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Abstract 

 

Non-digestible saccharides modulate various immune responses depending on their 

structures, which may contribute to host health condition. Megalo-type isomaltosaccharides 

(M-IMs) are composed of 10 to 50 glucose units with α-1,6-glucosidic linkages. M-IMs 

display delayed absorption and may stay relatively long time in the gastrointestinal tract, 

which enables them to encounter host immune cells. It is possible that M-IMs regulate not 

only innate immunity, but also adaptive immunity. To evaluate this possibility, we 

investigated the influence of M-IMs on immune system by using primary macrophages and 

experimental animal models. 

 

1. M-IMs induce tumor necrosis factor α production in primary macrophages via 

toll-like receptor 4 signaling 

Intestinal bacteria utilize M-IMs in a slow rate, suggesting that ingested M-IMs may 

encounter ileal Peyer’s patches, which contain innate immune cells such as macrophages or 

dendritic cells. Macrophages are responsible for incorporation and presentation of antigens 

during the initial step of immune responses. We investigated whether M-IMs modulate 

macrophage functions such as cytokine productions, nitric oxide production, and 

phagocytosis. Primary macrophages collected from male WKAH/HkmSlc rats were cultured 

with the existence of M-IMs or lipopolysaccharides (LPS). M-IMs and LPS induced the 

production of tumor necrosis factor α (TNFα), interleukin 6 (IL6), and nitric oxide (NO) in 

the primary macrophages. The gene expression profile of inflammatory factors in the M-IM-

stimulated cells was similar to those in the LPS-stimulated cells. Stimulation with the M-IMs 

did not affect phagocytosis in the primary macrophages. The M-IM-induced TNFα 
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production was suppressed in the cells treated with a toll-like receptor 4 (TLR4) inhibitor, 

TAK-242. In conclusion, the M-IMs modulate cytokine expression via TLR4 signaling and 

may play a role in immune responses. 

 

2. Ingestion of M-IMs ameliorates LPS-induced acute liver injury in rats 

Interaction of innate and adaptive immune cells involved in elimination of pathogen and 

contributes to maintenance of host homeostasis. Innate immune cells incorporate foreign 

substances and present them as antigens to T cells. In other words, innate immune cells can 

activate adaptive immune cells. In our previous experiment, ingestion of the M-IMs dose not 

induce acute inflammation in a 2-week-study. However, in the cellular experiment shown 

above, the primary macrophages produce inflammatory cytokines in response to the M-IM 

stimulation. Obviously, there is a variety of immune cell population depending on organs and 

collaboration of various types of immune cells could decide the way of response against M-

IMs. In addition, duration of exposure to M-IMs might alter cellular responses in innate as 

well as adaptive immune cells. To clarify in-vivo responses to M-IMs, we investigated 

whether a long-term ingestion of the M-IMs influences T-cell-dependent antibody 

productions and LPS-induced liver injury. 

Male F344/Jcl rats (5 weeks old) were fed diet supplemented with or without M-IMs (30 

g/kg diet) for 5 weeks. Keyhole limpet hemocyanin (KLH) was administered subcutaneously 

(1 mg/rat) at week 2 as an exogenous antigen. We measured the production of KLH-specific 

IgM and IgG in the serum on day 7 and day 18 after the administration, respectively. At the 

end of the experimental period, the rats were administrated with 4 mg/kg of LPS to induce 

acute liver injury. At 6 hours after the LPS administration, the aorta plasma was collected to 

measure alanine transaminase (ALT) and aspartate transaminase (AST) activities as well as 

factors related with acute inflammation such as TNFα, IL6, caspase-1, and interleukin 1β 
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(IL1β). The liver was collected to analyze gene expressions associated with immune 

functions with RT-qPCR. There was no significant difference in serum concentration of 

KLH-specific antibodies and plasma TNFα between the groups. Also, there was no 

significant difference in the inflammation related cytokine expressions in the liver between 

the groups. However, plasma AST and ALT activities were attenuated accompanied by 

reduced plasma IL1β in the rats fed M-IMs. IL6 tend to decrease in the rats fed the M-IM diet. 

In a separate experiment in rats without LPS injection, hepatic Cd14 expression decreased 

significantly in the M-IM-fed rats. These results suggest that long-term ingestion of the M-

IMs suppresses acute liver inflammation via alteration of gene expressions associated with 

induction of inflammation. 

