
 

Instructions for use

Title CFD assisted quantitative flow measurement of Newtonian and non-Newtonian fluid flows

Author(s) Tiwari, Neetu

Citation 北海道大学. 博士(工学) 甲第14232号

Issue Date 2020-09-25

DOI 10.14943/doctoral.k14232

Doc URL http://hdl.handle.net/2115/86933

Type theses (doctoral)

File Information Tiwari_Neetu.pdf

Hokkaido University Collection of Scholarly and Academic Papers : HUSCAP

https://eprints.lib.hokudai.ac.jp/dspace/about.en.jsp


 

 

CFD assisted quantitative flow measurement of Newtonian and 

Non-Newtonian fluid flows 

 

 

A Thesis 

Submitted by 

Neetu Tiwari 

For the award of degree  

of 

Doctor of Philosophy  

In Engineering 

 

 

 

 

Division of Energy and Environmental system 

Hokkaido University 

August 2020 

Supervised by Prof. Yuichi Murai 

 



 

 i 

Abstract 

Distributions of velocity and pressure are important to understand the fluid flows of practical 

importance such as flow over bluff bodies, industrial flows and environmental flows. Velocity 

distribution can be measured in three dimensions by PIV (Particle image velocimetry) but direct 

measurement of pressure distribution is still impossible so several counter techniques have been 

proposed for pressure estimation from PIV in literature. These techniques allow simultaneous 

measurement of velocity and pressure non-intrusively, which also enables the measurement of 

forces on immersed structures. However, estimated pressure field often suffers from errors 

propagating from uncertainty of velocity measurement. Error in pressure estimation depends 

on spatial and temporal resolution of measurement, domain size, aspect ratio and boundary 

conditions. Through past efforts, pressure estimation had been well investigated for transparent 

Newtonian fluids. However, in industries, opaque and non-Newtonian fluids are commonly in 

usage and these are inseparable from our daily needs. Existing pressure estimation techniques 

based on PIV measurement are not valid for opaque fluids and Non-Newtonian fluids and no 

study is available in this area. Present study is the first attempt to introduce the pressure 

estimation techniques for opaque Newtonian, opaque non-Newtonian and transparent non-

Newtonian fluids. A novel irrotational correction framework is also proposed to provide curl 

free pressure field.   

In chapter 1, the background of research and basic theory are discussed followed by the 

objectives of this research work. In chapter 2, experimental arrangements and conditions are 

described. In chapter 3, a novel pressure estimation technique is discussed for opaque flows. 

PIV is substituted by UVP (Ultrasonic velocity profiler) for collecting velocity data due to its 

capability of measurement in opaque fluids. UVP can only give the velocity information in 1C-

1D (one component- one dimensional) which added a new challenge of pressure estimation 

because 1C-1D data is insufficient to estimate pressure from Navier-Stokes or Pressure Poisson 

equations. Hence, a unique filtering technique is developed by combination of FFT (Fast 
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Fourier transform) and POD (Proper orthogonal decomposition) coupled with Taylor frozen 

hypothesis to determine unknown component of velocity from equation of continuity. This 

algorithm is demonstrated in milk flow.   

In chapter 4, another pressure estimation algorithm is developed for transparent shear thinning 

fluids based on PIV measurements. Navier-Stokes and pressure Poisson equation cannot be 

used directly for pressure estimation in these flows so momentum equations modified with 

rheological model are used. Power law and Carreau-Yasuda models are compared. This 

algorithm was tested for cylinder flow in steady and unsteady cases. It was found that the shear 

thinning property works against the momentum diffusion. In unsteady cylinder flow, for slowly 

developing vortices, the present algorithm works, but for separated wake flow it is invalid. 

Generally, in Newtonian fluids, the pressure Poisson equation is very useful for unsteady flows 

but it is invalid for shear thinning fluid flow. Hence, a new pressure Poisson is derived for shear 

thinning fluids. However, this equation could not be utilized for pressure estimation because 

the spatial resolution of PIV is insufficient to solve new pressure Poisson equation which has 

four additional source terms consisting of viscosity and other higher order derivatives. This 

open problem is addressed in next chapter. Error propagation from uncertainty of velocity to 

pressure is analyzed by linear propagation analysis to understand the specific role of shear 

thinning in error propagation. It was found that the error propagation increases with error in 

viscosity, which indicates that the selection of rheological models and parameters are extremely 

important.   

In chapter 5, PIV is substituted by UVP for velocity measurement which can provide a better 

spatial resolution of velocity data which makes it suitable for new pressure Poisson equation. 

This gives the advantage of its application in unsteady and opaque fluid flows so a novel 

pressure estimation algorithm is developed for shear thinning opaque fluids using UVP. The 

new pressure Poisson equation for shear thinning fluids is solved for separated wake with UVP 

data to obtain pressure field. The alternating pattern of low-pressure regions in wake is 
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successfully reconstructed which assures the good performance of algorithm. In parametric 

study, it was found that the Strouhal number decreases with Reynolds number increment which 

is opposite of Newtonian fluids.  

In chapter 6, an irrotational correction method based on Helmholtz decomposition theorem is 

proposed for curl correction in estimated pressure gradient from velocity data. It utilizes the 

curl correction characteristic of Laplacian operator. It is applicable in pressure fields estimated 

from Navier-Stokes and pressure Poisson equation. Present method is tested in analytical field 

and experimental data of PIV. If Navier-Stokes is employed for pressure gradient estimation, 

present method can provide the error free pressure field without performing integration and 

saves the computational cost a lot. It also eliminates the necessity of velocity filtering 

techniques which often filter the information of true flow data.  

In chapter 7, conclusions of this work and future directions are discussed. 

 

Keywords: Particle image velocimetry, Ultrasonic velocity profiler, pressure estimation, flow 

over cylinder, non-Newtonian fluids, pressure curl correction 
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Chapter 1 

Introduction 

1.1 Background 

The understanding of fluid flow and its interaction with solid structures are important due to 

their practical application in designing machines, optimizing the industrial process and 

understanding various natural processes. For example: designing high speed trains, bridges and 

aircrafts, ocean risers and mooring lines which are at risk of failure due to fluctuating forces 

while bringing oil in platform from seabed and industrial production, maintenance and 

transportation. The impact of natural disaster such as typhoon, storms and Tsunami can be 

predicted through understanding of fluid flows. The information of primitive flow variables e.g. 

velocity, pressure and temperature along with their distributions and fluid properties like 

viscosity (distribution) in case of non-Newtonian fluids is crucial to understanding of fluid 

flows. Present thesis offers new hybrid experimental techniques to provide a complete 

understanding of primitive fluid flow variable in opaque fluids and Non-Newtonian fluids 

which has not yet been measured in detail. These techniques will have wide applications 

ranging from food engineering, marine engineering and safety engineering to environmental 

engineering.  

Fluid flows are usually studied either by experimental techniques or computational fluid 

dynamics. In experimental technique, the quantitative information of fluid flows is obtained by 

measurement of velocity or pressure either at a point, along a line or in a plane. Hot wire 

anemometers, acoustic doppler velocimetry are limited to point measurement of velocity. Flow 

visualization techniques such as PIV (Particle image velocimetry) allows non-intrusive 

measurement of velocity (Willert and Gharib 1991) (Adrian 1991) (Adrian 2005). With 

continuous improvement of PIV in last few decades, velocity measurements have improved a 

lot. A dual PIV system (Liu and Katz 2006) can be employed for two-dimensional measurement 
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whereas multiple PIV systems can be combined for three-dimensional velocity measurements 

(Elsinga et al. 2006). PIV can provide the velocity information in 2D and even in 3D by Tomo-

PIV. 

Pressure measurement can be done using piezoelectric transducers or microphones which can 

measure pressure at a point. Pitot tube is intrusive in nature and is limited to give mean pressure 

information due to its poor time resolution. Microscopic air bubble as static pressure sensor was 

used in some studies but their applicability is limited to some flows and it cannot provide 

pressure field simultaneous to velocity. Pressure sensitive paints (PSP) can provide 2D pressure 

information at a solid surface over which fluid flows but can-not be applied to fluid volume.  

Instantaneous static pressure field is known to be most difficult to measure and none of these 

techniques appears to be suitable for direct measurement of pressure distribution. On the other 

hand, CFD (Computational fluid dynamics) method allows us to get the complete information 

of these variable in 2D or 3D, nevertheless, it is based on modeling a natural phenomenon and 

needs to be validated with comparative experiments. In CFD method, flow governing equations 

are solved which follows mass and momentum conservation laws. Generally, RANS (Reynolds 

averaged Navier-Stokes), LES (Large Eddy simulations) or DNS (Direct numerical 

simulations) are performed to simulate the fluid flows of practical importance. The solution of 

RANS and LES are affected by applied model’s characteristics, on the other hand DNS is most 

efficient due to least modeling assumptions but is excessively costly and mostly impractical for 

high Re flows.   

To obtain the information of pressure distribution in the flow, data assimilation technique, 

which combines the theory of modelling with experimental observations can be utilized which 

has been applied to many practical problems (van Oudheusden 2013). The forces on immersed 

objects can be determined by momentum and impulse formulations of control volume 

principles by utilizing this pressure distribution information.  The pressure estimation from flow 

visualization was first reported by (Schwabe 1935). A cinematographic camera was used to 
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capture images of flow embedded with tracer particles at various times. Velocity distribution 

from these images were obtained from length of streak lines formed by the tracer particles. For 

pressure estimation, velocity data were substituted in Bernoulli equation.  

1 12 2

2 2
p u p u+  = +  

 

(1.1) 

(Imaichi and Ohmi 1983) estimated the pressure in cylinder flow by using Navier-Stokes 

equation. Later (Willert and Gharib 1991b) used digital PIV for pressure estimation.  

Instantaneous pressure determination for unsteady flows can be done by substituting measured 

PIV data into Navier -Stokes equation shown below: 

2D

D
p

t
 = − + 

u
u  

(1.2) 

Here 
D

Dt

u
 is material acceleration. In Eulerian perspective this term is decomposed in local and    

convective accelerations. 

( )
D

Dt t


= + 



u u
u u  

(1.3) 

                                                 

Usually second order central differencing scheme is used to discretize all the terms. Here, 

calculation of the local acceleration term is very sensitive because it depends on the recording 

frame rate as well as flow velocity. It is difficult to optimize this factor because it depends on 

the time resolution features of camera. For example, to resolve the flow structures in supersonic 

flows the available high-speed cameras are insufficient. Also, the error in local acceleration is 

inversely proportional to time separation between two images.  
22

u

t
t






 =


u  here time 

separation has opposite effect on truncation error.  (Jensen and Pederson 2004) proposed the 

optimal time separation to minimize the total error  

In Lagrangian formulation, material acceleration can be defined as:   
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d ( ) d ( ( ), )D

D d d

p p pt t t

t t t
= =

u u xu
 

(1.4) 

In this approach positions of all individual particles are tracked. Any discrepancy in true and 

estimated particle position could raise serious issues in estimated velocity. But this error could 

be reduced by more accurate trajectory reconstruction method (Murai et al. 2007).  

 In Eq. (1.4) px  and pu are particle position and velocity and   is kinematic viscosity 

respectively. Once distribution of pressure gradients is determined from Navier-Stokes equation, 

direct integration needs to be performed to evaluate the pressure field. 

( ) ( ) .

ref

s

ref

s

p s p s p ds= +   
(1.5) 

Here refs  is pressure at a reference location, usually given by appropriate boundary conditions. 

In past, several integration approaches have been reported e.g. space marching integration (Baur 

T 1999), pseudo tracking (Jensen et al. 2003), omni directional integration approach (Liu and 

Katz 2006), least square approach (Jeon et al. 2018a) and direct spatial integration (Schneiders 

and Scarano 2016). 

Several merits and demerits of Lagrangian (Liu and Katz 2006) and Eulerian (Charonko et al. 

2010) approaches are reported in previous studies. Such as Lagrangian approach is less prone 

to measurement noise than the Eulerian approach (Violato et al. 2011). However, (Jakobsen et 

al. 1997) found that for waves impinging on a vertical wall, Lagrangian approach showed bias 

effects and performed worse than Eulerian approach. Because of these contradictory findings, 

(de Kat and van Oudheusden 2012) performed direct comparison of both the methods in a 

synthetic flow field. They found out that both the methods work well if interrogation window 

is at least five times smaller than the flow structure. 

