibility of inspecting these bridges, five bridges were selected as preliminary targets to 

establish collaborative BIM platform to verify the feasibility of the platform. Table 5.1 shows the detail 

information for the selected bridges, and Figure 5.2 shows the locations of these bridges. The dark-marked 
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region in Table 5.1 is the deterioration grade evaluated by the engineers. These bridges have different sizes, 

structure types, and deterioration situations. Bridge type indicates the types of decks. 

Table 5.1 Detail information for the targeted bridges 

Bridge No 1703 1704 1708 853 854 

Bridge type RC PC Steel Steel Steel 

Length (m) 5.25 15.4 132.2 135.9 135.9 

Width (m) 25 21 28.5 18 12 

Deck area (m
2
) 131.25 323.4 3767.7 2446.2 1630.8 

Elevation (m) 19.8 19.9 17 15 14 

Carbon dioxide (ppm) 397.027 354.868 359.087 397.03 397.03 

Airborne chloride (kg/m
3
) 0 0 0 0 0 

Rainfall (cm) 1213 1213 1213 1213 1213 

Snowfall (cm) 465.56 487.28 489.20 470.88 470.88 

Highest temperature (C) 26 26 26 26 26 

Lowest temperature (C) -6 -6 -6 -6 -6 

Traffic volume (daily) 34049 32181 56176 29362 29365 

Large-size vehicles (daily) 3337 4068 5872 4380 4384 

Years in service (years) 8 56 50 6 2 

Deterioration grade 1 3 3 2 2 

 

 

Figure 5.2 Locations of bridges listed in Table 5.1 
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5.2.2 Preparations and cautions 

Some preparations should be made before going onsite to undertake inspections. Firstly, the exact locations 

of these bridges should be marked on the map, as shown in Figure 5.2. Secondly, some tools are required 

to measure the sizes of components and the sizes of cracks, as shown in Figure 5.3.  

The tape measure was usually used to measure the sizes of the flat surface of components. The 

Polypropylene (PP) string and the soft tape measure were used together to measure the sizes of the arc 

surface of components (such as the perimeter of the pier) or the length of a crack. In addition, the tape was 

applied to fix the PP string in measuring. The crack width was measured using the crack scale. All the 

images were taken with mobile phones. The compass and gradienter in the mobile phone can be used to 

confirm the orientation of the components. A Bluetooth selfie stick was applied to capture images of 

components taller than a person. Figure 5.4 shows some measuring examples of onsite inspections.  

 

Figure 5.3 Tools used to collect onsite information for the targeted bridges 

 

Figure 5.4 Examples of onsite measuring 
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5.2.3 Onsite information collection 

Using the tools shown in Figure 5.3 and the measuring methods shown in Figure 5.4, we measured the 

sizes of the components of the five selected bridges, and checked the crack damages on these components. 

Figure 5.5 shows the parts from where images are collected. (a), (b), (c), and (d) are refer to the bridge 

1703, 1704, 1708, and 853& 854, respectively. Components without obvious damages were not inspected. 

Details for each bridge were described below.  

 

Figure 5.5 Explanation on bridge components (a) 1703, (b) 1704, (c) 1708, and (d) 853& 854 

(1) Bridge 1703  

Bridge 1703 has a reinforced concrete (RC) deck and is located in downtown. No obvious cracks were 

found in the structural components of this bridge. For bridge 1703, ten cracks were collected in north 

parapets, and twelve cracks were collected in south parapets. Typical cracks for the north and south side 

parapets are shown in Table 5.2. Most cracks have a width less than 2mm, and have a length less than 0.7m. 

Since these cracks are not in the structural components, such as the deck, they are not critical to influence 

the safety of this bridge. Therefore, this bridge was evaluated being grade 1 by the engineer. 

Table 5.2 Details on partial cracks for bridge 1703 

Component No Image Crack width(mm) Crack length(m) 

Parapets(North) 1 

 

2.00 0.70 

(a) (b) 

(c) (d) 

Parapets (North) 

Parapets (South) 

Abutment (A) 

Abutment (B) 
Parapets (A) 

Parapets (B) 

Abutment (A) 

Abutment (B) 

Pier (1) 

Pier (2) 

Abutment (B) 

Abutment (A) 

Pier (1) 
Pier (2) 

Pier (3) 
Pier (4) 
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Component No Image Crack width(mm) Crack length(m) 

2 

 

1.30 0.70 

3 

 

0.65 0.33 

Parapets(South) 

1 

 

0.85 0.59 

2 

 

0.5 0.19 

3 

 

1.5 0.7 

(2) Bridge 1704 

Bridge 1704 has been in service for almost 60 years, and is an important part of Japan national road 12. 

Parapets and abutments of this bridge were inspected, as shown in Figure 5.5. Table 5.3 shows some cracks 

of these components. The cracks on the parapets are less than 1.4 mm width and less than 0.5 m length. 

Since the parapets are not the structural components, cracks on the parapets will not threaten the soundness 

of the bride. However, the crack on the abutment wall runs through the entire height of the abutment. 

These cracks are important to affect the deterioration and safety of the bridge. Heavy traffic volume is 

considered the reasons for these cracks, because the daily average traffic volume is more than 55, 000. 