In conclusion, ingestion of M-IMs is considered to modulate innate immune responses 

such as macrophage functions rather than adaptive immune cell functions, which may 

contribute to prevention of acute inflammation induced by endotoxin. 
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Chapter 1 

General Introduction 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

５ 

 

 Chapter 1 

General Introduction 

 

There is an emerging concern worldwide in “non-communicable disease (NCD)”, 

which is various types of chronic diseases including obesity, diabetes, and cardiovascular 

diseases, etc. (Beaglehole R et al., 2011; WHO, 2014). The risk factors for NCDs are 

considered to be unhealthy diet, insufficient exercise, alcohol consumption, and smoking. 

WHO reported that the global death rate by NCDs reached 52% under the age 70 years 

(WHO, 2014). There are also socioeconomic impacts by NCD especially on socially 

disadvantage population having limited access to medical care. Thus, prevention of NCDs is 

another option for those people. Because dietary habit is closely involved in the 

development of NCDs, dietary intervention is expected to be available to prevent NCDs. It 

is a possible way to prevent NCDs is to control energy consumption and dietary 

composition in the dietary intervention. Food science is able to provide several options to 

struggle such problems through modulation of dietary composition. One of the promising 

ingredients is non-digestible saccharides (NDS). 

NDSs are hardly digestible in small intestine and some of them are utilized by 

bacteria in large intestine. They are abundant in grains, fruits, and vegetables (Marlett JA et 

al., 2008). Physicochemical property is diverse depending on the type of NDSs such as 

solubility, water-holding capacity, viscosity, and fermentability (Mudgi D and Barak S, 

2013), and the properties are involved in beneficial physiological functions such as 

improvement of glucose and lipid metabolism, excretion of harmful substances, production 

of fatty acids, regulation of immune response, and so on. Also, it is reported that NDSs can 

prevent or ameliorate chronic diseases, such as diabetes, cardiovascular disease, and cancer 
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via physiological influences (Galisteo M et al., 2008; King DE, 2005).  

Some of the NDSs promote satiety (Burton-Freeman B, 2000), which induces 

subsequent weight loss (Slavin JL, 2005). NDSs can be classified with solubility and 

viscosity (James SL et al., 2003). Viscous water-soluble NDS slows down the digestion and 

absorption of glucose (James SL et al., 2003) and consequently suppresses elevation of 

blood glucose level after meal and secretion of insulin, which participate in treatment and 

prevention of diabetes. (Sierra M et al., 2001). Also, water-soluble NDS holding a large 

amount of water has strong viscosity and interact with bile acids and cholesterol, which 

contributes to excretion of these molecules into feces (Theuwissen E et al., 2007). As bile 

acids decrease under this condition, cholesterol is utilized to synthesize bile acids in the 

liver, resulting in a decrease in cholesterol in the blood (Theuwissen E et al., 2007). Also, 

NDSs reduce serum cholesterol concentration accompanied by decrease in the low-density 

lipoprotein (Brown L et al., 1999), suggesting that NDS prevent cardiovascular disease. 

Insoluble NDSs are possible to increase the amount of defecation. Also, insoluble NDSs 

promote intestinal peristaltic movement, thereby shortening transit time in the large intestine 

(Marlett JA et al., 2002), which improves constipation and contribute to prevention of 

diverticular disease (Aldoori W and Ryan-Harshman M, 2002). Some of the NDSs can be 

utilized by intestinal bacteria (James SL et al., 2003), leading to growth of beneficial 

bacteria in the colon and production of short-chain fatty acids (SCFAs), such as acetate, 

propionate, and butyrate (Tungland BD and Meyer D, 2002). The SCFAs contribute to 

health promotion such as gut barrier function, mineral bioavailability, and reduction of 

secondary bile acid (Tungland BD and Meyer D, 2002). For example, SCFAs produced 

from NDS suppresses colonic damage in a rat colitis model (Rodríguez-Cabezas ME et al., 

1999). 
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NDSs influence several functions of immune system in human studies. Ingestion of 

whole-wheat meal reduces postprandial serum IL18 concentrations both in diabetic and non-

diabetic subjects (Esposito K et al., 2003). The National Health and Nutrition Examination 

Survey Data in the United States demonstrated that NDS consumption is negatively 

associated with serum C-reactive protein (CRP) (Ajani UA et al., 2004). Increase in serum 

CRP concentration is frequently found in acute and chronic inflammation (Pepys MB and 

Hirschfield GM, 2003; Visser M et al., 1999), suggesting that ingestion of NDS attenuates 

development of acute and chronic inflammation.  

