

Instructions for use

Title Design and implementation of NS record history database for detecting DNS-based botnet communication

Author(s) Ichise, Hikaru; Jin, Yong; Iida, Katsuyoshi

Citation 電子情報通信学会技術研究報告, 117(299), 7-11

Issue Date 2017-11-08

Doc URL http://hdl.handle.net/2115/86953

Type article

File Information IA2017-31.pdf

Hokkaido University Collection of Scholarly and Academic Papers : HUSCAP

https://eprints.lib.hokudai.ac.jp/dspace/about.en.jsp

Design and Implementation of NS Record History Database for Detecting

DNS-based Botnet Communication

Hikaru Ichise†, Yong Jin††, Katsuyoshi Iida†††

† Technical Department, Tokyo Institute of Technology, Japan and
Graduate School of Information Science and Technology, Hokkaido University, Japan

Ookayama 2-12-1, Meguro-ku, Tokyo, 152-8550 Japan
†† Global Scientific Information and Computing Center, Tokyo Institute of Technology, Japan

Ookayama 2-12-1, Meguro-ku, Tokyo, 152-8550 Japan
††† Information Initiative Center, Hokkaido University, Japan

Kita 11, Nishi 5, Kita-ku, Sapporo, 060-0811, Japan

Abstract DNS (Domain Name System) based domain name resolution service is one of the most fundamental
Internet services for the Internet users and application service providers. In normal DNS based domain name resolution,
the corresponding NS records are required in prior to sending DNS query to the corresponding authoritative DNS
servers. However, in recent years, DNS based botnet communication has been observed in which botnet related network
traffic is transferred via DNS packets. In particular, sending DNS queries to C&C servers using IP address directly
without obtaining the corresponding NS records is present in some malware. In this paper, we focus on this type
of botnet communication and design a NS record history database for detecting DNS-based botnet communication.
We implemented a prototype system and evaluated the feature of NS records history creation as well as the checking
function. Based on the evaluation results we confirmed the proposed database worked as we designed and it is expected
to detect the target botnet communication.

Key words Botnet communication, DNS, NS record history, database

1 Introduction

Recently, botnet based cyber attacks have become one
of the biggest security issues for Internet users [1]. In
addition to the conventional cyber attack technologies,
recently we have observed that some types of botnet pro-
gram used DNS (Domain Name System) protocol. DNS
protocol is one of the most widely used communication
protocols in the Internet, which is mainly used for do-
main name resolutions. Many features of DNS provide
useful services to the Internet users and one of the fun-
damental and important features is translating domain
name to IP address and vice versus. Besides this ba-
sic feature, DNS also has many other types of resource
records such as TXT, SRV, DNSSD, etc [2] providing
corresponding services. Unfortunately, we also observed
some types of botnet program used DNS protocol for
their communication and cyber attacks. Especially for
the DNS TXT resource record type, it has free format in
plain text with more than 4,000 Bytes of capacity and
therefore is convenient for transferring information [2].

Several researches have reported that DNS TXT
record type is used on botnet for some purposes [3]. In
the prior stage of our research, we have analyzed a set of
real DNS traffic obtained from our campus network to
develop a method for detecting DNS based botnet com-
munication. In our first round of analysis, we focused
on the usages of DNS TXT record type and investigated
the real DNS traffic captured from the DNS full resolvers

of our campus network. Based on the analysis results,
we managed to categorize the legitimate usages of DNS
TXT record type so that it became expectable to detect
botnet communication by checking the categories [4, 5].

In the next analysis, we found that some botnet pro-
grams used DNS full resolvers (A recursive DNS server
for providing name resolution service for clients), while
some did not for their botnet communication. We call
the DNS queries using DNS full resolvers via-resolver
DNS queries and those not using DNS full resolvers di-
rect/indirect outbound DNS queries. We captured a set
of real DNS traffic from border router of our campus net-
work and analyzed the unique destination IP addresses
of DNS TXT record in direct/indirect outbound DNS
queries which were sent out without using DNS full re-
solvers as well. As a result, we confirmed that 19%
of direct outbound DNS queries and 8% of indirect out-
bound DNS queries have been malicious communication
by using third party web site. Based on the analysis re-
sults, we have designed an automatic detection system
for DNS-based botnet communication by monitoring di-
rect/indirect outbound DNS queries [6] 1. Considering
the traffic control features of SDN (Software Defined
Network), in the design, we selected SDN architecture
for traffic control [9]. One of the important factor of the
system is NS records history since the direct/indirect

1The paper [7] is a unified version of the paper that includes
both the first analysis [4, 5] and the second analysis [6].