Pressure Poisson equation 

Pressure Poisson is derived by taking divergence of Navier-Stokes equation 
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( )2

2

2
if D

u v u v
p

x y y x

    
 = −  → −  − 

    
u u                                  (1.6) 

This equation does not contain the time derivative term. So, it is very useful for pressure 

estimation in unsteady flows (Pan et al. 2016). However, pressure Poisson equation is very 

sensitive to boundary conditions which are practically unknown in most of the cases. Generally, 

Dirichlet and Newmann condition are needed. Dirichlet condition is usually determined by 

modified Bernoulli equation (Van der Kindere et al. 2019) and Neuman boundary conditions 

are given by momentum conservation equations (Gresho and Sani 1987). Among them 

Neumann boundary condition is physically more accurate (Gurka et al. 1999). 

Despite of several advantages of PIV and its applicability in providing pressure distribution by 

combining with CFD, it is not applicable in opaque fluids. Also, the pressure estimation for 

non-Newtonian fluids has never been reported in literature even when plenty of research has 

been already performed in last two decades for the improvement of pressure estimation in 

Newtonian fluid by PIV. The pressure estimation in opaque and non- Newtonian fluids is the 

real demand of industries.   

1.2 Objective 

Motivated by above unresolved problems, the present thesis has four major objectives 

1.1 To develop a novel pressure estimation technique which can be used in opaque 

Newtonian fluids 

2.1 To develop a unique pressure profiler for transparent non-Newtonian fluids based on PIV 

measurements 

3.1 To develop an algorithm for pressure profile in spatio- temporal domain for opaque non-

Newtonian fluids 

4.1 A framework of error analysis and correction for instantaneous pressure estimation 
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1.3 Organization of thesis 

In this thesis, introduction described the existing pressure estimation techniques using 

experimental data and addresses the motivation of present study, experimental arrangements 

are described in chapter 2. In chapter 3, a pressure estimation algorithm for opaque Newtonian 

fluids is discussed. In chapter 4, the pressure estimation is extended to shear thinning fluid flows. 

For shear thinning fluids pressure estimation algorithm is developed using momentum equation 

and rheology together. The algorithm is applied in steady and unsteady flows and its capability 

is assessed.  In chapter 5, for unsteady separated vortex flows, another algorithm is proposed 

which is also applicable in opaque fluid flows. In chapter 6, to correct the estimated pressure 

field from experimental data, a novel irrotational correction method is developed. Analytical 

fields with random or correlated random errors are tested. In last section the present method is 

tested in real experimental PIV data. In chapter 7, conclusions and future directions of present 

study are discussed. 
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Chapter 2 

Experimental method 

This chapter describes the experimental setup for measurement of vortex shedding behind 

circular cylinder. Measurements were conducted in Newtonian and non-Newtonian fluids by 

UVP (Ultrasonic Velocity Profiler) and PIV techniques in towing tank facility for several 

experimental conditions.  

2.1 Experimental arrangement for measurement by UVP  

UVP is a well-established fluid measurement technique in experimental fluid mechanics 

(Takeda 2012). UVP transducer emits the ultrasound pulse in fluid containing tracer particles 

and receives echo. From time lapse between emission and echo reception the position of the 

particle can be obtained by:  

𝑋 =
𝑐∆𝑡

2
 

(2.1) 

Here c is velocity of sound and ∆𝑡 is time lapse.  Similarly, the instantaneous velocity at a point 

can be obtained by Doppler shift frequency (fD) of the echo and basic frequency of ultrasound 

(f0). 

0

Dcf
v

f
=  

(2.2) 

As ultrasound signals can penetrate various fluids easily irrespective of whether they are 

transparent or not, UVP can also be used for pressure measurement in opaque fluids such as 

food materials, chemicals and blood flows for which traditional flow visualization techniques 

are unsuitable. UVP can provide the spatio-temporal information of flow at higher resolution 

than hot wire anemometer and laser Doppler anemometer, but it provides velocity information 

in one line only i.e. one dimensional one component (1D-1C) velocity information of flow. 

Even with this limitation, UVP is more suitable for longer duration measurement than PIV 

because the memory requirement is significantly less than that for 2D PIV or 3D PIV. 
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To study the vortex shedding in flow behind cylinder, a towing tank setup was used in which a 

moving carriage towed the cylinder at constant velocity in stationary fluid. The dimension of 

towing tank was 5.00 m length (l), 0.54 m width (w) and 0.45 m height (h). The cylinder 

dimension is 0.04 m diameter and 0.40 m length. The cylinder material was acrylic resin. The 

cylinder was fixed on carriage by fixtures and submerged at h/2 distance from bottom of tank. 

The position of cylinder ensured no additional effect of free surface and bottom boundary. The 

experimental setup is shown in Fig. 2.1. For measurement in Newtonian fluid, towing tank is 

filled with water and milk with concentration of 0.1 % and for non-Newtonian fluid flow 

measurement, aqueous solution of CMC of 0.1 weight % was used. 

 

Fig. 2.1 Experimental setup for y-component of velocity measurement by UVP system 

In both Newtonian and non-Newtonian fluid flow experiments, spherical tracer particles were 

mixed in working fluid. For all of the experimental cases, tracer particles which has high porous 

polymer with hydrophilic property to aqueous solution (HP20SS manufactured by Mitsubishi 

chemicals) was used. The diameter and density of particles are 50-120 µm and 990 kg/m3. 

For velocity measurement, a UVP transducer of 4 MHz basic frequency was used with UVP 

monitor model Duo (Met-flow S.A., Switzerland). The transducer was fixed at 3 times diameter 

downstream of cylinder and towed with cylinder along length of tank. The cylinder was fixed 

vertically in all of the test conditions, so, y component of velocity was measured in spatio-
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temporal domain. In experiments with Newtonian fluids, the towing speed was U = 39.2 mm/s, 

Re /UD = =1000. In non-Newtonian fluid the towing speed was set to U = 10 to 40 

corresponding 
0Re /UD = = 30 to 100. Here 

0  is zero shear viscosity. 

2.2 Experimental arrangement for measurement by PIV 

PIV (Particle image velocimetry) is an optical measurement approach which provides the 

velocity information of flow field in 2D/3D plane/volume quantitatively. For PIV experiments, 

fluids are seeded with tracer and these particles are illuminated in laser light in a plane. The 

images of these illuminated particles within a frame is captured with a high-speed camera. To 

evaluate the velocity distribution, cross correlation algorithms (Dabiri 2009), Fast Fourier 

Transform cross correlation (Pust 2006),  minimum quadratic difference (Gui and Merzkirch 

1996) and normalized cross correlation (Thomas et al. 2005) are generally opted. Recently 

machine learning based fast algorithm promises higher special resolutions (Rabault et al. 2017) 

(Cai et al. 2019).  

Conventional two-dimensional PIV technique uses one camera to capture the motion of 

particles in a single plane and ignores out of plane velocity component which is a source of 

error in highly turbulent flows. Therefore, 3D (three-dimensional) PIV techniques were 

developed. 3D PIV measures three-dimensional velocity components in three dimensions 

(3D3C). Some of the 3D PIV techniques are stereoscopic PIV (Prasad 2000) and Tomo PIV 

(Lynch and Scarano 2014). The advancement of PIV also expanded the capability of pressure 

estimation algorithms based on CFD governing equations in three dimensions (Schneiders et al. 

2016).  

The PIV measurements in both Newtonian and non-Newtonian fluid flows are conducted in 

towing tank facility described in section 2.1. The dimensions of cylinder and position of 

cylinder is also same. For illuminating flow, tracer particles (HPSS20, Mitsubishi Chemical, 

Ltd) are used. The cylinder camera and laser are towed together by carriage for the tank length 

which enables the measurement up to 100 times diameter of cylinder. 
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Fig. 2.2 Experimental setup for two-dimensional velocity components measurement 

by PIV 

To capture fluid flow images, a high-speed camera with 300mm Nikkor lens was used. For 

illumination green laser was used. The laser beam is installed at 3D downstream of cylinder 

which expands the illumination up to 3D downstream of cylinder. The camera is set to capture 

the images in x-y plane. In all of the test cases the images are obtained at 50 fps (frames per 

second) with images of 1024 1024 pixels. Experimental arrangement for PIV measurement is 

shown in Fig. 2.2. The postprocessing of images was performed by PIVLAB (Thielicke and 

Stamhuis 2014) in MATLAB software. FFT based cross correlation recursive iterative 

multigrid approach (Scarano and Riethmuller 1999) with stepwise interrogation window area 

from 128×64, 64×32, and 32×16 was performed to obtain velocity data.   
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Chapter 3 

Pressure field estimation in opaque flow by UVP 

3.1 Introduction 

Opaque fluids are commonly found in pharmaceutical, food and material industries. These 

fluids are inseparable from our daily life such as syrups, milk, coffee, juices, shampoo, 

toothpaste, ketch up, cornstarch, liquid metals etc. For quality control during manufacturing 

and maintenance operations in addition to material property, the information of flow variables 

such as velocity and pressure are also essential.  

Pressure measurement can be done in opaque fluids by piezo electric transducer, manometers 

etc. These measurement devices are intrusive in nature and are limited to give information at a 

single point which is not sufficient to understand the entire flow field. On the other hand PIV 

based pressure estimation is now a well-established technique in experimental fluid mechanics 

community (van Oudheusden 2013) (Sciacchitano et al. 2012) (Suzuki and Yamamoto 2015). 

With consistent efforts of researchers for  development of PIV (Willert and Gharib 1991) (Grant 

1997) and pressure estimation methodologies (de Kat and van Oudheusden 2012) complete 

information of flow governing variable can be obtained from experiments (van Gent et al. 2017) 

(Schneiders and Scarano 2016). However, to measure opaque flows, optical flow measurement 

techniques such as LDA (Laser Doppler anemometry) and PIV cannot be used. The details of 

available velocity and pressure measurement devices are listed in Table 1. 

UVP is now well accepted velocity measurement tool in fluid engineering (Takeda 2012) 

(Aritomi et al. 1996) (Ihara et al. 2013). It had been successfully applied in food (Yoshida et al. 

2019), metallic flows (Ueki 2016) and even in environmental flows (Yokoyama et al. 2006). 

Due to capability of UVP, it is the best alternative for pressure estimation in opaque flows. UVP 

can provide one component of velocity vector in one dimension in spatio-temporal domain so 

the pressure estimation from governing equations 1.1 and 1.2 in general 3-D flow is impossible 
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by UVP due to large number of unknowns. Extension of UVP measurements in two and three 

dimensions is still a challenge (Obayashi et al. 2008) (Takeda 1995) (Jensen et al. 2016). 

Coupling of UVP data with additional flow governing equations could be a possible option to 

evaluate additional information of flow. This makes the pressure estimation from UVP 

measurements far more challenging than from PIV measurements.  

Table 1 velocity and pressure measurement devices 

 Pressure measurement Device Velocity measurement device 

Device Piezoelectric 

transducer 

Pitot tube 

Manometer 

PSP LDV 

HWA 

ADV 

UVP PIV 

PTV 

MTV 

3D-PTV 

Tomo-PIV 

Color PTV 

Dimension Point Point 2D Point 1D 2D 3D 

Opaque 

fluid 

Yes Yes No No Yes No No 

Non-

intrusive 

No No Yes Yes Yes Yes Yes 

Abbreviations: PSP: pressure-sensitive paint, HWA; hot-wire anemometer, ADV: acoustic 

Doppler velocimeter, UVP: ultrasound velocity profiler, PIV: particle image velocimetry, PTV: 

particle tracking velocimetry, MTV: molecular tagging velocimetry, 3D-PTV: 3D-stereoscopic 

particle tracking velocimetry, Tomo-PIV: tomographic particle image velocimetry, Color-PTV: 

color-coded volumetric particle tracking velocimetry. 

 

3.2 Estimation of x component of velocity by equation of continuity  

The velocity measurements were performed in the experimental setup (Fig. 2.1) in water. UVP 

measured the y component of data, ( , )v x t  in spatio-temporal domain as shown in Fig. 3.1. 

Here the alternate positive and negative velocity regions show the von Karman vortex street. 
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The pixelized experimental noise appeared in the data due to electrical connections and model 

vibrations during measurement. 

 

Fig. 3.1 UVP measured y component of velocity in spatio-temporal domain 

The UVP data in t Y−  domain is then converted to X-Y domain by utilizing the concept of 

Taylor Frozen hypothesis i.e. 𝑣(𝑥, 𝑦) = 𝑣(𝑥0 − 𝑈𝑠. 𝑡, 𝑦) , here 𝑈𝑠  is the mean convection 

velocity of flow structure passing by 
0x x= . The convection velocity is 60% of free stream 

velocity as measured by (Lin and Hsieh 2003). In convection dominated flows, Taylor Frozen 

hypothesis can improve the pressure evaluation (De Kat and Ganapathisubramani 2013) and 

overcome the difficulties encountered while solving the Navier-Stokes equation or pressure 

Poisson equation with Eulerian approach (De Kat and Van Oudheusden 2012).  