Recently, mechanisms of the influence of NDS on immune responses have been 

partially clarified in experimental animals. Fructo-oligosaccharides promote IgA production 

in mice and isolated Peyer’s patch cells (Hosono A et al., 2014). Pro-inflammatory cytokines 

and NF-κB expression in Caco-2 cells was diminished by α3-sialyllactose or fructo-

oligosaccharides (Zenhom M et al., 2011), raising the possibility that the oligosaccharides 

retards inflammation by activation of PPARα and peptidoglycan recognition protein 3. 

Another study (Bermudez-Brito M et al., 2015) reported that cytokine productions from 

dendritic cells in response to NDS depend on the chain length and sugar composition. These 

NDSs also modulate polarization of T cells via crosstalk between intestinal epithelial cells 

and dendritic cells depending on their types (Bermudez-Brito M et al., 2015). These studies 

suggest that NDS regulates various immune cells including B cells, dendritic cells, and T 

cells as well as epithelial cells, which modulates symptoms in immune-related diseases. 

Interaction between innate and adaptive immunity influences health maintenance (Fig. 

1-1). Macrophages and neutrophils in innate immunity are able to incorporate exogenous 

substances, and microbes (Nathan C, 2002; Medzhitov R, 2008). Also, they process such 

substances into small pieces and present them as antigens to the adaptive immune cells, 
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which classifies these cells as antigen present cells (APCs). The fundamental roles of innate 

immunity are to provide an immediate defense against infection and effective induction of 

adaptive immunity (Medzhitov R and Janeway CA Jr, 1997). On the other hands, adaptive 

immunity such as T cells and B cells participate in antigen-specific responses including 

antibody production and elimination of cancer cells or virus-infected cells (Saito S et al., 

2010). The cooperation between innate and adaptive immunity is required to maintain 

homeostasis and host defense form pathogens (Fig. 1-1).  

Macrophages are divided into two phenotypes, and the balance of the phenotypes is 

involved in inflammation, disease development, maintaining homeostasis and tissue repair 

(Gordon S, 2003). M1 macrophages, the classically-activated types of macrophages 

stimulated by LPS and IFNγ, are fighting against microorganisms and produce pro-

inflammatory cytokines such as TNFα, IL1, and IL6, which sometimes induces tissue 

damages. In contrast, M2 macrophages, the alternatively-activated types of macrophages, are 

involved in tissue remodeling, clearance of parasites, and produce anti-inflammatory 

cytokines such as IL4, IL10, and IL13. Balance of the M1 and M2 types determines direction 

of the fate, for example tissue injury or repair (Mantovani A et al., 2002; Biswas SK et al., 

2010; Laskin DL, 2010).  

 “Megalosaccharides” are one of the categories in carbohydrates and indicates a 

saccharide containing 10 to 100 monosaccharide units (Thoma JA et al., 1959). Isomalto-

glucosaccharides (IMs) have α-1,6-glycosidic linkages in the chain of the glucosaccharides 

(Figure 1-2). Previously, we investigated whether megalo-type isomaltoglucosaccharides (M-

IMs) influences solubility and intestinal absorption of quercetin-3-glucoside (Shinoki A et al., 

2013) and found that M-IMs enhance absorption of quercetin in a small intestine via the 

promotion of the solubilization in the small intestinal contents.  
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In this study, we investigated whether M-IMs influence cytokine productions in 

primary macrophages isolated from rats and the ingestion of M-IMs affects antigen-specific 

antibody productions and acute hepatitis in an animal model. The dissertation is divided into 

two main parts, one is in chapter 2 showing that M-IMs induce TNFα production in primary 

macrophages via toll-like receptor 4 signaling. Another one is shown in chapter 3, which 

describes that ingestion of M-IMs ameliorates LPS-induced acute liver injury in rats. 
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Figure 1-1. Interaction between innate and adaptive immunity 
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Figure 1-2. Structure of M-IMs 

Isomaltosaccharides (IMs) have 10 to 50 degree of polymerization (DP) with α-1,6-

glycosidic linkages. 
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Chapter 2 