1

Copyright ©201 by IEICE 7
This article is a technical report without peer review, and its polished and/or extended version may be published elsewhere.

- 7 -

outbound DNS queries before never having obtained au-
thoritative DNS records are like to be suspicious DNS
traffic. Thus the construction of effective database for
NS records history is important to realize the system.

In this paper, we focus on the design and implementa-
tion of legitimate NS record history database for detect-
ing DNS-based botnet communication. In Sect. 2, we
will introduce three types of DNS-based botnet commu-
nication; via-resolver DNS query, direct outbound DNS
query, indirect outbound DNS query. In Sect. 3, we will
describe the design of database for storing NS record
history in detail. In Sect. 4, we will explain the imple-
mentation of a prototype system. In Sect. 5, we will de-
scribe evaluation with creating a sample database using
real DNS traffic by using the prototype system. Finally,
we will conclude the paper in Sect. 6.

2 DNS-based botnet communi-
cation and related work

In this section, we introduce three types of DNS-based
botnet communication; the way of using via-resolver
DNS query, the way of using direct outbound DNS query
and the way of using indirect outbound DNS query.
Then we introduce some related researches.

2.1 Three types of DNS-based botnet
communication

In the network of an organization, we usually set up
one or more DNS full resolvers for providing DNS name
resolution service to the internal computers. The in-
ternal computers send DNS queries to the DNS full re-
solvers and the DNS full resolvers perform name res-
olution on behalf of those internal computers. As we
mentioned before, once a computer is infected by some
botnet program, the computer needs to contact with its
C&C server which is called botnet communication.

We find out that there are three types of DNS-based
botnet communication; using via-resolver DNS query,
using indirect outbound DNS query and using direct
outbound DNS query. The way of using via-resolver
DNS query relies on DNS full resolvers completely. In
[10], the authors have reported the usage of DNS TXT
record type in botnet communication using via-resolver
DNS query. Next, botnet communication using indirect
outbound DNS query is famous for Morto [14]. Fig. 1(a)
shows that the bot-infected PC obtains the IP address
of its C&C server by DNS based name resolution via
the DNS full resolver at first, then sends DNS queries
to C&C server directly. On the other hand, Feederbot
which is another type of botnet program, never uses
DNS full resolvers, which called this as direct outbound
DNS query [11]. Fig. 1(b) shows that the bot-infected
PC obtains the hard-coded IP address of C&C server
when the botnet program is istalled, then sends DNS
queries to C&C server using the hard-coded IP address

DNS
Full Resolver

Bot-infected
PC

C&C Server

Direct outbound DNS query

hard-coded IP address

DNS
Full Resolver

Bot-infected
PC

C&C Server

Indirect outbound DNS query

obtain IP address of C&C

DNS query to C&C

DNS query to C&C
IP of C&C is
hard-coded

Figure 1: Direct & indirect outbound DNS queries

directly. These two types of DNS-based botnet commu-
nication that used in Morto and Feederbot, never ob-
tain authoritative NS record before sending DNS query
to the C&C servers. Therefore we consider that if we
could collect the obtained authoritative NS records and
check the destination IP addresses of all DNS queries
in the network of an organization, it will be possible to
detect these types of DNS-based botnet communication.