Once first component of velocity is obtained in x-y domain, the equation of continuity can be 

utilized to obtain the other unknown component of velocity if we assume flow is two 

dimensional. The equation of continuity can then be written as: 

0
u v

x y

 
+ =

 
 

(3.1) 

Here v component of velocity is measured, so by substituting it in Eq.3.1, the other component 

u can be obtained by integration. 

V
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( , )
( , )

v x y
u x y dx

y


= −

  
(3.2) 

This equation is discretized by second order central difference method. The integration of above 

equation is performed in forward direction, backward direction and oblique direction as shown 

in Fig. 3.2. In forward and backward direction approach the space marching is performed in 

forward and backward direction. In the case of oblique direction approach, space marching is 

performed in all four directions as shown in Fig. 3.2(c) and average velocity of all four direction 

is considered as the final solution.  

 

Fig. 3.2 Integration to evaluate x component of velocity by marching in (a) forward 

direction (b) backward direction (c) oblique direction 

3.3  Filtering of UVP data 

To filter the noises from velocity data measured by UVP, various filtering methods are used as 

follows: 

3.3.1 Low pass Filtering 

The direct substitution of noisy UVP data into governing equations could result in unrealistic 

pressure field so a very careful preprocessing method is required for this purpose. For UVP 

data, FFT (fast Fourier Transform) based low pass filtering was applied to remove high 

frequency noise. The power spectrum plotted in Fig. 3.3, for UVP data measured at time 

between t=0 to 50 seconds. The dominant frequency of flow structures was obtained around at 
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f=1.2 Hz which indicated that the periodic vortex shedding structures are present within f=0 to 

2 Hz. Hence, the cutoff frequency is chosen as 3 Hz to remove the noise containing higher 

frequencies.  

 

Fig. 3.3 Power spectrum of UVP measured data in flow behind the cylinder 

The velocity data after FFT filtering is shown in Fig 3.4. The pixelized noise in the free stream 

region is removed and smoother velocity distribution is obtained which is why the FFT filtering 

is often known as FFT smoothing. These changes can be seen by comparing Fig. 3.4 to Fig. 3.1. 
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Fig. 3.4. Distribution of y component of velocity after applying FFT low pass filtering 

remove data corresponding to f>3.0Hz. 

 

3.3.2 Proper orthogonal decomposition 

POD (Wiklund et al. 2012) is often used as a post processing technique to analyze the large 

data (Meyer et al. 2007). In pressure estimation problems, POD filtering is the most efficient 

physics-based filtering (Charonko et al. 2010b). The experimental data can be decomposed in 

orthonormal basis functions. From which POD eigen values can be obtained which resolve the 

kinetic energy of flow. Generally, dominant flow structures are represented by first few POD 

modes. In this study the ‘snapshot POD’ (Sirovich 1987) is used for filtering UVP data. The 

first step involves the separation of fluctuating component from mean velocity data. When POD 

is performed with PIV data the velocity matrix containing N snapshots can be arranged as 

below:  

V
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                                      (3.3) 

In present study POD is performed in UVP data for that only y component of velocity in 

measurement line (shown in Fig. 3.1) from t=0 to 50 seconds with 511 profiles is available. 

Each profile can be treated as a snapshot and arranged as Eq.3.3. Then covariance matrix can 

be generated as: 

 u uTR =                                                                        (3.4) 

Corresponding eigen value problem can be written as 

, 1, 2,.........511i i iRC C i= =                     (3.5) 

After obtaining eigen values solution can be arranged as below: 

1 2 511............. 0    =                                     (3.6)                                                                                              

Then POD modes can be constructed from basis obtained from eigen vectors 

1

1

n N
i N

n
i n

n N
i N

n

n

C

C



=

=

=

=

=




u

u
                                                         (3.7) 

Then POD modes can be arranged as  

1 511..............   =                                    (3.8) 

POD coefficients can be obtained by projecting fluctuating part of velocity onto POD modes 

and can be represented as below 
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n T n=a u                                                            (3.9) 

Using this coefficient, the velocity can be reconstructed as 

n =u a                                                            (3.10) 

For measured UVP data, POD modes and corresponding energy content are shown in Fig. 3.5. 

Here first mode itself contains the 82.6% of total kinetic energy and subsequent reduction is 

observed from second mode onwards. However, in cylinder flow usually the first and second 

mode contains almost 40% and 40% of energy. The possible reason for this discrepancy is that 

the velocity is measured at a fixed line by UVP transducer fixed at 3D downstream to cylinder 

and the velocity is reconstructed in spatio-temporal domain but not space-space two dimensions. 

Since all the vortices in one plane are captured at same position relative to cylinder, about 82.6% 

of energy involves in first mode itself. In Fig. 3.6. y component of velocity is reconstructed by 

considering four cases, i.e. POD mode 1, POD mode 1 to 3, POD mode 1 to 5 and POD mode 

1 to 10. Here data corresponding to POD mode 1 to 10 contains 99.9% of total kinetic energy. 

In velocity data reconstructed only by POD mode 1, the most dominant structures of the flow 

are obtained. As more higher modes are considered the energy content increases and smaller 

eddies also showed up in the data.  

 

Fig. 3.5. Kinetic energy variation with POD modes in UVP data measured at cylinder 

downstream 
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Fig. 3.6 y component of velocity (v) after applying POD for corresponding mode 1, 1 to 3, 

1 to 5, 1 to 7 

3.3.3 Optimize filtering to evaluate unknown velocity component 

To reconstruct the two-dimensional flow structure in wake, the velocity data measured by UVP 

and velocity data evaluated from the equation of continuity both are required. FFT based low 

pass filtering and POD are applied in measured data. Then three type of approaches are used to 

integrate the velocity from equation of continuity i.e. forward, backward and oblique (Fig. 3.2). 

The performance of filtering techniques was judged by its capability to reconstruct two- 

dimensional vortex structures and vorticity. First FFT and POD filtering were applied on 

measured velocity data and u component of velocity was reconstructed as shown in Fig. 3.7. 

The results of forward and backward approaches were same so only results of forward approach 

are presented. Similarly, FFT and POD filtering were applied on measurement data and 

vorticity ( ) was reconstructed by forward and oblique approach. 

Here the   can be defined as.   

V
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(0,0,1)u T v u

x y


 
=   = −

 
 

(3.11) 

This equation is discretized with second order central difference scheme.  

The reconstructed u and   are shown in Figs. 3.7 and 3.8 respectively. Error in reconstructed 

field by applying oblique approach was more than with forward approach which can be seen in 

plots of both u and  . However, FFT filtering with forward approach was not suitable to 

reconstruct the flow structures accurately. On the other hand, forward approach with POD 

filtering, u component is reconstructed in the wake but the   distribution was not accurate due 

to error propagation from velocity uncertainty in curl of velocity data.  

 

Fig. 3.7 u component of velocity obtained by equation of continuity by substituting (a) 

FFT filtered velocity data (b) POD filtered velocity data 

 

Next, FFT and POD filtering both were applied together for global noise reduction in velocity 

data and similar to previous cases oblique and forward directional approaches were used to 

calculate u from equation of continuity. The reconstructed u and  are shown in Fig. 3.9. The 

distributions of u and  are more realistic with forward approach than oblique approach. An 
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alternate positive and negative pattern of velocity and   are clearly visible in forward approach. 

The order of filtering by FFT and POD does not make any difference in the result. 

 

 

Fig. 3.8 u component of velocity obtained by equation of continuity by substituting (a) 

FFT filtered velocity data (b) POD filtered velocity data 
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Fig. 3.9 FFT and POD filtered, u component of velocity and vorticity obtained by 

equation of continuity by (a) Oblique approach (b) Forward approach 

 

3.4 2D velocity reconstruction  

The 2D velocity vector field reconstructed by applying FFT and POD filtering with forward 

approach in UVP data, considering POD mode 1, POD mode 1 to 3, POD mode 1 to 5 and POD 

mode 1 to 10 as shown in Fig. 3.10. In Fig. 3.10 (a) only dominant structures were reconstructed 

but in Fig. 3.10 (b) the staggered pattern of vortices was successfully reconstructed (zoomed 

view is shown in Fig. 3.11). When higher modes are considered smaller vortices were 

reconstructed in the free stream region (Fig. 3.10 (c), (d)). The Strouhal number (St) of flow is 

0.21, which is in agreement with the literature (Fey et al. 1998) (Azmi and Zhou 2018). Here 
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fd
St

U
= . 

(3.12) 

 

 

Figure 3.10 Velocity vector plot considering (a) POD mode 1 only (b) POD mode 

1 to 3 (c) POD mode 1 to 5 (d) POD mode 1 to 10 

 

Fig. 3.11 Zoomed velocity vector field corresponding to POD mode 1 to 3. Here 

staggered arrangement of vortices is clearly observed. 
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3.5 Pressure field reconstruction  

To reconstruct pressure field, the velocity data (section 3.4) was substituted in Navier-Stokes 

equation Eq.1.2. The local acceleration term can be neglected for convection dominated flows 

as long as Taylor Frozen hypothesis is valid (De Kat and Ganapathisubramani 2013). The 

Navier-Stokes equation was discretized with second order central difference scheme. The 

discretized form of Navier-Stokes equation can be written as: 

1, 1, , 1 , 1

, ,

,

1, 1, , , 1 , 1 ,

2 2

2 2

2 21

i j i j i j i j

i j i j

i j

i j i j i j i j i j i j

u u u up
u v

x x y

u u u u u u

Re x y

+ − + −

+ − + −

− −  
= − + +  

     

+ − + − 
+ 

  

 

(3.13) 

1, 1. , 1 , 1
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,

1, 1, , , 1 , 1 ,

2 2

2 2

2 21

i j i j i j i j

i j i j

i j

i j i j i j i j i j i j

v v v vp
u v

y x y

v v v v v v

Re x y

+ − + −

+ − + −

− −  
= − +  

     

+ − + − 
+ + 

  

 

(3.14) 

Once the pressure gradient field is obtained the pressure field can be obtained by least square 

method (Jeon et al. 2018a). 

, 1, , , 1
1 1, ,
2 2

,i j i j i j i j

i j i j

p p
p p x p p y

x y
 

 

   
=  =    

    
                 (3.15) 



 

 25 

 

Fig. 3.12 Nodal grid system for calculation of pressure 

 

To solve these equations (Eq.3.14), at least pressure at one corner should be given and at top, 

bottom, left and right boundaries Neumann boundary conditions were given. The grid points in 

the neighborhood of a point used for estimation of pressure at a point is shown in Fig. 3.12.  

The pressure was determined by several iterations and Least square error was monitored at each 

iteration. Least square error (LSE) can be defined as total sum of discrepancy squared of data.  

The iterations were performed until LSE reaches 0.0001. LSE will never go to zero because of 

presence of measurement and numerical errors so minimum value of LSE can provide the 

optimum solution of pressure.  
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Fig 3.13 the pressure fields Cp are reconstructed by considering POD mode 1, mode 1 to 

3 POD mode 1 to 5 and POD mode 1 to 10. 

 Cp is defined as: 

Cp= p/U2                                                                       (3.15) 

Here alternate low and high-pressure regions were reconstructed when at least POD mode 1 to 

3 are considered. As higher modes are considered in the data, the additional low-pressure 

regions appeared in free stream region due to presence of smaller vortices there. The position 

of minimum pressure coincided with center of vortices in Fig. 3.14. Here velocity vector and 

pressure field were plotted together for data corresponding to POD mode 1 to 3. 
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Fig. 3.14 Zoomed velocity vector and pressure field for POD mode 1 to 3 

 

3.6 Correlation between velocity and pressure 

Time averaged u  and pC are shown in Fig. 3.15. Here Y/D = 0 represents the center of cylinder. 

The lowest pressure points in Fig. 3.15 (b) were obtained between |Y/D| ~ 1 which represents 

the vortex cores. At |Y/D|=1 the increment of u  is obtained due to convection of vortices. The 

magnitude of pressure was maximum at centerline of cylinder and drops in shear layers. This 

feature indicated the spatial coupling of pressure and counter-rotating alternating vortices in the 

vortex street. Specially the passage of vortex cores reduces the pressure pC  in shear layer at 

|Y/D| ~ 1 and pushes the fluid between vortices at |Y/D| = 0. 

The correlations of pressure with kinetic energy, vorticity and Q value are shown in Fig.  3.16. 