Megalo-type isomaltosaccharides induce tumor 

necrosis factor α production in primary 

macrophages via toll-like receptor 4 signaling 
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Chapter 2 

2-1. Introduction  

 

NDSs are used by bacteria in the large intestine, leading to the growth of beneficial 

bacteria in the colon, which contributes to health promotion via the digestive system 

(Mussatto SI et al., 2007, Olano-Martin E et al., 2000). For example, they are involved in the 

regulation of blood glucose in diabetes, the suppression of pathogen penetration through the 

immune system, the promotion of mineral absorption, the inhibition of oxidant-induced 

apoptosis, the modulation of lipid metabolism in hyperlipidemia, the reduced risk of colon 

cancer, and the modulation of microbiota (Patel S et al., 2011). Because all the physiological 

effects mentioned above are not necessarily induced by every non-digestible saccharide, these 

physiological influences are thought to depend on the structures of the saccharides such as 

their side-chain branching, linkage types, and DP, etc.  

The DP in carbohydrates is defined as the number of monosaccharide units in a sugar. 

In literature, the “megalosaccharides” consist of 10 to 100 monosaccharide units (Thoma JA 

et al., 1959), whereas "oligosaccharides" represents a carbohydrate less than 10 

monosaccharide units (DP < 10). Isomaltoglucosaccharides (IMs) are one of the slowly-

digestible saccharides, and they primarily consist of α-1,6-glucosidic linkages. Ingestion of 

oligo-type IMs increases fecal Bifidobacteria population in humans (Kaneko T et al., 1994). 

However, it is unknown whether megalo-type IMs has beneficial influence on health 

maintenance and promotion. Megalo-type IM is not distributed commercially. Therefore, we 

have enzymatically-synthesized two fractions of oligo-type α-1,6-glucosaccharides such as 

short-sized isomaltooligosaccharides (S-IMOs) (average DP = 3.3) and long-sized 

isomaltooligosaccharides (L-IMOs) (average DP = 8.6) (Iwaya H et al., 2012). The latter 
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contains megalosaccharides. The ingestion of L-IMOs including a megalosaccharide fraction 

do not promote organic acid production in the cecal contents of rats, although the ingestion of 

S-IMOs increase the butyric acid concentration in the rat cecum. Because almost all parts of 

ingested M-IM possibly be digested slowly, but completely in the small intestine. This result 

suggests that relatively long IMs remain in the gastrointestinal tract without degradation or 

utilization by intestinal bacteria.  

In a separate experiment, we used M-IMs to investigate whether M-IM influences 

flavonoid solubility and its intestinal absorption (Shinoki A et al., 2013). Quercetin, one of 

the flavonoids that observed in onion, green tea, and apple, has beneficial functions via 

scavenging of reactive oxygen species (Boots AW et al., 2008). An increased concentration 

of quercetin was observed in the portal blood of rats that received quecetin-3-glucosides with 

M-IMs and isomaltooligosaccharides (O-IMs), via the promotion of quercetin solubilization 

in the small intestinal contents. This influence is prominent in the case of M-IMs rather than 

O-IMs. Taken together, these findings indicate that ingested M-IMs remain in the 

gastrointestinal tract. It is possible for M-IMs a chance to encounter the innate immune 

system especially at Peyer’s patches (Mowat AM, 2003). 

Macrophages are members of the innate immune cell group and are involved in non-

specific defense as well as the initiation of adaptive immunity, and they are specialized 

phagocytic cells that incorporate exogenous substances, cellular debris, microbes as well as 

cancer cells (Medzhitov R, 2008; Nathan C, 2002). These cells play important roles in the 

development of diseases such as inflammatory bowel disease, diabetes, as well as cancer in 

its various aspects (Laskin DL et al., 1995; Medzhitov R, 2008).  

Lipopolysaccharide (LPS), a cell-wall component in gram-negative bacteria, induces 

a variety of inflammatory reactions via inflammatory cytokines, such as tumor necrosis factor 

α (TNFα), Interleukin 6 (IL6), and IL1β. Some pro-inflammatory mediators including nitric 
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oxide (NO) that are produced from activated macrophages influence regional and systemic 

immune responses. In fact, LPS-treatment induces sepsis-like symptoms that are 

accompanied by the inflammatory mediators from activated macrophages (Russell JA, 2006). 