Locations of these cracks can refer to the established model (Figure 5.11). 
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Table 5.3 Details on partial cracks for bridge 1704 

Component No Image Crack width(mm) Crack length(m) 

Parapets (A) 

1 

 

1.4 0.15 

2 

 

0.85 0.50 

3 

 

1.90 0.50 

Parapets (B) 

1 

 

0.80 0.50 

2 

 

0.70 0.51 

3 

 

1.2 0.178 
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Component No Image Crack width(mm) Crack length(m) 

Abutment (A) 

1 

 

0.2 3.0 

2 

 

0.25 2.5 

3 

 

0.9 3.0 

Abutment (B) 

1 

 

0.30 3.5 

2 

 

0.35 3.5 

3 

 

0.3 4.5 

Except for the cracks, water leakages were found on the abutment walls, as shown in Figure 5.6. There are 

many reasons for concrete water leakage, such as the use of poor graded aggregate, overdose of admixtures, 

deviations from designated mix. Since it is difficult to quantitatively evaluate this kind of damage using the 

tools shown in Figure 5.3, water leakages is not considered in this study.  



Chapter 5 Collaborated BIM platform for prediction-based maintenance 

103 
 

 
Figure 5.6 Water leakage of bridge 1704 

 

(3) Bridge 1708 

Bridge 1708 is a crucial part of Japan national road 36, and has been in service for 54 years. Cracks on the 

abutment and the two piers were collected, as shown in Table 5.4. Three cracks were found for the 

abutment (A) and no obvious cracks were found for the abutment (B). The cracks on abutment (A) are less 

than 3.0 mm width and 0.3 m length. These cracks have little effect on the soundness of the bridge 

considering their locations (Figure 5.14 ③). However, the cracks on Pier (1) and Pier (2) run through the 

entire length of the piers. All cracks are loner than 2.0 m; some cracks are even as long as 6.0 m. The 

propagation of these cracks should be paid more attention. The heavy traffic volume and the natural 

deterioration of materials are considered the two reasons.  

Except for the cracks collected from the concrete components of the bridge 1708, damage such as 

corrosion were also found for the steel components, as shown in Figure 5.7. The investigation found that 

the corrosion of the north side bracket was serious than that of the south side bracket.  

  
(a)                                  (b) 

Figure 5.7 Corrosion of the bracket on the (a) north side and (b) south side. 

To investigate the reasons for the corrosion differences, the wind directions were first counted. Figure 5.8 

(a) shows the statistics of wind directions in Sapporo, the meteorological information were collected from 

Japan Meteorological Agency [1]. The red bar in Figure 5.8 (b) indicates the orientation of the bridge 1708. 

The wind in Sapporo mainly blows from the northwest and southeast directions. In addition, both the mean 

northwest and southeast wind in Sapporo belong to gentle breeze according to the Beauport scale [2]. 

Considering the orientation of the bridge, the wind direction is not the reason for the corrosion difference 

between the south and north sides of the bridge bracket. One interesting finding is that the wind blows 
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from the northwest direction from December to April, and from the southeast direction from May to 

September. More information is necessary to determine the reasons for the differences in corrosion. 

 

(a)                                        (b) 

Figure 5.8 (a) Statistics of wind directions in Sapporo; (b) the orientation of the bridge 1708 

 

Table 5.4 Details on partial cracks for bridge 1708 

Component No Image Crack width(mm) Crack length(m) 

Abutment (A) 

1 

 

2.0 0.30 

2 

 

2.9 0.20 

3 

 

2.4 0.20 
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Component No Image Crack width(mm) Crack length(m) 

Pier (1) 

 

 

1 ○1  0.6 5.0 

2 ○2  0.6 5.7 

3 ○3  0.6 6.0 

4 ○4  0.5 5.0 

5 ○5  0.5 6.0 

Pier (2) 

 

 

1 ○1  0.3 3.5 

2 ○2  0.7 5.2 

3 ○3  1.2 3.5 

4 ○4  0.5 2.0 

 

(4) Bridge 853 & 854 

Table 5.5 Crack details for bridge 853 & 854 

Component No Image Crack width(mm) Crack length(m) 

Abutment (A) 

1 

 

2.5 0.30 

2 

 

2.5 0.20 

1
2 3

54

1
2 3 4
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Component No Image Crack width(mm) Crack length(m) 

3 

 

2.5 0.30 

Abutment (B) 

1 

 

4.0 0.30 

2 

 

2.0 0.30 

3 

 

2.0 0.30 

Pier (1) 

1 

 

0.2 2.0 

2 
 

0.2 4.0 
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Component No Image Crack width(mm) Crack length(m) 

3 

 

0.2 3.0 

Pier (2) 

1 

 

0.15 1.8 

2 

 

0.15 1.5 

3 

 

0.15 2.0 

Pier (3) 

1 

 

0.10 0.2 

2 

 

0.10 0.5 
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Component No Image Crack width(mm) Crack length(m) 

3 

 

0.1 0.3 

Pier (4) 

 

 

1 ○1  0.15 0.9 

2 ○2  0.15 1.8 

3 ○3  0.15 1.3 

4 ○4  0.15 0.4 

5 ○5  0.15 0.4 

6 ○6  0.15 0.5 

 

Table 5.5 summaries some cracks collected from the abutments and piers of bridges 853& 854. These two 

bridges are the important part of Japan national road 12 with different driving directions. Since these two 

bridges have been in service less than 10 years, no serious deterioration occurred. Compared with bridge 

1708, the cracks on the abutments of bridges 853 and 854 are more serious, with a maximum width of 4.0 

mm and a length of 0.3 m. These cracks considered not significant affect the bridge’s safety, considering 

the locations of these cracks (Figure 5.15 ① and ⑥). In addition, the cracks on these two bridges’ Piers 

have a width less than 0.15 mm and a maximum length of 1.8 m, i.e., not more serious than bridge 1708 

(with minimum 0.3 mm crack width and maximum 6.0 crack length). However, the propagation of cracks 

on piers should be paid more attention. The heavy traffic volume is considered the reason to make the 

cracks, and the bridge was evaluated being grade 2.  