Q value is defined as: 

2if D

u v u v
Q

x y y x

    
= − 

    
                               (3.16) 
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Fig. 3.15 Time averaged velocity and pressure profiles in wake of cylinder 

In Fig 3.16 (a) the measured pressure is represented by circles and pressure calculated by 

Bernoulli’s equation: Cp = u2/2 is represented by solid dots. The deviation of Bernoulli’s 

equation clearly showed its inability to estimate flow in rotational flow. The parabolic trend of 

pressure with vorticity represents the dominance of rotational motion in governing pressure as 

shown in Fig. 3.16 (b). In Fig. 3.16 (c) the inverse relation of pressure with Q value was 

confirmed.  

 

3.7 Validation with PIV data 

The PIV measurements were conducted to measure velocity in flow behind cylinder in water 

in the experimental set up shown in Fig. 2.2. The velocity data at t=80 s were substituted in 

Eq.3.12, 3.13 to obtain pressure gradients. Then pressure distribution was obtained by 

integrating pressure gradients as in Eq. 3.14. The measured velocity and estimated pressure 

distributions are shown in Fig. 3.17. 

  



 

 29 

 

Fig. 3.16 (a) Scatter plot of pressure evaluated by present method and Bernoulli’s 

equation (b) Scatter plot between pressure and vorticity (c) scatter plot between 

pressure and Q value 

 

Fig. 3.17 Velocity distribution measured by PIV and pressure estimated from Navier-

Stokes method Eq. 3.12, 3.13 
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Here vertical red lines show the measurement line of UVP. In this figure the staggered 

arrangement of vortices can be confirmed. This agrees with measurements by (Azmi and Zhou 

2018) at Re = 1000 where the formation length is shorter than 3D hence the staggered 

arrangements can be observed after the formation length. This was useful in order to avoid 

three-dimensionality of flow. These vortices are passing by the UVP measurement line at x/D=3. 

The minimum value of pressure at x/D=3 is between -1 to -1.5, this agrees with estimated 

pressure magnitude by UVP, Fig. 3.13.  

3.8 Algorithm UPP (Ultrasonic pressure profiler) 

The overall algorithm of pressure estimation from UVP velocity data is shown in Fig. 3.18. The 

algorithm follows six steps: 

1. A component of velocity measurement by UVP. 

2. Filtering by FFT and POD 

3. Apply Taylor frozen hypothesis and convert velocity from t-y plane to x-y plane 

4. Estimate unknown component of velocity by using equation of continuity 

5. Estimate pressure gradient from Navier-Stokes equation 

6. Integrate pressure gradient and obtain pressure by iterative scheme by attaining least 

square error < 0.0001 
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Fig. 3.18 Pressure estimation based on UVP measurement in opaque flows 

 

3.9  Pressure estimation in milk  

The pressure estimation algorithm (Fig. 3.19) was applied to study vortex shedding downstream 

of cylinder in milk of concentration 0.1wt % of milk powder in water. The skim milk powder 

was used to make the fluid opaque but still had Newtonian nature. The pressure estimation in 

milk was mainly performed to demonstrate the capability of present algorithm in opaque system. 

Experimental arrangements described in Fig. 2.2 was used for velocity measurement in milk. 

The vortex shedding behind the cylinder was measured by UVP transducer fixed at 3D (three 

times diameter) distance from cylinder. The y component of velocity was measured by UVP 

and after filtering by FFT and POD it is used in continuity and Navier-Stokes equations. The 
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velocity vector and pressure distribution plots are shown in Fig. 3.19 and Fig. 3.20. The Strouhal 

number of von Kármán vortex street is 0.18. which is lower than water due to higher viscosity 

and lowering of Re.  The vortex pattern in velocity plot is very similar to previous results in 

water (as expected). In Fig. 3.19 (b) the staggered pattern was observed, and number of small 

eddies increases as higher POD mode also included in calculation. The alternate regions of 

pressure minima and maxima are observed in Fig. 3.20 (b). The result of vortex shedding in 

milk flow experiment was qualitatively very similar to experiment in water which proves its 

accuracy. The present study reveals that present pressure estimation algorithm can be utilized 

for pressure measurement in any kind of opaque fluid which has a Newtonian nature.  

 

Fig. 3.19 Velocity distribution in milk considering POD mode 1, mode 1 to 3, mode 1 

to 5 and mode 1to 10. 
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Fig. 3.20 Pressure distribution in milk considering POD mode 1, mode 1 to 3, mode 1 

to 5 and mode 1to 10. 
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Chapter 4  

PIV based pressure estimation in transparent shear-thinning fluid 

4.1 Introduction 

Non-Newtonian fluids are ubiquitous in industrial and biological processes. The rheological 

properties of these fluids are generally evaluated by ‘flow curve’ produced by rheometers 

(Cross 1968). Based on these measurements’ rheological models such as power law, Carreau-

Yasuda (Carreau 1972), Herschel-Berkley (Tang and Kalyon 2004), Oldroyd-B (1950) etc. are 

introduced to the analysis of flow. With numerical simulations, these models are useful to 

improve understanding of complex fluid behavior in many practical flows such as blood flow 

(Rabby et al. 2013), pipe flows (Yoo et al. 1996), channel flows (Mirzaei Nejad and Javaherdeh 

2014), cylinder flow. However, it is still a challenge for computational rheologists to predict 

the material behavior during fluid structure interaction in complex flow geometries (Walters 

and Webster 2003)(Trias et al. 2014). In particular, non-Newtonian flow behaviors coupled 

with vortex dynamics cannot be predicted by simple rheological models. The difficulty 

originates from potential interaction between pressure and viscosity fields. 

Flow of non-Newtonian fluids are also studied by velocity measurement devices, like Laser 

Doppler Velocimeter (LDV) (Tamano et al. 2010), Ultrasonic Velocity Profiler (UVP) (Tasaka 

et al. 2015) and Particle Image Velocimetry (PIV) (Tamano et al. 2007). These techniques are 

helpful to visualize non-Newtonian fluid flow structures quantitatively to assess the influence 

of fluid rheology. For pressure driven flows, UVP-PD (Ultrasonic Velocity Profiler combined 

with pressure drop measurement) (Wiklund et al. 2012) (Wiklund and Stading 2008)  is an 

effective tool for in-line rheometry suitable for pipe flows. The pressure measurements at two 

points and velocity profile measurement are enough for viscosity calculation. For external flow 

problems, in contrast, two-dimensional (2-D) pressure distribution needs to be introduced along 

with velocity measurements for coupling with rheological study. 
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Pressure estimation for Newtonian fluid using PIV is very well studied in last decades and these 

details were surveyed in van Oudheusden (2013). Navier-Stokes (Eq. 1) or pressure Poisson 

(Eq. 2) are generally adopted for pressure estimation. For non-Newtonian fluids, Eq. 1 must be 

replaced with a generalized form of momentum conservation equation to which specific 

rheological model needs to be introduced. Consequently, Eq. 2 becomes invalid for non-

Newtonian fluids.  

Details of experimental set up and conditions are discussed in chapter 2. In this chapter, only 

pressure estimation procedure is discussed. 

4.2. Governing equations 

PIV data are utilized in governing equations of non-Newtonian flow. In description of 

governing equations, the following scaling variable are used for providing dimensionless terms: 

D, diameter of cylinder, for length variables, U for velocity terms, D/U for time and U2 for 

pressure. Here  is density. The dimensionless governing equations in the cartesian coordinates 

can be written as below:  

4.2.1 Momentum conservation equation in x and y directions 

1

Re

yxxxp u u
u v

x x y x y

      
= − + + +  

       
 

(4.1) 

1

Re

yx yyp v v
u v

y x y x y

      
= − + + +  

       
 

(4.2) 

Here Re stands for Reynolds number for non-Newtonian fluid.  

Relation between shear stress and strain rate is given by 
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xx xy xx xy

i j i j
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where, i, j are indices in x, y direction. 𝜂  is non-dimensional viscosity and ,i j is non-

dimensional strain rate tensor, which is computed by measured velocity field as: 

,

2
1

2
2

xx xy

i j

yx yy

u v u

x x y

v u v

x y y

   
+     

 = = 
     +    

 


 
 

(4.4) 

 

By substitution of Eqs. 4.3 and (4.4) into Eqs. 4.1 and 4.2, we can get 
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= − − + + + + +    

           
         (4.6) 

In Eq.4.5 and 4.6, velocity and strain rate in the r.h.s. of Eqs. 4.5 and 4.6 can be provided by 

PIV measurement but for pressure gradient estimation it is not sufficient. The information of 

viscosity distribution needs to be introduced by rheological model.   

 

4.2.2 Rheological models 

Many rheological models are available in literature (Herschel-Bulkley, Casson, Carreau-

Yasuda, Power law, Cross model) to study shear thinning fluids. Two kinds of shear-thinning 

models were chosen for present study, power law model and Carreau-Yasuda model. Power 

law model has been extensively used in numerical simulation in literature to study vortex flow 

of cylinder (Bharti et al. 2007) (Dhiman et al. 2006). Carreau- Yasuda model is more accurate 

than power law model for flow with wide range of strain rate (Rao 2014). 

4.2.2.1 Power law model: 

The viscosity of power law fluids can be written as: 
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   𝜇𝑝 = 𝑘𝛾𝑛−1                                                    (4.7) 

Here 𝜇𝑝 is dimensional viscosity, k is consistency index and n is power law index. The viscosity 

of power law fluids is non-dimensionalized as: 

𝜂 =
𝜇

𝜇𝑝
 (4.8) 

Then, non-dimensional viscosity can be derived as  

( 1) / 2

2

2
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=  

 
 

(4.9) 

                                                      

where II2D is the second invariant of strain rate tensor (Bird et al. 2007) can be written as: 

𝐼𝐼2𝐷 = ∑ ∑ 𝛾𝑖𝑗
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Re for power law fluid flows can be defined as: 
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4.2.2.2 Carreau-Yasuda model  

In Carreau-Yasuda model the non-dimensional viscosity varies with II2D as 
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Here , a and m are the Carreau-Yasuda parameters, μ and μ∞ represent the viscosity at zero 

and infinite shear rate, respectively. For fluid flows obeying Carreau-Yasuda model, Re can be 

defined as 

0

DU
Re




=            (4.13) 

The parameters obtained from rheometer experiments performed at yx = 1 to 4000 s-1 are given 

in Table 1 and Table 2 (Coelho and Pinho 2004) for Carreau-Yasuda and power law model 

respectively. 

Table 4. 1 Rheological parameters for Carreau-Yasuda model 

Solution μ [Pas] μ∞ [Pas]   a m 

0.1% CMC 0.01367 0.0008 0.01317 0.6671 0.5864 

 

Table 4.2 Rheological parameters for power-law model 

Solution N k 

0.1% CMC 0.724 0.032 

 

4.3 Pressure estimation algorithm 

The present algorithm couples the PIV measurements, momentum conservation equations, and 

rheological models. The procedure can be summarized in the following four steps: 

i) Perform experiments to measure the velocity data by PIV and apply suitable filtering to 

remove noise in the experimental data.  

ii) Substitute the measured velocity data into rheological models: power law model (Eq. 4.8) 

and Carreau-Yasuda model (Eq. 4.12) to evaluate viscosity.  

iii) The viscosity and velocity data obtained by step i) and ii), are further substituted to 
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momentum equations (Eqs. 4.5 and 4.6) to calculate the instantaneous pressure gradients in 

x and y direction.  

iv) Integrate the pressure gradients in space in iterative manner to obtain the pressure at an 

arbitrary point by satisfying following equations:  

, 1, , , 1
1 1, ,
2 2

,i j i j i j i j

i j i j

p p
p p x p p y

x y
 

 

   
=  =    

    
 

(4.14) 

The maximum square error (MSE) of pressure discrepancy was calculated for Eq. 4.14 at each 

iteration step to monitor numerical convergence. As MSE falls below 10-4 (dimensionless), the 

pressure is accepted as final solution. The flow chart of algorithm is shown in Fig. 4.1. 

 

Fig. 4.1. Algorithm for pressure estimation in shear thinning fluid based on PIV 

4.4 Algorithm implementation in steady flow 

The algorithm was applied to PIV measurement performed at U=0.01 m/s, Re=30 in towing 

tank filled with aqueous solution of CMC. At t=12 s from start of towing at t=0 s, twin vortices 

attained the maximum size and became steady (Tang and Aubry 1997) as shown in Fig. 4.2 (a). 