2.2 Related work

Since DNS-based botnet communication might be used
widely, there were some researches in the literature. In
[12], the authors introduced DNS tunneling technology
in which the malicious contents were included in the
labels of domain names. In order to detect such DNS
tunneling, the authors discussed two methods, payload
analysis and traffic analysis. In payload analysis, they
analyzed for tunnel indicators from DNS payload in
DNS query and response. In traffic analysis, they ana-
lyzed over time in DNS traffic.
In [11], the authors analyzed 14 milloin DNS TXT

traffics and detected a new botnet, “Feederbot”. The
authors combined protocol-aware information theoreti-
cal features with behavioral communication features and
applied them at different levels of network traffic ab-
straction. Moreover, they classified malware concerning
DNS C&C usage based on network traffic.
However, none of the existing researches considered

NS record history obtained from the received DNS re-
sponses. Thus, we tend to create automatic detection
system for DNS-based botnet communication by con-
structing the legitimate NS record history database and
monitoring all DNS queries.

3 Design of NS record history
database

As described in the previous sections, in the recent DNS-
based botnet communication, the bot-infected computer

2

- 8 -

sends DNS queries to its C&C servers without obtain-
ing corresponding NS records. Thus we proposed a de-
tection method for DNS-based botnet communication
using legitimate NS record history. In this section, we
describe the detail of NS record history database and
management procedures.

3.1 Overview

In DNS based name resolution, computers or DNS full
resolvers send DNS query to the Internet and receive
response. In general, corresponding NS records will
be included in the responses which will received dur-
ing the name resolution. Thus we need to capture all
DNS query and response pairs from the network of an
organization to obtain the NS record history. Specif-
ically, we considered to create a temporary database
for DNS queries named query DB first, then capture all
DNS responses corresponding to the DNS queries stored
in query DB. Finally, we pick up all NS record history
and the IP addresses of corresponding name servers for
creating the final database NS DB for NS record his-
tory. In the following sections, we describe the tempo-
rary database query DB first followed by the detail of
database NS DB.

3.2 Query database

First, we pick up all DNS queries from the captured tcp-
dump files and create a temporary database query DB.
We selected the following data field of each DNS query
of the tcpdump file and input them to the database
query DB.

• querytime: The UNIX time in milisecond when the
DNS query is sent.

• queryid: The message id included in DNS query.

• queryname: The FQDN and record type of DNS
query. For example, when the query name in
the DNS query is ’251.13.112.131.in-addr.arpa’ and
the resource record type is 12, the FQDN means
’251.13.112.131.in-addr.arpa’ and the record type
’12’ means DNS PTR record. But if the record
type is A which means IP address, this data field
only includes FQDN.

3.3 NS record history database

After the query DB is created, we filter out all the DNS
responses from the same tcpdump file based on which
the query DB is created and pick up corresponding DNS
response for each DNS query. Consequently, we pick all
DNS query and response pairs from the tcpdump file.
Then we pick up all NS record history from the DNS
responses and store them in the NS DB. In general, NS
records can be obtained from the authority section of
the DNS response and corresponding glue A recored 2

2Glue A record indicates the IP address of the corresponding
name server.

Figure 2: Flow chart of NS DB operations

can be obtained from the additional section. However,
in some cases, the additional section does not include
corresponding glue A records though the authority sec-
tion has some NS records. In such cases, we need to
search the glue A record in the continuous DNS query
and response pairs. The following data field are created
in the NS DB.

• res time: The UNIX time in milisecond when the
response is received.

• zname: The zone name for which a DNS server is
authoritative.

• nsttl: The TTL (Time To Live) in second of the NS
record.

• nsfqdn: The FQDN of a name server included in a
ns record.

• glueAttl: The TTL in second of the glue A record.

• glueA: The IP address of the name server.

3.4 Detailed procedure of database
management

Fig. 2 illustrates the detail flow chart of NS DB opera-
tions. First of all, the tcpdump file will be read by the
program which creates the database per line. Then if
the line is a DNS query, the program performs proce-
dures for DNS query otherwise performs the procedures
for DNS response. In query procedure, a new entry will
be added to the query DB while in the response proce-
dure a new entry will be added to NS DB. Note that
some DNS responses have NS record with glue A record
in the additional section while some others only have NS
records without glue A records in the additional section.

3

- 9 -

Figure 3: Network topology for obtained data

In case of that the DNS response only has NS records,
zname, nsttl and nsfqdn are registered to NS DB. After
that, if the DNS query for the IP address of nsfqdn has
been sent then the received A record will be registered
as the glue A record of the nsfqdn in the NS DB.