Different from Bridge 1708 whose north side steel brackets were corrode seriously, almost no corrosion 

were found for the steel components of the bridge 853 & 854. One major reason is that bridge 853 & 854 

has only been in service less than 10 years, while bridge 1708 was more than 50 years old.  

1

2 3
4

5

6
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5.3 Establishment of 3-D prototype model 

Using the collected information from onsite inspection and the information recorded in Bridge Yearbook 

Database [3], we established the 3-D prototype models for the five targeted bridges using the SketchUp, as 

shown in Figures 5.9 to 5.12. The established models are 1:1 with the real existing bridges. In each figure 

from Figures 5.9 to 5.12, views of corresponding bridge from different perspective were shown. In 

addition, some parts of the models were enlarged to offer more details. Cracks from the onsite inspection 

can be located to the exact position of the components to intuitively visualize the distribution of these 

cracks in 3-D. Details were shown in Section 5.4.1. 

 

Figure 5.9 Established 3-D model for bridge 1703 

 

(a) 

(b) 
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Figure 5.10 Established 3-D model for bridge 1704 

(a) 

(b) 
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Figure 5.11 Established 3-D model for bridge 1708  

(a) 

(b) 

 

(c) 
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Figure 5.12 Established 3-D model for bridge 853 &854 

 

5.4 Collaborated BIM platform  

5.4.1 Integration of cracks to the 3-D models 

In previous sections, the crack information was collected and the 3-D prototype models for five bridges 

were established. In addition, the crack images were collected from onsite inspection. The positions of 

these cracks will be detailed combined with the established 3-D models. Although the collected images 

contain cracks, it is unreasonable to just paste the image on the surface of the 3-D models; because 

quantitative crack information cannot be obtained directly from these images. One possible method is to 

extract crack pixels and stick them onto the surface of the model. The developed crack identification model 

can help to achieve this purpose efficiently (Chapter 4). Specifically, the crack pixels were first extracted 

by the crack identification model. Then, these cracks were adjusted to the same size as they actually are, 

based on the values measured by the crack scale. Next, these cracks were save as image format of *.png, 

(a) 

(c) 

  

  

  

(b) 
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because this format has a transparent background. Finally, these *.png images were located to the 

corresponding components. Figures 5.13 to 5.16 are refer to the five targeted bridges. The model clearly 

shows the crack information, which engineers can use to determine if the crack will affect the soundness of 

the bridges. Except for the crack information such as crack width and crack length, the 3-D model can be 

used to determine the density of cracks. Cracks situation of each model will be detailed below.  

 
Figure 5.13 Crack details for bridge 1703 

 

Figure 5.13 shows the locations of cracks summarized in Table 5.2. For bridge 1703, the cracks are located 

in the parapet wall of the bridges, and no obvious cracks in the structural components were investigated. 

The average crack length is 0.535 m, and average crack width 1.13 mm. As a result, these cracks are not 

crucial to the bridge's soundness. If cracks are collected in chronological order, the evolution of the cracks 

propagation can be observed.  

Figure 5.14 shows the locations of cracks summarized in Table 5.3. For bridge 1704, the cracks are located 

in the parapets of the bridges (④ and ⑤), and abutment walls (①, ②, and ③). Cracks in the parapets 

contribut little to damage the bridge. However, the cracks propagate to a length that almost same with the 
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height of the abutment. For the cracks on abutment walls, the average crack length is 3.33 m, and average 

crack width 0.38 mm. In addition, the positions of water leakage were marked with blue dot. 

 

Figure 5.14 Crack details for bridge 1704. 

The locations of cracks summarized in Table 5.4 is shown in Figure 5.15. For bridge 1708, the cracks are 

located in the abutments of the bridges (③), and piers (① and ②). Cracks on the abutments are not 

critical to affect the soundness of this bridge. Cautions should be given to the cracks on piers. These cracks 
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have an average crack length of 4.66 m, and average crack width of 0.61 mm. In addition, the positions of 

corrosions were marked with yellow dot (④).  

 

Figure 5.15 Crack details for bridge 1708. 

Figure 5.16 shows the locations of cracks summarized in Table 5.5. For bridge 853 & 854, the cracks are 

located in the abutments of the bridges (① and ⑥), and piers (②, ③, ④ and ⑤). The cracks on 
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abutment have an average length of 1.28 m and an average width of 2.58 mm. For the cracks on abutment 

walls, the average crack length is 1.37 m, and average crack width 0.15 mm. Different from bridge 1708, 

the steel brackets for this bridge are not corroded.  