The kinetic energy distribution clearly separated the boundaries between free stream region and 
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separation region Fig. 4.2 (b). In the vorticity plot (Fig. 4.2 (c)), shear layer region and vortex 

cores can be easily distinguished. In reverse flow region, blue region indicates the anticlockwise 

rotating vortex and yellow region represent clockwise rotation of vortex.  In Fig. 4.2 (d) the 

high shear rate region appeared in shear layer and decreased downward in vortex region. In the 

free stream region, it reduces to almost zero. 

 

Fig. 4.2 Distribution of velocity vectors on measurement plane at Re = 30, t =12 s (a) 

PIV velocity vectors, (b) kinetic energy, (c) vorticity, and (d) strain rate 

  

4.4.1 Viscosity distribution 

The velocity data are substituted in Eq. 4.10 to evaluate II2D. This procedure is described in step 

ii) described in section 4.3. The viscosity distributions at t=12 sec were evaluated using 

Carreau-Yasuda Fig. 4.3(a, b) and power law model Fig. 4.3 (c, d). The viscosity distribution 

by power law model is qualitatively similar to that by Carreau-Yasuda model. The viscosity 

was lower in wake region due to higher strain rate in that region. This result demonstrates shear 
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thinning property of the CMC aqueous solution. However, for free stream region where strain 

rates were comparatively smaller, the power law model overpredicted the viscosity with large 

fluctuations in space, this also proves that power law model is not suitable for viscosity 

estimation in region with low strain rate. 

 

Fig. 4.3 Viscosity distribution in entire computational domain at Re = 30, t =12 s, 

estimated by (a, b) Carreau-Yasuda model and (c, d) power law model 

4.4.2 Pressure distribution 

For Re in the range 5<Re<40 the flow of fluid is two-dimensional and steady (Williamson 1996). 

The pressure distributions were evaluated by substituting velocity and viscosity using Power 

law (Fig. 4.4 (a)) and Carreau-Yasuda model Fig. 4.4 (b) in momentum equations. Both the 

pressure plots were smooth and accurately reproduced the low-pressure region in cores of 

vortices. Both the models work effectively well in reconstructing the pressure field.  In Fig. 4.4 
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(c) and (d) momentum equation was solved by assuming   =0 and  =1 respectively.  The 

pressure distributions were almost same as the pressure evaluated by Carreau-Yasuda and 

Power law model. This indicates that the contribution of diffusion term in the momentum 

equation is very small. However as   is increased from 5 to 10 the effect of error in pressure 

increases due to incorrect rheological information. 

 

Fig. 4.4 Pressure distribution plots at Re = 30, t =12 s, using (a) Power law model (b) 

Carreau Yasuda model (c)  =0 (d)  =1 (e)  =5 (f)  =10 

 

4.4.3 Relation between material property to pressure and viscosity 

Even though vortex flow over cylinder is a widely researched topic, the relation between 

viscosity and pressure in von-Kármán vortex street is rarely mentioned in literature because, in 

incompressible flows of Newtonian fluids, viscosity is invariant with pressure. Moreover, there 

is no existing technique to measure 2D pressure fields of non-Newtonian fluids. Thus, it is not 

possible to introduce a counter technique to validate the results directly. In Figs. 4.3 and 4.4 (a) 
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the obtained viscosity and the pressure range were physically valid. A quantitative assessment 

of relationship between viscosity and other relevant flow variables was performed by with 

cross-correlation analysis. Two scalar flow variables were chosen for this purpose, one is 

pressure which represents the dynamic property of flow and the other is enstrophy (|ω|2) which 

depends on kinematic variable vorticity. Here, an attempt is made to understand the relationship 

of viscosity with pressure. The viscosity variation with pressure and enstrophy in scatter plots 

are shown in Fig. 4.5 (a), (b). The corresponding correlation coefficients (Cc) are presented at 

the bottom of respective figures.  

1

1

1

N
i i ba

i a b

A B
Cc

N

 

 =

  − −
=   

−   
  

(4.15) 

Here Cc represents the linear dependence of two variable A and B, having N observations. 𝜁𝑎 

and 𝜎𝑎 are mean and standard deviation corresponding to variable A and 𝜁𝑏 and 𝜎𝑏 are mean 

and standard deviation corresponding to variable B.  

It was found that η is negatively correlated with enstrophy and positively correlated with 

pressure. Negative correlation of enstrophy with viscosity indicated that as vorticity increases 

in the flow the viscosity decreases so for shear thinning fluid vorticity is sustained for longer 

time which indicates the shear thinning property works against the momentum diffusion. On 

the other hand, Cp does not depend on η directly, but still has weak positive correlation  
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Fig. 

4.5 Correlation plots at time t=12, between (a) viscosity (η) vs enstrophy (b)viscosity (η) and 

pressure (Cp) 

4.5 Algorithm implementation in unsteady flow 

The algorithm shown in Fig. 4.1 is applied for Re=87 to estimate pressure distribution.  

4.5.1 Filtering: POD-based noise reduction of measured velocity data 

 Snapshot proper orthogonal decomposition (POD) method for the noise reduction was 

employed in two consecutive images (Sirovich 1987b) (Meyer et al. 2007). The measurements 

were performed at U=0.03m/s in aqueous solution of CMC of concentration of wt % of 0.1, in 

experimental facility shown in Fig. 2.2. The PIV post processing was performed by PIVLAB 

as described in section 2.2.  The velocity vectors with streamlines of data collected at t=12 sec 

from the start of towing (t = 0 s) is shown in Fig. 4.6. At this instance, a symmetric pair of 

vortices was observed downstream. For present experimental data (Fig. 4.6(a)), the first 20 POD 

modes contain the 99.9% of total kinetic energy as shown in Fig. 4.6(b). Here, first mode 

already contains the 95.9% of the total kinetic energy and substantial drop can be seen in 

successive higher modes.  
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Fig. 4.6 (a) Distribution of instantaneous velocity and streamlines on measurement plane 

at U = 0.03m/s, t =12 sec (b) energy content in first 10 POD modes 

At t=12 sec, unfiltered x and y components of velocity along with filtered data by POD, 

considering POD mode 1, POD mode 1 to 3 and POD mode 1 to 20 are shown in Fig. 4.7 (a) 

and (b). Along with that, distribution of shear strain rate, (Eq. 4.10) is shown in Fig. 4.7(c). As 

higher number of POD modes are considered smaller eddies also appeared with dominant 

structures in the velocity data and strain rate. The propagation of error could be severe as higher 

POD modes are considered. The numerical procedure and the experimental noise both need to 

be handled carefully. Generally, in CFD problems the derivative terms are discretized with 

higher order accurate differencing schemes to reduce truncation error. However, derivative 

calculation with experimental data with the higher order accurate scheme could bring much 

more severe errors due to experimental noise. This makes the present problem very challenging 

because it is required to consider noises combined from experimental and numerical procedures 

in solving non-linear and higher order derivative terms involved in non-Newtonian momentum 

conservation equations (Eqs. 4.5 and 4.6). 
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Fig. 4.7 Distributions of instantaneous velocity components at t=12 s, (a) u (b) v, and (c) 

strain rate, both unfiltered and filtered data (after applying POD considering only mode 

1, mode 1 to 3 and mode 1 to 20). 

4.5.2 Viscosity and pressure distributions 

The velocity data is reconstructed by considering POD modes 1 to 3 and used in the calculation 

of II2D (Eq. (4.10)). The viscosity distribution at t=12 sec was calculated using (a) Carreau-

Yasuda and (b) power law model and shown in Fig. 4.8. The viscosity distribution by power 

�

�

�

�
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law model was qualitatively similar to that by Carreau-Yasuda model. The viscosity is lower in 

wake region due to higher strain rate in that region. This result demonstrates shear thinning 

property of the CMC aqueous solution. However, for free stream region where strain rates are 

comparatively smaller, the power law model predicted higher viscosity. This behavior of Power 

law model is consistent with the steady case. 

     

Fig. 4.8 Viscosity distribution in entire computational domain at U = 0.03m/s, t = 12 s, 

estimated by (a) Carreau-Yasuda model and (b) power law model 

The pressure (Cp= p/ρU2) distributions are obtained by utilizing filtered and unfiltered velocity 

and corresponding viscosity (using Carreau-Yasuda model) in momentum equations and are 

shown in Fig. 4.9. Figure 4.9(a) shows the pressure distribution evaluated by unfiltered velocity 

data. The pressure in wake region is higher than other regions which is unrealistic. Using 

median filtered velocity data in momentum equation, the pressure distribution is shown in Fig. 

4.9(b). With this approach, low-pressure region in the wake was observed although the presence 

of vortices is still not clear. On the other hand, in Fig. 4.9(c) pressure distributions by POD 

filtered data (mode 1 to 3) and POD mode 1 to 20 (Fig. 4.9(d)) are more realistic. The low-

pressure region is formed in the wake, clearly indicating the presence of a pair of vortices behind 

the cylinder. Another concern is the three-dimensionality close to cylinder. Although, error due 

to 2D assumption of 3D flow is limited to 5% for pressure in wake of a cylinder up to Re=1600 
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(McClure and Yarusevych 2017b). This is attributed to the understanding that the energy 

containing dynamic part of vortex shedding flow is mostly 2D while vortex filaments are 

distributed in 3D. In addition, POD analysis included the lower modes containing high energy 

content of flow.  

 

Fig. 4.9 Pressure (Cp= p/ρU2) distribution plots using (a) unfiltered (b) Median filtered 

(c) POD mode 1 to 3 (d) POD mode 1 to 20 filtered velocity data at U = 0.03 m/s, t 

= 12 sec 

4.5.3 Performance of Algorithm in Unsteady Process 

To evaluate the performance of pressure estimation algorithm, the measured data were analyzed 

at various time instances. The distribution of pressure and viscosity at these time instances are 

shown in Fig. 4.10. The velocity data is extracted at three stages of vortices development. At 

t=0.06 s, in wake, the shear layer vortices were developing and are exactly symmetrical with 
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respect to the center of cylinder. Symmetric viscosity and low-pressure regions were obtained 

downstream in the wake Fig. 4.10 (a). At t=10 s, the vortices are developed but still attached 

with shear layers. The corresponding viscosity and low-pressure region formed accordingly in 

wake, Fig. 4.10 (b). At t=22 s, vortices were separated from shear layer. The viscosity 

distribution was formed as expected, but the low-pressure region was not reconstructed 

accurately which might be due to unsteady term omission in pressure calculation Fig. 4.10 (c). 

For pressure estimation, temporal terms in Eq. 4.5 and 4.6 can be omitted if advection terms 

dominate over temporal term. At t=3.3 sec, the temporal term and advection terms are 

calculated for PIV measured data considering POD mode 1 to 20 as shown in Fig. 4.11. It is 

found that the magnitude of temporal term is at least 10 times smaller than the advection term. 

It was observed that the distribution of temporal term is not smooth. Thus, inclusion of temporal 

term makes the solution unrealistic due to large error propagation during integration procedure. 

The time derivative terms were also omitted in the study by (Imaichi and Ohmi 1983). They 

mentioned that during development of twin vortices the error in neglecting temporal term is 

very less because flow develops very slowly in time.  However, as it was found that at t=22 sec 

the vortices separated and migrated downstream and flow changes much faster. The present 

algorithm could not reconstruct the pressure field after vortices detached from shear layer and 

migrated downstream, so the omission of temporal term can be justified until vortices are 

attached to the shear layer which clearly indicates the requirement of much more robust 

technique to estimate pressure fields. 
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Fig.4.10. Velocity, viscosity and pressure (Cp) distribution for various time instances 

(a) t=0.06 s, (b) t=10.0 s and (c) t=22.0 s at U=30mm/s 

 
Fig. 4.11 At time t=3.3 sec (a) distribution of temporal term ( /u t  ) (b) Sum of advection 

and diffusion terms in Eq.8. 
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4.5.4 Relation Between Material Property to Pressure and Vorticity 

An attempt is made to understand the relation between viscosity, pressure and enstrophy in 

unsteady flow. For several instances, the line integral convolution plots are shown in Fig. 4.12 

(a). These plots clearly show the various stages of vortices development. In Fig. 4.12(b, c), the 

correlation plots are drawn between η and enstrophy (|ω|2)  and  η and Cp. The correlation 

coefficients are given in Fig. 4.12(d). In the present results, η is negatively correlated with 

enstrophy (|ω|2) and positively correlated with pressure. Quantitatively, η is more correlated 

with |ω|2 than the pressure which confirms that the viscosity is clearly a function of kinematics. 