In particular, LPS activates macrophages, producing inflammatory cytokines at the early 

stage of the innate immune response (Gordon S, 2003; Russell JA, 2006). Accordingly, the 

stimulation of macrophages with LPS is widely used as a model of the innate immune 

response. Reportedly, the activation of macrophages with LPS requires a receptor called toll-

like receptor 4 (TLR4) (Gordon S, 2003; Lu Y-C et al., 2008). The TLR4 signaling pathway 

is critical for the expression of pro-inflammatory cytokines in innate immune cells (Janeway 

CA Jr et al., 2002) and the development of inflammatory disease (Janeway CA Jr et al., 2012).  

At this moment, there is almost no information on the regulation of immune responses 

to IMs, especially for those that depend on the DP of non-digestible polysaccharides. We 

expected that the innate immune system might have the chance to encounter IMs that had 

been ingested, and the responses presumably depend on the DP. In the present study, we 

investigated whether the DP of non-digestible polysaccharides affects the responses in rat 

primary macrophages. 
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Chapter 2 

2-2. Materials and methods 

 

2-2-1. Materials 

IMs were prepared from maltodextrin through the transglycosylation activity of 

dextran dextrinase (EC 2.4.1.2) (Iwaya H et al., 2012). This enzyme catalyzes the 

successive transfer of a glucosyl group from a terminal position in a dextrin molecule to a 

non-reducing terminal position in another molecule to make an α-1,6-glucosidic linkage (Ii 

M et al., 2006). The average DPs of the M-IMs and the O-IMs used in this study were 11.0 

and 3.6, respectively. 

 

2-2-2. Animals 

These experiments were approved by the Institutional Animal Care and Use 

Committee of the National University Corporation of Hokkaido University, and the rats 

were maintained in accordance with the National University Corporation of Hokkaido 

University Regulations on Animal Experimentation (permission number: 08-0131, 14-

0026). The rats were housed in individual stainless steel cages with wire-mesh bottoms. 

The cages were placed in a room with controlled temperature (22 ± 2C), relative humidity 

(40-60%), lighting (lights on 8:00-20:00), and diet (Table 2-1, Table 2-2 and Table 2-3) 

throughout the experiment. Male WKAH/Hkm Slc rats (5-6 weeks old: Japan SLC, 

Hamamatsu, Japan) were used to isolate peritoneal exudate cells. 
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2-2-3. Isolation and culture of rat primary macrophages  

Sodium periodate (Wako Pure Chemical Industries, Osaka, Japan) was dissolved in 

0.9% physiological saline and sterilized with a sterile filter (0.2 μm). The final 

concentration of sodium periodate solution was 5 mM. Male WKAH rats were 

intraperitoneally given 3-5 mL of the sodium periodate solution (Schleicher U and Bogdan 

C, 2009). At 72 hours after administration, the peritoneal exudate cells were collected. The 

cell suspension was centrifuged, and the cell number in the cell pellet was counted by 

trypan blue dye exclusion. We used CD45, F4/80, and CD163 as macrophage markers 

(Murray PJ et al., 2011). The percentage of CD45
+ 

and F4/80
+
 was 80.5 in the peritoneal 

exudate cells as analyzed by FACScalibur (Becton, Dickinson and Company, Franklin 

Lakes, NJ, USA). Almost all the cells expressed CD163 (99.8%) in the peritoneal exudate 

cells that expressed CD45
+
 and F4/80

+
.  

 

2-2-4. Measurements of cytokine concentrations 

Peritoneal exudate cells (1 x 10
5 

cells/well) were seeded in a 24-well plate. The 

cells were maintained in RPMI 1640 (Gibco; Cat No. 31800-22) that was supplemented 

with 10% FBS and incubated at 37°C for 1 h to adhere. The wells were washed with pre-

warmed PBS to remove non-adherent cells. The adherent peritoneal exudate cells used as 

primary macrophages were serum-starved with RPMI 1640 medium supplemented with 

0.1% FBS for 24 h. They were then stimulated with O-IMs or M-IMs (10 mg/mL) at 37°C 

for 48 h. LPS from Escherichia coli 0111 : B4 (Sigma Chemicals, St. Louis, MO, USA) 

was used as a positive control (5 μg/mL). The culture supernatants were collected, 

centrifuged, and kept at -80°C until analysis. The TNFα and IL6 production in the culture 

medium was measured with ELISA kits (Biolegend, San Diego, CA, USA). 
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We used TAK-242 as a TLR4 inhibitor (Chemscence LLC, Monmouth Junction, 