 

 

Figure 5.16 Crack details for bridge 853 & 854 

5.4.2 Deterioration estimation of targeted bridges  

Using the deterioration models of LSTM-based RNN and MC established in Chapter 3, the deterioration 

progresses of these five bridges were estimated, as shown in Figure 5.17. In addition, the assessed 
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deterioration grades by the engineers were displayed as blue-dot in the graphs.  
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Figure 5.17 Estimated deterioration progress for bridges (a) 1703, (b) 1704, (c) 1708, (d) 853, and (e) 854 
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Figure 5.18 Estimation of factor’s importance for bridges (a) 1703, (b) 1704, (c) 1708, (d) 853, and (e) 854 
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Since bridge 1703, and bridge 853 & 854 were evaluated being grade 1 and grade 2, respectively, the 

deterioration progress can be applied to predict the deterioration situations of these three bridges. 

Differently, bridge 1704 and bridge 1708 have been deteriorated to grade 3; therefore, their deterioration 

progresses can be applied to verify the observations in a much wider scale.  

For bridge 1703, the LSTM corresponds well to the observations. In addition, the LSTM and the MC 

model estimated that the bridge takes 37 years and 43 years to deteriorate to grade 3. Similarly, the RNN 

corresponds well to the assessed grades for the bridge 853 & 854. The LSTM estimated bridge 853 will 

deteriorate to grade 3 at 30 years, and the MC estimate the bridge will deteriorate to grade 3 at 38 years. 

For bridge 854, the LSTM estimated the bridge will deteriorate to grade 3 at 31 years, and the MC 

estimated the bridge will deteriorates to grade 3 at 37 years.  

For bridge 1704, the LSTM is in good agreement with the observed values. The LSTM and the MC model 

estimated the bridge deteriorated to grade 3 at 40 years (in 2000) and 60 years (in 2021), respectively. 

Obviously, the results obtained by the MC deviated from the actual situation. For bridge 1708, the LSTM 

corresponds well to the observed values. The LSTM estimated the bridge deteriorated to grade 3 at 38 

years (in 2004), and the MC estimated the bridge deteriorated to grade 3 at 48 years (in 2014). Since no 

more observations were obtained, the optimal model between these two models cannot be determined.  

5.4.3 Estimation of factor importance for the targeted bridges  

Using the sensitivity analysis (Shapley value) method mentioned in Chapter 3, the importance of each 

factor was also estimated, as shown in Figure 5.18. The results indicate that traffic volume and years in 

service (bridge age) are the two most important factors; other four factors have relatively smaller influence 

to the deterioration. Since bridge 1703 and bridge 853 & 854 are less than 10 years old, the traffic volume 

is considered the most important factors. Conversely, bridge 1704 and bridge 1708 have been in service for 

more than 50 years, years in service and traffic volume are considered the two most important factors. 

Essentially, the natural degradation of the materials and the fatigue caused by the heavy traffic are 

considered to be the major reasons for the deterioration. The estimated deterioration progresses, estimated 

importance of factors, the extracted crack pixels, and the 3-D model of these bridges were integrated to 

form a collaborated BIM platform, based on which the corresponding maintenance strategies can be 

formulated, as described in Section 5.5.  

5.5 Formulation of the maintenance strategies and discussions 

5.5.1 Formulation of the maintenance strategies 

According to the estimated deterioration progress, factors’ importance and bridges’ current situations, 

different maintenance strategies can be conducted, as illustrated in Figure 5.18. If preventive maintenance 

strategies are planned for bridges, these bridges should be repaired before or when they deteriorate to the 

grade 3 (Early action required). Conversely, bridges are need to be repaired when they are deteriorate to 

grade 4 (Emergency action required) if corrective maintenance are planned to these bridges.  

Bridge 1703 was evaluated being grade 1 in the latest inspection. No obvious cracks were found for the 

structural components of this bridge. According to the estimated deterioration progress, this bridge will 

deteriorate to grade 3 at 42 years. In addition, the traffic volume was estimated to be the major factors 

threaten the deterioration of this bridge. Furthermore, this bridge has a length 5.25 m and a width 25 m. 

Therefore, preventive maintenance is suggested to keep the soundness of this bridge. In addition, routine 
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cautions should be given to the fatigue of the RC deck of this bridge.  

 

Figure 5.19 Formulation of maintenance strategies. 

Similarly, bridges 853 and 854 have been in serviced for less than 10 years. They were assessed being 

grade 2 in in a recent inspection because of numerous cracks in their four piers and abutments (Figure 

5.13). Both these two bridges will deteriorate to grade 3 in about 30 years of service, according to the 

estimated deterioration progresses (Figure 5.14). In addition, traffic volume was determined to be the most 

important factor affecting the deterioration. These two bridges are more than 100 meters long and they are 

key parts of the national highway 12. Therefore, preventive interventions should be conducted when these 

two bridges deteriorate to grade 3. In addition, the propagation of these cracks should be cautioned, 

especially after the bridge deteriorated to grade 3.  

Different from previous three bridges, bridges 1704 and 1708 have been in service for more than 50 years, 

and have been in grade 3 for many years. Bridge 1704 is serviced more close to 60 years till now, cracks 

propagate to a length that almost same with the height of the abutments (Figure 5.11). In addition, leakages 

were discovered along the abutment walls. The natural deterioration of materials and the traffic volume are 

considered the two most important factors to cause the deterioration. Early interventions are suggested to 

be conducted to this bridge as soon as possible. One good thing is the recent plans to repair the girder [4]. 