At several stages of vortex development, separation and after separation, Cc of η Vs |ω|2 

increases progressively with time. Here, |ω|2 represents the energy dissipation in the flow (Zhu 

and Gao 2017). Vortices are strongest in the vicinity of cylinder and dissipate energy as they 

migrate in the wake so as vortices migrate with time, turbulent kinetic energy dissipation 

increases (Cottet and Poncet 2002). Negative correlation of |ω|2  with viscosity indicated 

successive decrement in η with time. In other words, the wake stabilization increases with time 

as viscosity drops due to shear thinning property. This means that in the wake, vorticity will 

increase comparatively higher than Newtonian fluid due to shear thinning property of fluid. On 

the other hand, positive correlation of η with Cp shows that as time increases the pressure also 

decreases which signifies that the pressure lowering at vortex core is intensified during vortex 

development due to shear thinning property of fluid. These physically valid arguments indicate 

that the results obtained in current work is promising. 
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Fig. 4.12 (a) Line integral convolution plots at time t=0.06 s to 20 s, with correlation 

plots between (b) viscosity (η) and pressure (Cp) and (c) viscosity (η) vs enstrophy (d) 

corresponding correlation coefficients given at right. 

 

4.6 Error propagation analysis 

Several error propagation studies are reported in literature for Newtonian fluids (Sciacchitano 

and Wieneke 2016). Mostly the error propagation is affected by type of flow, spatial resolution 

and filtering method (Charonko et al. 2010b). Additionally, dimension of flow domain and 

boundary conditions are also important factors (Pan et al. 2016). It is worth to discuss the error 

propagation in this study because the governing equations and rheological models in non-

Newtonian fluid are different from Newtonian fluids. In the pressure estimation procedure from 

experimental data, truncation error and precision errors are commonly encountered (van 

Oudheusden 2013). The numerical discretization of several derivative terms is the source of 
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truncation errors whereas uncertainty in measured velocity data propagates to pressure and 

produces precision errors. In this study the precision error propagation analysis is carried out 

for Eq.4.5 and 4.6. The precision error in all derivative terms are estimated from central 

difference scheme due to propagation of uncertainty in u and v i.e. 
u and 

v . Precision error 

associated with p

x

 



 and  p

y

 



 terms can be written as: 
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The error propagation in convection terms is the same as in Newtonian fluid. The additional 

four terms are extra in non-Newtonian fluids. The precision error corresponding to each term is 

given below: 

Error in convection terms: 
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Error in diffusion terms: 
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Eq. 4.19 and 4.20 shows that the error in diffusion term increases with  .  Eq. 4.19 shows that 

the error in diffusion term is function of viscosity, which indicates that shear thinning property 

could help in reducing error in shear layer and reverse flow region. However, the viscosity 

gradient serves the opposite. If spatial resolution of measurement is higher, the error in diffusion 

term will be suppressed but error amplifies in velocity derivative terms due to its inverse 

relationship: 
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On the other hand, for Newtonian fluid flows the precision error propagated from uncertainty 

of velocity (
v ) in N-S equation can be written as 
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Compared with the Newtonian fluid, the expression of precision error in Non-Newtonian fluid 

is a very complex function of flow velocity, grid space, and uncertainty of velocity. In addition 

to these factors precise estimation rheological parameters is very important. In addition, error 

propagation also depends on material and selection of rheological model.  
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Chapter 5 

UVP based pressure estimation in shear-thinning fluid 

5.1    Introduction 

Most of industrial non-Newtonian fluids are opaque such as toothpaste, ketchup, shampoo etc. 

Unfortunately, PIV cannot be used to measure flow variable in those fluids. UVP (Tasaka et al. 

2012) is an alternative option for pressure estimation in opaque non Newtonian fluid flows 

because it is based on ultrasound principle. In previous chapter, PIV measurements-based 

pressure estimation algorithm for slowly developing vortices attached to cylinder in steady 

flows and unsteady flows was introduced. For separated vortices migrated in the wake region 

the former algorithm is not applicable so a novel pressure estimation technique is developed 

based on UVP measurement which is applicable in unsteady flows in both transparent and 

opaque fluids.  

 

5.2   Algorithm Development   

The algorithm has five steps; velocity measurement, data filtering, 2D velocity field 

reconstruction, rheological modeling and pressure estimation. Individual steps of the organized 

algorithm are shown in Fig. 5.1 

 

 5.2.1 Velocity measurement 

The velocity measurement was performed at Re=55 to 293, in wake of circular cylinder at three 

times diameter downstream of cylinder in CMC of wt. conc of 0.1%, with one UVP transducer 

set in vertical position in the experimental facility shown in Fig. 2.2. Measured y component of 

velocity in spatio-temporal domain the wake of cylinder is shown in Fig. 5.2(a). Here wake 

region can be identified by observing alternating positive and negative field of velocity. The 
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pixelized noise in measurement data can be clearly seen. Before using this data in CFD 

equations adequate filtering is required.  

 

Fig. 5.1 Algorithm of pressure estimation based on UVP measurements 

 

Fig. 5.2. Distribution of y component of measured velocity by UVP (a) raw velocity 

(b) velocity after FFT filtering (c) Velocity after FFT and POD filtering considering 

mode 1 to 10, y and t are non-dimensionalized respectively by diameter of cylinder 

(d) and d/U.  

 

Fig.2 Algorithm of pressure estimation based on UVP measurements 
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5.2.2 Data Filtering 

Like PIV, velocity measurements by UVP also suffer from various noises. If proper attention 

in not rendered, these noises can magnify in calculation of velocity, viscosity and pressure. 

Combination of temporal (FFT, Fast Fourier Transform) and spatial (POD, Proper Orthogonal 

Decomposition) filtering in UVP data had been proved very efficient and is explained in chapter 

3 and  (Tiwari et al. 2019) . Same filtering technique was adopted here. After application of low 

pass filtering the experimental data is reconstructed in Fig. 5.2(b). Here high frequency noises 

are filtered, and this data is further analyzed with POD. POD (Sirovich 1987a) (Sirovich 1987b) 

decomposes the experimental data in orthonormal basis functions and resolves the kinetic 

energy into POD modes. First mode acquired the highest kinetic energy, 76% of total energy, 

which includes dominant structures of flow and mode 1 to 10 contains 99.5% of energy. In Fig. 

5.2 (c), the reconstructed data after POD filtering is shown.  

In the further sections, all governing equations are given in non-dimensional form. Following 

scaling variables, rendered dimensionless terms: D for length variables, U for velocity terms, 

ρU2 for pressure. These equations are solved by finite difference method and all the equations 

are discretized by central difference scheme.  

 

5.2.3 Reconstruction of 2D velocity field 

Velocity information in t-y plane can be converted to x-y plane based on Taylor frozen 

hypothesis. This approach is discussed in section 3.2 along with equation of continuity to 

estimate the unknown component of velocity. The reconstructed 2D velocity vector field are 

shown in Fig. 5.3. Here dominant vortex structures are reconstructed when only mode 1 is 

considered for velocity reconstruction. When mode 1 to 3 are considered, very clear presence 

of staggered arrangement of vortices can be identified. Similarly, as more higher modes are 

considered, smaller vortices appear in a staggered pattern. 
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Fig. 5.3. Reconstructed velocity vector field considering POD (a) mode 1, (b) mode 1 to 3 

and (c) mode 1to 10 

5.3 Pressure Poisson equation for shear thinning fluid 

The momentum conservation equations and rheological models are already discussed in section 

4.2.1. Derivation of pressure Poisson equation for shear-thinning fluid is described here. 

After taking divergence of Eqs. 4.5 and 4.6 the pressure Poisson equation for two-dimensional 

flow can be written as 

2 2
2

2 2
1 2

p p
p term term

x y x y

   
 = + = +

   
 

(5.1) 

 Here term1 and term 2 are as follows: 

2 2

2 2

2
1

Re Re
xx yx

u u u u
term u v

x y x y x y

  
 

           
= − + + + + +     

           
 

(5.2) 
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v v v v
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x y x y x y

  
 

           
= − + + + + +     

           
 

 

Further differentiation of term 1 and term 2 with respect to x and y produces higher order and 

mixed derivatives.  

2 2

2 2

2 2 2 2 2
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+ + + + + +     

               

 

(5.3) 

In case of Newtonian fluid, the pressure Poisson equation is  

2 2

2 2
2

p p u v u v

x y x y y x

      
+ = −  − 

      
 

(5.4) 

Unlike Newtonian fluid flows, the source term of pressure Poisson eq. in Non-Newtonian fluids 

is a function of viscosity so even after application of continuity equation, various terms do not 

cancel out and five additional terms appear as shown in Eq.5.3. Here, Poisson equation, contains 

two terms of the first order spatial derivative of viscosity and three terms of the second order 

and mixed derivatives of viscosity, thus, five terms in total. Here accurate computation of the 

second order spatial derivatives of viscosity is difficult since discretized approximation of the 

strain rate by Eq. 4.10 provides only the first order derivative of viscosity. Furthermore, cross 

spatial derivative in the last term of Eq. 5.3 needs 2-D third-order derivative of viscosity 

measurement. Considering these mathematical constraints in solving Poisson equation, for 

pressure calculation, Eq.5.1 was used in the current form i.e. first term1 and term 2 are 

calculated at all grid points and then their derivatives are calculated using finite difference 

method instead of directly computing higher order derivatives of velocity and viscosity at each 

grid points. All derivatives are calculated by second order finite difference scheme. Pressure 
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was obtained in an iterative manner in order to minimize the least square error (LSE). If spatial 

resolution of velocity is poor, such as PIV measurement even Eq. 5.1 cannot provide a 

converged solution of pressure. This limitation of PIV restricted its application in pressure 

estimation of unsteady fast developing flows.   

After applying Taylor frozen hypothesis and equation of continuity, the 2D domain was treated 

as computational domain for pressure estimation. The spatial resolutions in x and y directions 

are 0.13 are 0.07mm. The boundary conditions of pressure are as follows: 

At the left and right boundaries, Neumann boundary condition of pressure is applied and at 

bottom left corner Dirichlet condition of pressure is applied to control the absolute error. Zero 

pressure gradient conditions are applied along the top and bottom boundaries.  

5.4 Results and discussions 

5.4.1 Viscosity distribution 

In Fig. 5.4, viscosity distribution in wake of cylinder by Carreau-Yasuda model is shown for 

three different cases corresponding to data considering, POD mode 1, mode 1 to 3 and POD 

mode 1 to 10. In reconstructed viscosity field corresponding to POD mode 1, low viscosity 

distribution appears in wake due to dominant vortex structures. The low viscosity due to 

presence of high strain rate represents the shear thinning property of aqueous solution of CMC. 

As higher modes are considered, due to the large number of vortices, low viscosity distribution 

became dense in the wake region. Interestingly, the arrangement of low viscosity regions is the 

same as vortices in wake.   
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Fig. 5.4 Viscosity variation in computational domain for data corresponding to POD (a) 

mode 1 (b) mode 1 to 3 and (c) mode 1 to 10 respectively. 

 

5.4.2 Pressure distribution 

Pressure distribution obtained after solving Eq. 5.1, is shown in Fig. 5.5. Similar to viscosity 

determination, pressure distributions are obtained by considering POD mode 1, mode 1 to 3 and 

mode 1 to 10. The alternating low-pressure regions are observed in the wake region due to 

staggered arrangement of vortices. The presence of vortices can be easily distinguished by 

observing low pressure region.  

 

 

�
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Fig. 5.5 Pressure distribution in computational domain considering velocity data of POD 

(a) mode 1, (b) mode 1 to 3 and (c) mode 1 to 10. 

 

5.4.3 Correlation of viscosity to enstrophy and pressure 

Phase averaging was performed in range 7.5≤ x ≤ 17.5 for pressure, viscosity and enstrophy 

( |ω|2) in wake, where = u . In Fig. 5.6, distribution of phase averaged pressure, viscosity 

and enstrophy distributions were plotted in (7≤ y ≤ 16) excluding free stream region. The low-

pressure regions and corresponding to high viscosity regions are indicated in squares in Fig. 5.6 

(a, b) which represents the inverse relation between pressure and viscosity. In Fig. 5.6(c) high 

enstrophy indicates high energy dissipation which is responsible for low viscosity in wake. 

These relations can be also confirmed by performing a quantitative assessment with cross-

� �
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correlation analysis. The correlations between pressure, enstrophy and viscosity were 

investigated for wake region 7.5≤ x ≤ 17.5.  