NJ, USA). TAK-242 was dissolved in dimethyl sulfoxide (DMSO) and diluted with the 

medium. The final concentration of DMSO was 0.1% in the culture medium. The starved 

primary macrophages were pretreated with TAK-242 (100 µM) for 20 h, and then 

stimulated with M-IMs for another 48 h. The culture supernatants were kept at -80°C until 

analysis. The TNFα and IL6 production in the culture medium was measured with ELISA 

kits (Biolegend). 

 

2-2-5. Nitric oxide (NO) production and cell viability 

Peritoneal exudate cells (2 x 10
5 

cells/well) were seeded in a 96-well plate and 

starved for 24 h. They were cultured with 200 µL of DMEM (Gibco) containing M-IM (10 

mg/mL) or LPS (1 µg/mL) for 24 h. The culture supernatants (100 µL) were mixed with 50 

μL of Griess reagent and left to stand for 15 min at room temperature. NaNO2 was used as 

the standard. The optical density was measured at 540 nm. For cell viability, 10 µL of the 

cell counting kit-8 solution (Dojindo Molecular Technologies, Kumamoto, Japan) was 

added to the remaining medium (100 µL) in the wells containing primary macrophages and 

kept at 37°C for 1 h. The optical density was measured at 450 nm. 

 

2-2-6. Quantitative real-time PCR  

 The peritoneal exudate cells (1 x 10
7
) were seeded in a 6-cm dish and starved for 

24 h. The primary macrophages were exposed to M-IM or LPS for 3 h, and cytokine 

mRNA expression was measured by using real-time PCR with a Taqman probe. RNA was 

extracted from the cells with an RNeasy mini kit (Qiagen, Hilden, Germany). The RNA 

concentration was measured by spectrophotometry (SmartSpec
TM 

Plus spectrophotometry; 

Bio-Rad, Hercules, CA, USA). RNA (1 μg) was used for reverse transcription with 
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ReverTra Ace®  qPCR RT master mix with gDNA remover according to the 

manufacturer’s instructions. The sequences of the primers used for quantitative RT-PCR 

are listed in Table 2-4. The qPCR reaction was performed using an Mx3000P real-time 

PCR system (Agilent Technologies, Santa Clara, CA, USA) with Taqman gene expression 

assays for each target gene as follows: Tnfα; Il1β; Il6; nitric oxide synthase 2 (Nos2); 

cyclooxygenase2 (Cox2); NLR family, pyrin domain containing 3 (Nlrp3); chemokine (C-

C motif) ligand 2 (Ccl2); intercellular adhesion molecule 1 (Icam1), vascular cell adhesion 

molecule 1 (Vcam1); and toll-like receptor 2 (Tlr2). Ribosomal protein, large, p0 (Rplp0) 

was used as a control. A serial dilution of the cDNA solution for each target gene was used 

as a standard to confirm the ranges of the PCR reactions. For the PCR array, RNA was 

extracted from the primary macrophages or rat small intestinal mucosa using an RNeasy 

mini kit. The pooled mRNA solution in the group was used to check the expression profile 

by using a PCR Array and RT2 SYBR green master mix (Qiagen). Complimentary DNA 

was synthesized with an RT2 first strand kit (Qiagen). The qPCR reaction was performed 

using an Mx3000P real-time PCR system (Agilent Technologies). One μg of total RNA 

was used for the RT reaction. The qPCR reaction was performed with an Mx3000P real-

time PCR system with a custom PCR array. The data were analyzed by using web-based 

software according to the manufacturer’s instructions (Qiagen). 

 

2-2-7. Phagocytosis assay  

Peritoneal exudate cells (1 x 10
5 

cells/well) were seeded in a 96-well plate and 

starved for 20 h. Phagocytosis was determined using a CytoSelect 96-well phagocytosis 

assay kit (Cell Biolabs, Inc., San Diego, CA, USA) according to the manufacturer’s 

guidance. The cells were cultured with RPMI 1640 containing M-IMs (10 mg/mL), LPS (1 

µg/mL), or cytochalasin D (2 µM as a phagocytosis inhibitor) for 4 h. The cells were added 
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with the labeled E. coli suspension and incubated for 6 h. After washing, the incorporated 

E. coli in the macrophages was measured and relative abundance of the E. coli was 

determined. 