Bridge 1708 has been in service for 54 years till now, and also evaluated being grade 3 for many years. In 

addition, this bridge has a mean daily traffic volume of more than 55,000. Conforming to the practical 

situation, the traffic volume and years in service are estimated to the most important factors. In addition, 

the steel brackets were corroded seriously (Figure 5.7). The steel brackets are necessary to be repainted as 

soon as possible. Therefore, early interventions are also suggested to be carried out. Fortunately, the girder 

of this bridge will be inspected and repaired at 2021 [4]. It is believed these two bridges will be maintained 

properly. 

In summary, the collaborative BIM platform can visualize inspection information including cracks in 3-D. 

In addition, the platform can provide the deterioration progresses and estimate the importance of factors 

affecting the bridge deterioration. Practically, this platform allows the managers to understand the severity 

of crack in each component of a bridge. If the crack information on a component is collected in 

chronological order, the evolution of the crack propagation can be observed. Further, the deterioration 

progresses enable the managers to formulate preventive maintenance or corrective maintenance schedules. 

The estimated importance provides the managers with clear reasons for the deterioration, and will facilitate 
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the formulation of corresponding maintenance strategies.  

5.5.2 Discussions 

The practical situation is complicated than imaginations, making difficult to obtain all information of each 

component including the size and materials according to onsite inspections. This difficulty makes the 

established 3-D models are not exactly the same with the design. In addition, some components were 

repaired or replaced during the service, this information cannot be directivity reflected in our model. One 

method is to cooperate with bridge design institutes and management departments to obtain as detailed as 

possible information regarding the design and maintenance of all components. This information can then 

be connected to the 3-D model to establish a database-based 3-D model. 

We provided deterioration situations for the whole bridge, but the deterioration varies from component to 

component. Therefore, the deterioration progress may deviate from reality for some components. Future 

work will endeavor to collect enough data for crucial component to establish deterioration models. In 

addition, some algorithms will also be improved to consider the variance of each component.  

Only cracks on the surface of the concrete components were marked, and other damages such as corrosion 

were not marked on the components because they were difficult to quantify. In addition, it is inefficient to 

update the information of these cracks when new information is collected [5]. A feasible method is to store 

the various damage images collected from the onsite inspection in a database, and then link the database to 

the bridges.  

Only the crack width and crack length are obtained using the crack identification model; crack depth 

cannot be obtained from the collected image, because the collected images only contains 2-D information. 

The crack depth is necessary to evaluate the severity of the cracks and the influence of these cracks on the 

soundness of each component. To obtain such information, the 3-D laser can be used to onsite inspections. 

Then, it is possible to build an automated evaluation system to relate the crack information to the severity 

of cracks.  

One inadequate is that the cost analysis and environmental impact analysis were not conducted in the 

collaborated BIM platform. Another limitation is that the onsite images are needed to be calibrated to 

obtain the detail information from the images such as the crack width and crack length. Algorithms will be 

developed and verified in the future to solve this issue. Since some locations are inaccessible for 

unauthorized persons, the damage situations were not collected and evacuated.  

In summary, future works will be implemented to collect more information by cooperating with the design 

institutes and the authorities, by using more information collection equipment, and by improving some 

algorithms. The collaborative BIM platform can also be shared across multiple fields, not only 

infrastructure maintenance. To achieve this purpose, the collaborated BIM platform could include more 

information, such as the locations of the sensors from other teams. In addition, the scope of the platform 

can be expanded by further taking in map and 3-D spatial information. Furthermore, the data sharing 

infrastructure can be obtained by making full use of "big data" processing technologies such as cloud 

computing, distributed computing, and parallel processing. 

There are also some limitations for the deterioration prediction models and the crack identification models. 

Discussions on the limitations of these models can be found in Chapter 3 and Chapter 4, respectively.  
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Chapter 6 

Discussions 

6.1 Overview 

We discussed each part in the previous chapters. This chapter gave general summaries of the study's 

accomplishments and shortcomings. Figure 6.1 shows the outline of this chapter. Details will be elaborated 

on: (1) how the work contributes to perform prediction-based maintenance of existing bridges, and (2) the 

shortcomings of the applied database, algorithms, and models. 

 

Figure 6.1 Overview of Chapter 6 

6.2 Achievements 

Using the inspection database including twelve potentially influencing factors and three deterioration 

grades, the Multilayer Perceptron (MLP), the Recurrent Neural Network (RNN), and the Markov Chain 

(MC) models were established. The MLP and RNN were first compared. The results indicate that the RNN 

outperforms MLP model in terms of accuracy, recall, precision, TNR, and F1 score, because the time 

dependences of time related factors were considered. Definitions regarding these indexes can refer to 

Section 2.8. Then, the RNN and the MC models were applied to the estimate the deterioration progresses. 

The deterioration progresses can be used to determine the remaining life, and can analyze the effects of 

external factors affecting the deterioration. These models will facilitate the managers to confirm the timing 

of interventions. 

The estimation of the factors’ importance enables the engineer to understand the reasons for deterioration. 