 

Fig. 5.6 Phase averaged (a) pressure (b) viscosity and (c) enstrophy distributions in wake 

region                                        

In Fig. 5.7, the viscosity variations with enstrophy and pressure are presented with correlation 

coefficient (Cc). The scatter plot of 𝜂 vs |ω|2 and 𝜂 vs Cp shows that, they have inverse relation 

which was confirmed by negative sign of Cc. This is also in the support of visual inspection of 

their characteristics shown in Fig. 5.6 (a, b). Quantitatively viscosity is more correlated with 

enstrophy than pressure which means that the shear thinning characteristic of fluid is more 

dependent on kinematics than the dynamics of fluid. In Fig 5.7 (b) the negative pressure region 

represents the region correspond to center of vortices and high-pressure region represent the 

shear layer between vortices. It was noted that, correlation coefficient is negative in wake which 

is opposite of our finding in the stage of slowly developing vortices. This can be also understood 

by observing the source term of pressure Poisson equation in Eq. 5.3, Q value and additional 

� � �

�
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opposite sign containing five terms of viscosity, due to shear thinning property these terms 

become lower thus pressure increases. On the other hand, negative correlation between 

viscosity and enstrophy supports the finding of vortex sustainability in developing vortices due 

to shear thinning property. 

 

Fig. 5.7 Viscosity variation with (a) vorticity and (b) pressure in computational domain 

 

5.5 Parametric study with Re 

 

To analysis the effect of shear thinning in kinematics and dynamics of flow, a parametric study 

is conducted for flows at Re=58, 88, 146, 293 and pressure data are estimated by present 

algorithm. The reconstructed 2D velocity vectors are shown for several Re in Fig. 5.8. The 

number of vortices increases in the wake region for the same time duration in Fig. 5.7(a, b, c) 

respectively so the  frequency of vortex shedding increases with Re which raises our expectation 

that Strouhal number (St) will also increase which is the typical Newtonian fluid behavior 

(Williamson 1996). However, in shear thinning fluid flows the Strouhal number decreases with 

Re even when vortex shedding frequency increases as shown in Fig. 5.9(a). As frequency of 

vortex shedding increases the low viscosity region became denser with Re in the wake region, 

as shown in Fig. 5.8. Due to lower viscosity in the wake the sustainability of vortex structures 

increases i.e. the vortices stay for the longer period so the vortex shedding frequency does not 

increase as much it increases in Newtonian fluid.  
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Fig. 5.8 Velocity vector plots obtained by UVP measurements filtered by FFT and 

POD at Re (a)58, (b)88, (c)146 (d) 293 

 

 
 

Fig. 5.9 variation with Re of (a) vortex shedding frequency and Strouhal number (b) 

vortex formation length 
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Fig. 5.10 Distribution of viscosity obtained by substitution of velocity data in 

Carreau- Yasuda model at Re (a)58, (b)88, (c)146 (d) 293 

 

Vortex formation length in the cylinder flow is generally defined as the distance from center of 

cylinder to the point where time averaged streamlines cross itself. To determine the vortex 

formation length another analysis is conducted at same Re range with PIV data measured in 

experimental setup described in section 2.2. The vortex formation length decreases from 0.06 

to 0.02 (Fig. 5.8(b)) as shown in Fig. 5.10 (a), (b), (c). This is in agreement with finding by 

(Bailoor et al. 2019) that vortex formation length decreases with increasing shear thinning. 

From Re=146 to 293 vortex formation increases (Fig. 5.10(d)). In Newtonian fluids the 

decrement in vortex formation length with Re up to 180 and increment at higher Re was also 

observed (Norberg 1987) (Chopra and Mittal 2019).  
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Fig. 5.11.  Time averaged streamline plot obtained by PIV measurement performed 

at Re (a)58, (b)88, (c)146 (d) 293 

 

Velocity and viscosity data corresponding to Fig. 5.8 and Fig. 5.10 are substituted in Eq.5.1 to 

determine the pressure distribution. Pressure plots are shown in Fig. 5.11. The alternating 

positive and negative pressure field was accurately reconstructed in wake region and lower 

pressure regions became denser due to presence of higher number of vortices in wake with 

increasing Re. To determine the relation of pressure and viscosity with increasing Re the phase 

averaging are performed in range 7.5≤ x ≤ 17.5 viscosity and pressure field are plotted in Fig. 

5.13. The inverse relation of viscosity with enstrophy and pressure is confirmed in flow if Re 

increases.  

To understand the relation between viscosity with pressure and enstrophy with increasing Re, 

scattered plots are analyzed in Fig. 5.14. Here enstrophy increases with increasing Re and due 

to inverse relation viscosity decreases. This indicated that the vortex sustainability increases 

with increasing Re. However, from Re=146 the scattering started increasing until Re=293. On 
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the other hand, pressure is very weakly related to viscosity which also shows scattered pattern. 

Scattering indicates the dependency of viscosity on other parameters such as stresses and strains 

increases with Re.  

To determine the dependency of viscosity on the normal and shear strains, scatter plots are 

analyzed and shown in Fig. 15.15. At Re=58 and 88, viscosity is clearly stronger function of 

shear strain than normal strains but at Re=146 the scattering in viscosity vs shear stresses plot 

starts increasing. The magnitude of normal strains also increases. Consequently, as Re increases 

to 293 the dependency of viscosity on shear strain is almost similar to normal strains as shown 

in Fig. 5.15(d1), (d2), (d3). This suggests that as Re increases the viscosity becomes strong 

function of normal strains along with shear strain so the viscosity estimation based on shear 

strain tests is not valid for high Re flows. 

 
Fig. 5.12. Distribution of pressure for Re, (a) 55 (b) 88 (c) 146 (d) 293 
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Fig. 5.13 Phase averaged viscosity and pressure plots for Re, (a1, a2) 55 (b1, b2) 88 (c1, 

c2) 146 (d1, d2) 293 
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Fig. 5.14 Viscosity variation with vorticity and pressure for Re, (a) 55 (b) 88 (c) 146 (d) 

293 in computational domain 
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Fig. 5.15 Strains variation with vorticity and pressure for Re, (a) 55 (b) 88 (c) 146 (d) 293 

in computational domain 
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Chapter 6  

Irrotational correction of pressure gradient estimated from Pressure 

Poisson equation   

6.1 Introduction 

Pressure estimated from measured velocity data using PIV/PTV often suffers from noise 

propagating from uncertainty even after achieving convergence by an iterative approach. In 

ideal case, the error should be zero after convergence but with experimental data errors exist 

even after convergence is attained. A general error converging iterative procedure can be seen 

in Fig. 6.1. The residual error remains due to measurement noise. These residual errors can 

cause error up to 30% in instantaneous pressure (Ghaemi et al. 2012) (Azijli and Dwight 2015). 

Instantaneous pressure estimations from velocity data is even more sensitive to measurement 

noises (Azijli and Dwight 2015) (Azijli et al. 2016) (Charonko et al. 2010). Error analysis-based 

studies often use synthetic flow field for which analytical solutions are known: such as Taylor 

vortex, Lamb-Oseen vortex (McClure and Yarusevych 2017b), solid body rotation (Wang et al. 

2016b) and direct numerical simulations data (Sciacchitano and Wieneke 2016) (Wang et al. 

2016a). Error propagation in estimated pressure field depends on various factors such as spatial 

and temporal resolution of velocity data, boundary conditions of computational domain, size of 

domain, type of flow. For instantaneous pressure field even high spatial resolution of velocity 

data does not guarantee an accurate instantaneous pressure estimation (McClure and 

Yarusevych 2017a) (McClure and Yarusevych 2017b).   

To improve the accuracy of pressure estimation several correction techniques have been tested 

by researchers such as average smoothening, moving average filtering, low pass filtering, 

proper orthogonal decomposition (POD) for filtering of velocity data. Among them POD, a 

physics based filter is more suitable for PIV/PTV data (Charonko et al. 2010a). Other methods 

are proposed based on divergence correction scheme using continuity equation (De Silva et al. 
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2013) and Helmholtz representation based filtering (Song et al. 1993). Firstly, a linear 

propagation analysis was introduced by (De Kat and Van Oudheusden) to understand the error 

propagation from uncertainty in measurement data to pressure data. Later Bayesian estimation 

framework  have been proposed by (Azijli et al. 2016). Another framework of error analysis is 

proposed by (McClure and Yarusevych 2017a) based on divergence and curl of error. For curl 

correction in the pressure field, (Wang et al. 2016) proposed a minimal two norm criteria based 

irrotational correction method. They suggested that their IC correction method is not better than 

average smoothing in reducing curl. But it has global error correction characteristic which 

works well in correcting directional error propagation during integration of pressure gradients. 

Former two methods are suitable for pressure estimation from Navier-Stokes equation. The 

major source of error propagation i.e. integration of pressure gradients to evaluate pressure still 

exist. In addition, these techniques are not applicable to correct pressure field estimated by 

pressure Poisson equation.    

 

  

Fig. 6.1. Procedure of convergence during pressure estimation 

  



 

 74 

6.2 Theoretical background 

6.2.1 Pressure gradient error 

The measured velocity can be seen as the sum of exact velocity data and error in velocity data. 

Similarly, pressure gradient is also sum of exact pressure and error, these can be represented in 

mathematical form as: 

ex u

ex PP P 

= + 

 =  + 

u u
 

(6.1) 

(6.2) 

Here 𝜀𝑢 and P  are error in velocity and pressure gradient data.  

The analysis of error propagation characteristics in synthetic fields requires the addition of 

artificial noise in the analytical solution (Schneiders et al. 2016) (Lynch and Scarano 2014) 

(Azijli et al. 2016) (Charonko et al. 2010a). Some of the study used gaussian distributed noise  

(Liu and Katz 2006) (Pan et al. 2016) and (Wang et al. 2016) in velocity field and pressure field. 

Random error can be generated assuming gaussian distribution of random numbers with mean 

of zero and standard deviation of 1.  

         ( )
( )

2

2

1
exp

22

m

u or p

x
f






 − −
 
 
 

=                                         (6.3) 

Here  is mathematical expectation and is variance. A more suitable assumption of artificial 

error in PIV experiments is the combination of random error and correlated error due to overlap 

of interrogation windows (McClure and Yarusevych 2017a). In spatially correlated Gaussian 

noise, the covariance can be represented as 

ij i ij jS   =  (6.4) 

Here 
i  is standard deviation of random error specified as below: 

                  
2

i

peaku u = +                                                           (6.5) 

Here    is random error component Then correlated random error can be generated by 
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i ij j

u l = , l  can be obtained by using Cholesky decomposition of 'S ll= .  

6.3 Present IC correction method 

Helmholtz representation theorem suggests that any finite, twice differentiable vector field can 

be expressed as sum of solenoidal vector field and irrotational vector field so gradient of 

pressure ( p ) which is a vector field can be written as 

∇𝑃 = ∇𝑃𝑠𝑜𝑙 + ∇𝑃𝑖𝑟𝑟𝑜𝑡𝑎𝑡𝑖𝑜𝑛𝑎𝑙 = ∇ × 𝐹 + ∇𝛹                                (6.6) 

Here F is scalar potential and is vector potential. Divergence on both side of Eq. 6.6 gives                                                 

  ∇. ∇𝑃 = ∇. ∇ × 𝐹 + ∇2𝛹                                            (6.7) 

A new form of Poisson equation can be obtained by applying the condition of divergence of a 

curl is zero in Eq. 6.7. 

      ∇2𝛹 = ∇2𝑃                                                (6.8) 

Equation 6.8 can provide distribution of irrotational pressure. ∇2𝑃 which itself is a Laplacian 

is the source term in Eq. 6.6 which increases the curl correction significantly as compared with 

usual pressure Poisson equation. Laplacian operator already has curl correction characteristics 

(Wang et al. 2016). Moreover, it is also applicable for curl correction in Navier-Stokes estimated 

pressure field.  

∇2𝛹 =
𝜕

𝜕𝑥
(

𝜕𝑃

𝜕𝑥
) +

𝜕

𝜕𝑦
(

𝜕𝑃

𝜕𝑦
)                                         (6.9) 

The solution of Poisson equation is very sensitive to boundary conditions. So, for more realistic 

pressure in boundaries, estimated pressure field from pressure Poisson equation or Navier-

Stokes equation can be used. The discretized form is given below: 
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 Here 2 2P =   is discretized with three-point central difference scheme and 2P   is 

discretized with five-point central difference scheme. The computational cost will be almost 

double, if pressure Poisson equation is used for pressure estimation with present IC method. On 

the other hand, if pressure is estimated from Navier-Stokes equation the discretized form of Eq. 