2-2-8. Statistical analysis 

Statistical analysis was performed with JMP software (version 11.0; SAS Institute, 

Inc., Tokyo, Japan). All the values are presented as the averages and standard error of the 

means. The analysis was performed with Tukey-Kramer’s multiple comparison test and 

Student’s t-test for the comparison of two groups. A two-way ANOVA was used to 

evaluate differences in TNFα and the IL6 production on the TLR4 inhibitor (TAK-242 and 

M-IMs). Differences were considered to be significant at P < 0.05. 
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Table 2-1. The diet for primary macrophage isolation 

Ingredient g/kg 

Acid casein
1
 250 

Sucrose
2
 602.5 

Soybean oil
3
 50 

Crystalline cellulose
4
 50 

AIN-93G mineral mixture
5
 35 

AIN-93 vitamin mixture
6
 10 

Choline bitarate 2.5 

1 
NZMP Acid Casein (Fonterra. Ltd., Auckland, New Zealand).  

2
Nippon Beet Sugar Manufacturing Co., Ltd., Japan).  

3
 (J-Oil Mills Tokyo, Japan).  

4
 Ceolus PH102 (Asahi Chemical Industry, Tokyo, Japan).  

5,
 
6 

Mineral mixtures were prepared according to the AIN93-G formulation and vitamin 

mixtures were prepared according to the AIN93 formulation.  
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Table 2-2. AIN-93 vitamin mixture composition.  

Ingredient  g/kg 

Nicotinic acid Niachin 3.0 

Ca Pantothenate  1.6 

Pyridoxine hydrochloride V. B6 0.7 

Thiamin hydrochloride V. B1 0.6 

Riboflavin V. B2 0.6 

Folic acid  0.2 

D-Biotin V. H 0.02 

Cyanocobalamin Powder 
1
  V. B12 2.50 

Vitamin E Juvela Granule 
2
 V. E 75.0 

Vitamin –A –palmitate 
3
 V. A 0.229 

Cholecalciferol V. D3 0.25 

KATIV – N 
4
 V. K1 7.5 

Powdered sucrose   907.801 

1
 cyanocobalamin 10 mg in 9.99 g of sucrose 

2
 all-rac-alpha-tocopheryl acetate 200 mg/g granule 

3 
retinyl palmitate 1,750 Unit/mg powder 

4
 phylloquinone (phytonadion) 10 mg/g powder 
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Table 2-3. AIN-93G mineral mixture composition.  

Ingredient g/kg 

Essential mineral element  

Calcium carbonate, anhydrous 375    

Potassium phosphate, monobasic 196 

Potassium citrate, tri-potassium, monohydrate 70.78 

Sodium chloride 74 

Potassium sulfate 46.6 

Magnesium oxide 24 

Ferric citrate 6.06 

Manganous carbonate 1.65 

Zinc carbonate 0.63 

Cupric carbonate 0.3 

Potassium iodate 0.01 

Sodium selenate, anhydrous 0.01025 

Ammonium paramolybdate, 4 hydrate 0.00795 

Potentially beneficial mineral element  

Sodium meta-silicate, 9 hydrate 1.45 

Chromium Potassium sulfate, 12 hydrate 0.275 

Lithium chloride 0.0174 

Boric acid 0.0815 

Sodium fluoride 0.0635 

Nickel carbonate 0.0318 

Ammonium vanadate 0.0066 

Powdered sucrose 221.026 
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Chapter 2 

2-3. Results  

 

2-3-1. Cytokine production in response to M-IMs in rat primary macrophages 

M-IMs (10 mg/mL) significantly increased the TNFα production in the primary 

macrophages (Fig. 2-1). By contrast, there was no significant influence by O-IMs (10 

mg/mL) on TNFα production. Because the fundamental structure was almost the same 

between M-IMs and O-IMs, these results indicated that the recognition of IMs by 

macrophages requires a certain size. We used 1 mg/mL of M-IMs as a stimulant in a 

separate experiment, but there was no induction of TNFα production in the macrophages 

(data not shown). We confirmed that the production of proinflammatory cytokines, 

including the IL6 in the primary macrophages that were exposed to M-IMs, was compared 

with LPS as a positive control (Fig. 2-2A and B). The TNFα and IL6 production 

significantly increased in response to 10 mg/mL M-IMs as well as 5 µg/mL LPS in the 

macrophages.  