Therefore, the estimated importance list of these factors could assist the engineer in developing appropriate 

intervention strategies.  

Using the images collected from the onsite and experiment, a crack identification model was proposed to 

detect, segment, and analyze cracks from the raw images. The model makes it easier to process inspection 
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pictures. In addition, the information obtained by the model can be used to understand the preliminary 

situation of a bridge, and can provide the basis for further detailed investigations if any abnormalities exist. 

The 3-D models for five bridges were preliminary established using the onsite collected information and 

documentation-based information. Then, crack identification model extracted the crack pixels and located 

the crack pixels on the surface of the specific components. Additionally, the 3-D prototype model, crack 

identification model and the deterioration prediction were combined to form a collaborated BIM platform. 

This collaborated BIM platform makes the managers to visualize the damages including cracks in 3-D, to 

understand the deterioration over time, and to clarify the causes for the deterioration. 

The initial achievements in this study provided a foundation for further investigation into the deterioration 

prediction of other infrastructures to facilitate prediction-based maintenance. Then, we can integrate all 

these deterioration prediction models into the infrastructure management system (IMS) to enable managers 

or local authorities to better manage the infrastructure manage and formulate prediction-based intervention 

strategies for infrastructure. 

6.3 Limitations 

The applied inspection database includes twelve potentially influencing factors. However, the materials 

were not considered when predicting deterioration. For this reason, there are discrepancies between the 

study's analysis results and the practical. Additionally, several other factors are associated with 

deterioration but were not directly considered, such as the application of deicing salt, design strength, and 

intervention histories. Since the values of these factors are not fully captured in the inspection databases, 

the impacts of these factors were not considered.  

The variations in deterioration of various components of the same bridge were not taken into consideration. 

Even if the performance of the established LSTM model shows no noticeable differences for different 

types of bridges, a deterioration prediction model for each type of bridge is still required for better 

practical performance. In addition, the established LSTM and MC models can only predict the situation 

before grade 3; owing to bridges in grade 4 were not found in our database.  

In assessing a factor’s importance, the Shapley value method considers all possible influencing factors, but 

sometimes the calculated importance is unreasonable. Further, deviations exist in the calculated importance 

due to the deterioration grade is not a quantitative value.  

Although the LSTM model produced better results than MLP, the LSTM architecture is much more 

complicated. A long-term maintenance database on various factors was required to train an LSTM model. 

In practice, this is a huge project because the values of some factors were only collected every five years 

according to the inspection guideline. Furthermore, the proposed model was evaluated using a database 

containing data from past inspections. However, a good prediction model should be generalizable. This 

implies that the model in this study should fit future observations well but cannot be verified at this time.  

The established crack identification model is a semi-automatic solution, because manual participation is 

necessary to perform image calibration and parameter setting in the analysis of cracks. In addition, the 

model will fail to extract cracks for the images with complicated backgrounds, bad illumination, and hair 

thin cracks. Because the database does not cover all potential crack patterns, backdrop materials, textures, 

and colour appearances. 

The actual situation is more intricate than imagined, making it impossible to gather full information on 
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each component, including size and materials, depending on onsite inspections. Because of these 

difficulties, the current 3-D models are not precisely the same as the design. In addition, buildings and 

structures differ in use and age. These different conditions are influencing the type, quality and amount of 

available information, as well as the application of BIM in maintenance.  

In this study, only the concrete components were taken into account for estimating chloride ion penetration, 

carbonation, and crack damage. However, steel components are commonly used in actual engineering, 

limiting the applicability scope of this study's results.  
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Chapter 7 

Conclusions and recommendations 

 

7.1 Overview  

This chapter describes the conclusions and recommendations. Figure 7.1 shows the outline of this chapter. 

Firstly, the conclusions regarding five aspects are listed by bullets: (1) comparisons of the Multilayer 

Perceptron (MLP) and Recurrent Neural Network (RNN) in predicting deterioration; (2) the estimation of 

factors’ importance to understand the causes of deterioration; (3) the comparisons of the RNN and the 

Markov Chain (MC) by their deterioration progresses; (4) the performance of the crack identification 

model; and (5) the establishment of the collaborated BIM platform to manage the inspection information in 

3-D and to formulate prediction-based maintenance timing and strategies. Then, efforts will be enforced to 

improve the studies according to the limitations discussed in Section 6.3. In addition, the potential research 

topics in the future will be recommended. Details are explained below.  

 

Figure 7.1 Outline of Chapter 7 

7.2 Conclusions 

7.2.1 Comparison of MLP and RNN 

An LSTM-based RNN and a MLP model were established using the bridge inspection database, enabling 

earlier maintenance to be conducted by predicting deterioration conditions. From the verifications and 

comparisons, the following conclusions can be drawn:  

(1) The obtained LSTM model and the MLP model have an accuracy of more than 80% and 65%, 

respectively. In addition, the performance of the LSTM model outperforms an MLP model in 

predicting deterioration according to indexes of the F1 score, recall, TNR, and precision. The reason 

for LSTM’s better performance is because it considers the time dependence of time series data. 