6.9 can be used to obtain the curl free pressure distribution.  
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          (6.11) 

 

6.4 Results and discussion 

The synthetic velocity data is extracted from analytical velocity field for Taylor vortex given 

by following equation in to a regular grid  

2

2
exp

8 4

H r r
u

t t


  

 −
=  

 
                                             (6.12) 

where r, t, and  are the radial position from the vortex center, time elapse, and kinematic 

viscosity of fluid. For generating the synthetic PIV data with noise, we set H= 7.5×10-5 m, 

=1×10-6 m2 s-1, =1000 kg m-3, and t=0.5 s. In the present study, correlated random artificial 
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noise with 𝛼=0.01, 0.05 and 0.1 are added to velocity data of Taylor vortex (Eq. 6.12). The 

interrogation window size is assumed to 16 16  px and overlap is 50%. As described by 

(Sciacchitano and Wieneke 2016) 
ij  in Eq.6.4 can be constructed by triangular function 

1
px

x

n

 
−  

 
 for pxx n otherwise 0.  

6.4.1  Pressure estimation by pressure Poisson Equation with correlated noise  

Pressure is estimated by solving pressure Poisson Eq. 1.6 for velocity field corresponding to 

𝛼=0.01, 0.05 and 0.1. All the terms in pressure Poisson equations are discretized with three 

point central difference scheme and reconstructed pressure fields are shown in Fig. 6.2 (a, b, c). 

Here error in pressure increases with increasing 𝛼. 

 

Fig. 6.2 Distribution of pressure determined by pressure Poisson Eq. for 𝜶𝟏 (a1, a2), 

𝜶𝟐 (b1, b2), 𝜶𝟑 (c1, c2) 

 

For the correction of pressure field Eq. 6.8 is applied in each case to obtain the irrotational 

pressure field. The reconstructed pressure fields are shown in Fig. 6.3. Here the reconstructed 

pressure fields are idential to exact pressure field. 
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Fig. 6.3 Distribution of pressure reconstructed by applying present correction for 

𝜶𝟏 (a1, a2), 𝜶𝟐 (b1, b2), 𝜶𝟑 (c1, c2) 

To quantify the error in corrected pressure field compared with pressure Poisson equation, 

Monte Carlo simulation is performed for 3000 evaluations from present method in a horizontal 

line along the center of the domain. Bias (𝜀�̅�) and random (𝜀𝑝
′ ) errors are evaluated for pressure 

and pressure gradient and shown in Fig. 6.4. Here both bias and random error in pressure 

Poisson estimated pressure field are higher compared to present corrected reconstructed 

pressure field. 

 

Fig. 6.4 (a) Mean and (b) standard deviation of error statistics calculated over 3000 

realizations of pressure by present method 
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6.4.2  Pressure estimation from Navier-Stokes by irrotational correction 

Pressure gradients estimated by Navier-Stokes needs to be integrated over multiple paths to 

obtain pressure field. An efficient pressure integration approach reduces the multiple paths to 

just two path by irrotational correction which is known as orthogonal path integration (OPI) as 

proposed by (Wang et al. 2016). This indicated that the curl correction can reduce the number 

of paths required for integration to obtain the accurate pressure field. In this study, we applied 

the present curl correction method to pressure gradient obtained by Navier-Stokes equation. 

The Taylor vortex velocity data are extracted in regular grid and correlated and random errors 

are added with 𝛼=0.01, 0.05 and 0.1. Then pressure gradients are estimated by solving Navier-

Stokes Eq. 1 for each case. Each term of Navier-Stokes equation is discretized with three point 

central difference scheme. The PDF of curl of pressure gradients are plotted in Fig. 6.5 (a1, b1, 

c1). Reconstructed pressure field is shown in Fig. 6.5 (a2, b2, c2). Here curl free pressure field 

is determined without integrating pressure gradient field. To quantify the error in pressure field 

the PDF of curl of pressure gradients are plotted for corrected pressure field in Fig. 6.5 (a3, b3, 

c3). The curl is of order 101 which is almost as accurate as pressure corrected from pressure 

Poisson equation. In addition present method can potentially reduce the steps of finding the 

error in pressure gradients compared to many published researches (McClure and Yarusevych 

2017b) (Wang et al. 2016). (Pan et al. 2016). 
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Fig. 6.5 PDF of curl of pressure gradients before and after curl correction and 

reconstructed pressure field for 𝜶𝟏 (a1, a2, a3), 𝜶𝟐 (b1, b2, b3), 𝜶𝟑 (c1, c2, c3) 

6.4.3 Present correction in PIV data 

From flow visualized image Fig 6.6 (a), the measurement domain by PIV is treated as 

computational domain and for that suitable boundary conditions are applied as shown in Fig. 

6.6 (b). At the left and right boundaries Neumann boundary condition is applied and in corners 

Dirichlet Condition of pressure is applied to control the absolute error. The top and bottom 

boundaries are defined as zero pressure gradients. The pressure distribution is obtained by 

solving pressure Poisson equation. Successive over relaxation (SOR) scheme was adopted to 

solve iteratively. Maximum square error (MSE) of pressure discrepancy is calculated at each 

iteration step to monitor numerical convergence. When MSE falls below 10-4 (dimensionless), 

the pressure is accepted as final solution. The overall algorithm of this process is shown in Fig.  

6.6 (c). 
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Fig. 6.6 (a) Visualized image (b) Computational domain and boundary condition (c) 

algorithm 

6.4.3.1 Comparison of IC with other filtering techniques 

In this section three different PIV, unfiltered and filtered velocity are used for assessment of IC 

method. For filtering, low pass FFT (Fast Fourier Transform) and POD (Proper Orthogonal 

decomposition) are opted. Pressure obtained by unfiltered velocity data before and after 

correction are shown in Fig. 6.7 (a1, a2). Here reconstructed pressure field after applying IC 

method is noise free. Similarly, FFT and POD filtered velocity data evaluated pressure fields 

are shown in Fig. 6.7(b1, b2), (c1, c2) respectively. Pressure data evaluated from velocity 

dataset with FFT and POD filtering have filtered the true velocity data and magnitude of 

pressure reduced. The present correction method could reconstruct the pressure field however 

the lost information of true data could not be recovered.  
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Fig. 6.7.  Pressure distribution in cylinder flow, reconstructed pressure (a1) without 

applying filtering (a2) after applying present correction method (b1) after applying FFT 

low pass filtering (b2) after applying present method, (c1) after applying POD based 

filtering (c2) after applying present method 
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Chapter 7 

Conclusions and future directions 

7.1 Conclusions 

Experimental tool development for pressure profile measurements has current industrial 

demand. This study offers new techniques of measurement of pressure distribution by fusion of 

experiments and CFD in incompressible flows. Three algorithms are developed for opaque 

Newtonian fluids, transparent shear-thinning fluid and opaque shear thinning fluids. By using 

PIV and UVP, spatio-temporal velocity data were obtained in transparent and opaque fluids 

respectively. For pressure estimation Navier-Stokes, pressure Poisson and momentum 

equations were utilized for Newtonian and non-Newtonian fluids. 

UVP measurement is limited to one dimensional one component (1D-1C) along measurement 

line which is not sufficient to estimate pressure field from N-S or Pressure Poisson equation. 

This requires additional use of equation of continuity. On the other hand, PIV can provide the 

velocity vector field in two-dimensional two component (2D-2C). So, pressure estimation by 

PIV data for Newtonian fluids is easier than with UVP.  However, PIV cannot be applied to 

study opaque flows which are more commonly found in food and material industries for which 

UVP is the possible solution. 

Experimental data always suffers from measurement noise which cannot be directly used in 

CFD equations so filtering is very essential step in fusion methods. For PIV data either median 

filtering, FFT and POD filtering can be opted but UVP data requires unique combination of 

FFT and POD filtering before using it in continuity equation. 

In chapter 3, a UVP based novel pressure estimation algorithm was developed for opaque fluid. 

After applying suitable filtering UVP data was used in continuity equation to estimate the 

second unknown component of velocity. Then to estimate pressure, 2D velocity data was 

substituted in Navier-Stokes equation. This algorithm was demonstrated for vortex flow in 

water and milk. In wake region alternating low and high-pressure regions were obtained as per 
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staggered arrangement of von-Karman vortices. It was found that UVP measurement with 

Taylor Frozen hypothesis is suitable for accurate pressure estimation in wake of cylinder.  

Pressure distribution algorithm in non-Newtonian fluids was never reported before so a unique 

pressure and stress estimation algorithm is developed for steady flow of shear-thinning fluid. 

This is described in chapter 4. This algorithm couples the PIV, CFD and rheometry. For shear 

thinning fluid two rheological models: Power law and Carreau Yasuda were used. Viscosity 

and stress distributions were reported for the first time. For pressure estimation velocity and 

viscosity data are substituted in momentum equation (with omitted temporal term). Low 

pressure region at vortex cores were accurately obtained which corroborates the accuracy of 

algorithm. In addition, the quantitative assessment of relation between material and dynamic 

property of fluid were performed with cross-correlation analysis. It was found that during 

development of vortices viscosity is negatively correlated with enstrophy and the pressure 

lowering intensified at vortex cores with time due to shear thinning property of fluid. Wake 

stabilization also increases with time. This algorithm is also tested for unsteady instantaneous 

data.  During vortex development the temporal term in momentum equation is 10 times smaller 

than the advection term due to slow development of flow so the omission of temporal term from 

momentum equation can be justified. However, when the vortices separated from cylinder and 

migrated in the wake, due to highly unsteady wake flows, the algorithm fails. One other possible 

option in unsteady flows at higher Re is pressure Poisson equation. For non-Newtonian fluid 

flows the source term of pressure Poisson equation is more complex due to spatial gradient of 

viscosity and cannot be solved with low resolution PIV data. An uncertainty quantification is 

included to explain how experimental uncertainties in velocity will propagate in calculation of 

pressure.  It was found that the error propagation is directly proportional to error in viscosity. 

Although the shear thinning property can reduce the error propagation. Another factor is spatial 

resolution of data, high spatial resolution could reduce the error in diffusion terms but increases 

the error in convection term.  
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For unsteady separated vortex flow in shear thinning fluid UVP based pressure and stress 

estimation algorithm is developed and discussed in chapter 5. The FFT and POD filtering were 

also found suitable for shear-thinning fluid flows. This algorithm couples UVP, equation of 

continuity, rheometry and pressure Poisson equation. Due to capability of UVP this algorithm 

can also be applied in opaque non-Newtonian fluid flows. An alternating staggered arrangement 

of low-pressure region are obtained in core of vortices in wake of cylinder. This signifies that 

for pressure estimation in unsteady flow in shear thinning flows, UVP is a suitable substitute of 

PIV.  

Error in velocity field often propagates and produces curl in pressure gradient field. However 

as per mathematical definition the gradient of a scalar quantity should not have curl. Hence, an 

irrotational correction (IC) method is developed to filter estimated pressure. The pressure 

gradient field is decomposed into rotational and irrotational parts using Helmholtz 

decomposition theorem. Then rotational part should be neglected, and filtered pressure is 

calculated from irrotational part. This method was tested in PIV data collected at t=12 sec in 

water flow over cylinder. Four set of pressure data are obtained by solving pressure Poisson 

equation for unfiltered, FFT and POD filtered velocity data. The present method can entirely 

eliminate the need of velocity filtering before estimating pressure field. Also, present correction 

method offers the curl free pressure estimation without performing any integration of pressure 

gradients if Navier-Stokes equation is employed.  

 

7.2 Future directions 

Based on findings of present work several research directions can be envisioned, some of them 

are listed here. 

1. Reconstruction of two-dimensional velocity field in milk flow by UVP pointed out that 

the vortex shedding frequency becomes lower in milk flow which is very useful 
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information for vortex flow meters which are generally used in industries for 

maintaining good quality of product. The frequency of vortex shedding can also be 

determined for other opaque fluids which has either Newtonian or non-Newtonian 

nature.  

2. The present study demonstrated the pressure profile estimation in shear thinning flows. 

In future, pressure estimation profiler can be developed for other non-Newtonian fluids 

such as viscoelastic, shear thickening fluids etc. 

3. Pressure drop in pipes bends and complex pipes is still unsolved problem of industries 

and these are responsible for product quality degradation. Hence, the pressure 

estimation algorithm can be implemented to study fluid flows in such complex 

geometries. 

4. Pressure estimation in opaque fluid flows by UVP also made possible its application in 

experimental study of sediment transport during Tsunami propagation. 

5. As noted in this thesis the resolution of PIV is insufficient for reconstruction of pressure 

in unsteady non-Newtonian fluid flows. Artificial intelligence-based resolution 

improvement could be an effective solution for this purpose. 

6. AI with pressure estimation methodology could be a counterpart of direct numerical 

simulations. Even smallest turbulent structure can be resolved and properly studied 

which has many practical relevance such as designing airplanes, high speed trains, 

mixing of different fluids in food industries, vortex induce vibrations in civil and marine 

engineering, effect of bottom boundary layers during Tsunami run up etc.   
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