4 Implementation

We implemented a prototype system using python pro-
gram language and MariaDB database. In addition, we
also used dpkt and pymsql python modules for process-
ing tcpdump files and managing MariaDB.
Figure 3 shows the network topology for obtain-

ing DNS traffic. The obtained tcpdump files in-
clude all DNS queries (the arrows with number 1
in Fig 3) and DNS responses (the arrow with num-
ber 2 in Fig 3) captured from our campus network.
Firstly, the dpkt module decodes the tcpdump file.
In this step, for example, the Queryid “32090” and
queryname “smarticon.geotrust.com” from decoded tcp-
dump file are registered to the query DB using the
pymysql module. Zname “verisign.net”, Nsttl “900000”,
nsfqdn “c2.nstld.net”, glueAttl “23570000”, glueA
“192.26.92.31” from decoded pcap file to query DB are
registered to NS DB of MariaDB using the pymysql.

Table 1 shows an entry of the NS DB created by the
prototype program. Note that if the DNS response only
has NS record, the data fields of zname, nsttl, and ns-
fqdn of the NS record will be registered in the NS DB
but the those of glueAttl and glueA will be empty. Af-
ter that, if the corresponding glue A record will be re-
ceived within two seconds, the glueAttl and glueA will
be registered in the NS DB. We also need to register
some exceptions. For example, we need to register IP
addresses of the public DNS servers since those IP ad-
dresses belong to legitimate external DNS full resolvers.
We also created an evaluation program using python in
order to evaluate the prototype system and we describe
the evaluation in the following section.

5 Evaluation

We used a tcpdump file with size of approximately
200MB to crate the NS DB for the evaluation and 18,079
NS records were created in the NS DB. Fig. 4 shows

Client

Port mirroring

Monitoring Client
（obtain the IP address of tcpdump
command and match IP address of

glueA column in NS_DB）

NS_DB

Figure 4: Evaluation topology

the local network topology for the evaluation. We sent
DNS query from the client to some specified destina-
tion IP address and monitored all the DNS traffic on
the monitoring client. When the monitoring client ob-
tained a DNS query, it checks the destination IP ad-
dresses of the DNS query in the database NS DB. If the
destination IP address exists in the glueA column of the
NS DB, the monitoring client prints out “<destination
IP address>is registered glueA record” otherwise “<des-
tination IP address>is unknown”. Consequently we can
consider that the DNS queries with “<destination IP ad-
dress>is unknown” can be botnet communication. The
commands we used fro sending DNS queries and the re-
sults are shown in Table 2. As shown in the table, we
used 3 FQDNs as samples; google.com, verisign.net and
akamai.net. For the destination IP addresses, we used
google public DNS resolvers 8.8.8.8 and 8.8.4.4 which
were not registered in NS DB and other three IP ad-
dresses which were registered in the NS DB. Accord-
ing to the evaluation results, we can see that the DNS
queries sent to those not registered in the NS DB can
be detected as we expected while to those registered in
NS DB also can be filtered out correctly.

6 Conclusion and Future work

In this paper, we designed and implemented a NS record
history database for detecting DNS-baed botnet com-
munication. We implemented a prototype system using
python program language and MariaDB. We also cre-
ated an evaluation program and evaluated the proto-
type system using real DNS traffic data. Based on the
evaluation results, we confirmed the prototype system

4

- 10 -

Table 1: Columns of NS record history database

querytime queryid queryname res time zname nsttl nsfqdn glueAttl glueA
1414782044594 32090 smarticon.geotrust.com 1414782044659 verisign.net 900000 c2.nstld.net 23570000 192.26.92.31

Table 2: Results of Feature evaluation
run the command result of checking

in client destination IP address
by NS DB

nslookup www.google.com 8.8.8.8 is unknown
8.8.8.8

nslookup www.google.com 8.8.4.4 is unknown
8.8.4.4

nslookup www.verisign.net 192.26.92.31 is
192.26.92.31 registered glueA record

nslookup www.verisign.net 192.12.94.31 is
192.12.94.31 registered glueA record

nslookup www.akamai.net 23.61.249.54 is
23.61.249.54 registered glueA record

nslookup www.akamai.net 23.61.249.55 is
23.61.249.55 registered glueA record

worked as we designed and it is expectable to detect
DNS-based botnet communication. The future work in-
cludes the evaluation of the NS record history database
in actual network environment.