Furthermore, the LSTM model shows the equivalent performance for the four types of bridges. The 

performance of the LSTM model for bridges in coastal region is slightly superior to that outside of 

coastal region. No significant differences in accuracy are determined between different deck areas. 
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(2) Using an inspection database containing time series of various influencing factors, the LSTM model 

can assess the cumulative effects of these factors, and can establish relationships between potential 

factors and deterioration grades. In practical applications, the LSTM model can provide the future 

deterioration progress for a specific bridge, given time series on these factors. Accordingly, a 

postponed or advanced intervention schedule can be formulated. This way of making decisions ahead 

of emergencies will help decision-makers improving the quality of maintenance management. 

(3) Error analysis found that the confusion of grades 1 and 2 bridges accounts for half of the failed 

predictions. In addition, the results showed that the factor of years in service (bridge age) is closely 

related to the percentage of incorrect predictions. Bridges that have been in service for more than 30 

years are prone to obtain incorrect predictions because historical interventions were implemented on 

those bridges but cannot be considered.  

7.2.2 Regarding the factor importance 

The comparisons of MLP and LSTM determined LSTM to be the optimal model between them. Then, the 

sensitivity analysis methods (including the Shapley value and Sobol indices) offered insights into the 

LSTM model to recognize the reasons for deterioration. The following conclusions can be derived from an 

inspection database's verification results: 

(1) The combination of neural network and sensitivity analysis can effectively avoid the uncertainty of 

factors on deterioration to some extent. In other words, the operation makes it possible to make 

predictions and lead to understand factors that significantly affecting deterioration. This combination 

will assist in formulating interventions accordingly for a specific bridge. 

(2) The potentially influential factors can be identified using the Sobol indices and Shapley value methods. 

These two methods show consistent for the five most important factors.  

(3) From the estimated importance of all potential factors, the factors relating to the years in service, 

carbon dioxide concentration, chloride ion concentration, the number of large-size vehicles, traffic 

volume, snowfall, and lowest temperature would accelerate deterioration. In addition, the analysis 

revealed that the structure type is another reason to induce deterioration differences. The sensitivity 

analysis also showed that the major variations in bridge deterioration between coastal and non-coastal 

locations are due to air-borne salt. 

7.2.3 Comparison of MC and RNN 

A typical probabilistic method-Markov Chain (MC) was proposed using the aforementioned inspection 

database. Then, the MC model was compared with LSTM in terms of: (i) the mean deterioration progresses; 

(ii) the deterioration progresses of different types of bridges; (iii) the deterioration progress of a specific 

bridge; and (iv) the influence of each factor on deterioration progresses. The following conclusions can be 

drawn from the verification and comparisons.  

(1) According to the established models, it is possible to estimate the deterioration progress of each bridge 

using inspection data with different inspection status and multi-influencing factors (such as structural 

characteristics, usage environment). These deterioration progresses can be used for estimating 

remaining life, and analyzing the effects of external factors affecting the deterioration. A better 

understanding of this information is essential for developing and implementing an effective bridge 

management strategy. 
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(2) The deterioration progress obtained by the LSTM model usually deteriorates to grade 3 faster than that 

of the MC model, indicating that LSTM predicts the occurrence of deterioration earlier. In addition, 

both the MC model and LSTM model predict that the PC and steel bridges are more durable than RC 

and steel & concrete composite bridges. 

(3) The influence of various factors on the deterioration progresses is able to be analyzed. The factors 

affecting the deterioration progress are the same as those found in the sensitivity analysis in Section 

7.2.2. 

7.2.4 Regarding the crack identification model 

A semi-automated model integrating a trained CNN classifier and a developed application was proposed 

and studied. The trained CNN classifier is capable of detecting cracks or intact regions from given raw 

images. The developed application can extract detailed crack information. A comprehensive analysis of the 

developed model in this study revealed the following conclusions:  

(1) Comparisons of the performances of the AlexNet, GoogLeNet, ResNet18, and VGG-16 

configurations using six metrics (including the metrics in Section 2.8 and time cost) indicated that the 

GoogLeNet was a suitable architecture for this study. Then, transfers learning and fully training of 

GoogLeNet were verified on our testing dataset and a public dataset SDNT2018, respectively. The 

results showed that the transfer learning GoogLeNet has relatively balanced performances on these 

two datasets, with accuracy of 96.69 % and 88.39%, respectively. In addition, the transfer learning 

GoogLeNet can correctly classify 96.03 % of cracks and 97.35% of intact regions in the testing 

dataset.  

(2) The proposed neighborhood scanning method has an accuracy of 95.33 % for cracks and 95.26% for 

intact regions, similar to that of the previous dual scanning method (with an accuracy of 95.17 % for 

cracks and that of 95.87% for intact regions). The neighborhood scanning method usually taken less 

time than the dual scanning method. However, the former was inferior to the latter in detecting the 

sub-images with edge cracks.  

(3) Practical comparisons of the neighborhood scanning method and the dual scanning method showed 

that both methods were susceptible to uneven illumination, complex backgrounds, and tiny cracks.  

(4) The verifications of the developed crack identification model and a previous pixel-level crack 

segmentation framework on 23 untrained raw images showed that these two approaches exhibited an 

80.40% and a 78.64% average Intersection over union (IoU), respectively. In addition, the developed 

model usually cost less time than the previous framework for the same raw image.  

(5) The proposed algorithm and the previous crack mean value method were used to calculate the crack 

width at 57 positions in the testing images. The results indicated that the average relative error of the 

proposed algorithm was 14.58% (0.05 mm), i.e., much smaller than a previous method having 36.37% 

(0.14 mm) error. 