References

[1] S. Khattak, N.R. Ramay, K.R. Khan, A.A. Syed,
and S.A. Khayam, “A taxonomy of botnet behav-
ior, detection, and defense,” IEEE Commun. Sur-
veys & Tutorials, vol. 12, no. 2, pp. 898–924,
Oct. 2013. DOI: 10.1109/SURV.2013.091213.00134

[2] P. Mockapetris, “Domain names: Concepts and fa-
cilities,” IETF RFC1034, Nov. 1987.

[3] S. Bromberger, “DNS as a covert channel within
protected networks,” White paper of Department
of Energy, http://energy.gov/oe/downloads/

dns-covert-channel-within-protected-networks,
Jan. 2011.

[4] H. Ichise, Y. Jin, and K. Iida, “Analysis
of via-resolver DNS TXT queries and detec-
tion possibility of botnet communications,” in
Proc. IEEE Pacific Rim Conference on Com-
munications, Computers and Signal Processing
(PACRIM2015), pp. 216–221, Aug. 2015. DOI:
10.1109/PACRIM.2015.7334837

[5] H. Ichise, Y. Jin, and K. Iida, “Analysis of via-
resolver DNS TXT queries and detection possibility
of botnet communications,” IEICE Commun. Ex-
press, vol. 5, no. 3, pp. 74–78, March 2016. DOI:
10.1587/comex.2015XBL0186

[6] Y. Jin, H. Ichise, and K. Iida, “Design of de-
tecting botnet communication by monitoring di-
rect outbound DNS queries,” in Proc. IEEE Int’l
Confrerence on Cyber Security and Cloud Com-
puting (CSCloud2015), New York, NY, pp. 37–41,
Nov. 2015. DOI: 10.1109/CSCloud.2015.53

[7] H. Ichise, Y. Jin, and K. Iida, “Analysis of DNS
TXT record usage and consideration of botnet
communication detection,” to appear in IEICE
Trans. Commun., vol. E101-B, no. 1, 10 pages, Jan.
2018. DOI: 10.1587/transcom.2017ITP0009

[8] H. Ichise, Y. Jin, and K. Iida, “Detection method
of DNS-based botnet communication using ob-
tained NS record history,” Proc. IEEE Interna-
tional Computers, Software & Applications Con-
ference (COMPSAC2015) Workshops, Fast Ab-
stract Track, pp. 676-677, July. 2015. DOI:
10.1109/COMPSAC.2015.132

[9] S. Li, Y. Jin, and K. Iida, “Detection and control of
DNS-based botnet communications by using SDN-
Ryu solution,” IEICE Tech. Rep., vol. 115, no. 482,
IA2015-93, pp. 73-78, March 2016.

[10] OpenDNS inc., “The role of DNS in botnet
command and control,” online http://info.

opendns.com/rs/opendns/images/OpenDNS_

SecurityWhitepaper-DNSRoleInBotnets.pdf,
2012.

[11] C.J. Dietrich, C. Rossow, F.C. Freiling, H. Bos, M.
Steen, and N. Pohlmann, “On botnets that use
DNS for command and control,” in Proc. IEEE
European Conference on Computer Network De-
fence (EC2ND’11), Gothenburg, Sweden, pp. 9–16,
Sept. 2011. DOI: 10.1109/EC2ND.2011.16

[12] G. Farnham, “Detecting DNS tunneling,” White
paper of SANS institute, Mar. 2013.

[13] J. Riden, “How fast-flux service networks work,”
http://www.honeynet.org/node/132, Accessed
on May 30 2016.

[14] C. Mullaney, “Morto worm sets a (DNS) record,”
http://www.symantec.com/connect/blogs/

morto-worm-sets-dns-record, Aug. 2011.

5

- 11 -