(6) The developed application is capable of counting the statistical distributions of cracks and generating 

a 3D model of a structure object. Therefore, the developed application has the potential to be used to 

observe the evolution of crack patterns during beam bending test, or to analyze the images collected 

from onsite inspections.  
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(7) Overall, the results show that the developed crack identification model is a cost-effective solution for 

detecting and analyzing cracks on concrete surfaces, considering its practical performance and time 

cost.  

7.2.5 Regarding the collaborated BIM platform 

Deterioration prediction models and a crack identification model were proposed and verified in Chapters 3 

and 4, respectively. In addition, the 3-D prototype models were established for five bridges using the onsite 

collected information and documentation-based information. Taking these five bridges as examples, we 

integrated the deterioration prediction model, the crack identification model, and the 3-D models to 

generate a collaborative Building Information Modeling (BIM) platform. The case studies lead to the 

following conclusions: 

(1) Using the onsite collected information and documentation-based information, it is feasible to build the 

3-D prototype models. These models are 1:1 ratio with the actual bridges.  

(2) For the onsite images, the crack pixels can be extracted using the established crack identification 

model (Chapter 5) and can be located to the component surface of the 3-D model, enabling to visualize 

these cracks intuitively and manage the inspection information in 3-D.  

(3) The case studies for five bridges showed that the established deterioration model can be applied to 

predict the deterioration conditions. In addition, the significant affecting factors can be estimated by 

the sensitivity analysis. According to the predicted situations, the estimated factors importance and the 

crack situation on components, early interventions are suggested for two bridges to keep their sound.  

(4) In summary, the collaborative BIM platform has the ability to store inspection information in 3-D and 

to analyze the inspection data. This platform will assist engineer in comprehensively evaluating the 

situations of the bridges and to formulate corresponding intervention timing and strategies.  

 

7.3 Future potentials and recommendations 

In line with the discussions in Section 3.4.3, the primary constraints of the LSTM model are: (i) some 

factors have low data quality; (ii) the deterioration grades are qualitative values with subjective errors; and 

(iii) the validity of the models requires more verification. Therefore, the performance of the LSTM model 

will be improved by updating the model with more high quality data, and quantifying the deterioration 

grades in the future. In addition, other time series approaches, such as the Bayesian approach and Markov 

chain, will be verified and compared with the model in this study. 

For the MC model, detailed discussed are elaborated in Section 3.5.3. The main limitations are 

summarized as: (i) the lack of more high quality data; (ii) the obtained transition probabilities are not time 

dependent; and (iii) other assumptions of the MC model (for example, MC believes that the future 

condition depends only on the current condition; MC does not consider how long the structure has been in 

its current state and assumes that it has just entered this state). Future works will emphasis on collecting 

more high-quality data, modifying our models, and verifying the approaches on more databases. 

In assessing a factor’s importance, the Shapley value method considers all possible influencing factors; but 

sometimes the calculated importance is unreasonable because Shapley value method does not satisfy 

rational constraints. Therefore, one future work will endeavor to modify the factor importance estimation 

methods. An important feature of Sobol indices is that it is quite easy to measure directly. Sobol indices do 
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not match the Shapley value because they fail to allocate the total variance among input variables.  

Deterioration grade of the entire bridge can be estimated, but the deterioration varies from component to 

component. As a result, the deterioration progress of some components may not be consistent with reality. 

Future work will attempt to collect enough data for the key components to build a deterioration model. In 

addition, some algorithms will be improved to account for the differences in each component.  

In establishing the crack identifying model, failure detections were found when the image has complicated 

background, when the interface between the backgrounds and infrastructure exists, and when sub-images 

with tiny cracks or without sufficient illumination. The failure of the trained classifier in these situations 

can be traced to the fact that there were insufficient similar sub-images in the training dataset. In addition, 

some sub-images with cracks can be correctly detected by the classifier, but these sub-images were 

difficult to be further processed for the developed application, owing mainly to uneven illumination and 

thin cracks. Improving the segmentation algorithm was considered one feasible method to solve these 

problems. To improve the crack identification model, future work will update the model using more 

images with complicated background, and validate the proposed techniques on more practical and 

complicated images.  

Only the classifier for crack is established and verified in this study. In the future, other classifiers will be 

developed to detect various types of superficial damage, such as voids, spalling, and corrosion. Further, the 

proposed model could be combined with a bridge management system (BMS) to enhance efficiency and 

reliability of decision-making and management.  

The established 3-D models are not exactly same with the actual situation, as discussed in Section 5.5.2. In 

addition, the orientations of these cracks are not the same with actual situation, because it is difficult to 

confirm the perspective when collecting these images. Only the cracks are located on the surface of the 

concrete component, other damages like the corrosions are not located to the specific components because 

these damages are difficult to be quantitatively evaluated. Crack depth cannot be obtained from the 

collected image, because the collected image only contains 2-D information. Future works will be 

implemented to collect more information by cooperating with the design institutes and the authorities, by 

using more information collection equipment, and by improving some algorithms. The collaborative BIM 

platform is also expected to be combined with a database to store more inspection information and to be 

shared across multiple fields to facilitate the management of existing bridges.  

 

 

 