 

2-3-2. NO production and cell viability in response to M-IMs 

The primary macrophages produced NO in response to M-IMs and LPS (Fig. 2-3A). 

The NO level in the M-IM-stimulated macrophages was significantly lower than that in 

LPS-stimulated macrophages, but both of them were significantly higher than that of the 

control. Treating with LPS or M-IMs promoted cell viability (Fig 2-3B), but no difference 

in cell viabilities was found between LPS and M-IMs. NO production was not necessarily 

consistent with cell viability. 
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2-3-3. Gene expression profiles in primary macrophages treated with M-IMs 

We examined the time course for TNFα expression in the primary macrophages in 

response to LPS in a preliminary experiment. The highest expression was observed at 3 h 

after the stimulation (not shown), and a variety of cytokine expressions were measured at 

this time point. The induction of inflammation-related factors can be detected by using a 

PCR array in response to M-IMs as well as LPS. The patterns were nearly the same 

between M-IMs and LPS (Fig 2-4). We selected some of the factors to confirm the 

quantitative difference. As a result, treating with LPS or M-IMs significantly increased the 

expression of Tnf, Il6, Il1β, Cox2, Nlrp3, Nos2, Ccl2, Icam1, and Tlr2 in the primary 

macrophages (Fig 2-5). In the case of Vcam1, more than 33 cycles were required to detect 

expression, whereas approximately 25 cycles were needed for the other genes, suggesting 

that the Vcam1 expression level was extremely low even in the LPS-treated macrophages. 

The overall gene expression pattern in response to M-IMs was quite similar to that of LPS. 

 

2-3-4. Phagocytic ability of macrophages by M-IMs 

 To investigate whether the existence of M-IMs influences the phagocytosis, we 

measured antigen incorporation activity of the primary macrophages by using labeled E. 

coli particle. Cytochalasin D, an inhibitor of actin polymerization, inhibited phagocytosis 

of the macrophages in response to E. coli. No difference was observed of phagocytic 

ability in the macrophages among control, LPS, and M-IMs (Fig. 2-6).  

 

2-3-5. The role of TLR4 in cytokine production by M-IMs 

We investigated whether a TLR4 signal inhibitor (TAK-242) influences the 

cytokine production induced by M-IMs. TAK-242 suppressed the TNFα production 

induced by M-IM in the primary macrophages (Fig 2-7A). These findings raise the 
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possibility that TLR4 is responsible for TNFα production by M-IMs. There was no 

statistical significance in IL6 production from the TAK-242 treatment, although the IL6 

production was attenuated (Fig 2-7B) and resembled those found with TNFα production. 
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Figure 2-1. TNFα production by primary macrophages in response to IMs  

The cells were cultured for 48 h with stimulants such as LPS (5 µg/mL), O-IMs, or M-IMs 

(10 mg/mL). The TNFα concentration in the supernatant was measured with ELISA kits. 

Means not sharing a common letter differ significantly (n = 3, P < 0.05, by Tukey-Kramer’s 

test). 
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Figure 2-2. TNFα and IL6 production by primary macrophages in response to M-IMs 

The cells were cultured for 48 h with stimulants such as LPS (5 µg/mL) or M-IMs (10 

mg/mL). The (A) TNFα and (B) IL6 productions in the supernatant were measured with 

ELISA kits. Means not sharing a common letter differ significantly (n = 3, P < 0.05, by 

Tukey-Kramer’s test). 
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Figure 2-3. NO production and cell viability of primary macrophages in response to M-

IMs 

The cells were cultured for 24 h with stimulants such as LPS (5 µg/mL) or M-IMs (10 

mg/mL). The (A) NO production and (B) cell viability were determined. Means not sharing a 

common letter differ significantly (n = 10, P < 0.05, by Tukey-Kramer’s test). 
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Figure 2-4. Expression profile of cytokines and other inflammatory factors using the 

PCR array 

Macrophages were cultured for 3 h with stimulants such as M-IMs (10 mg/mL) or LPS (5 

µg/mL). Pooled cDNA was used for the PCR array. 
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Figure 2-5. Gene expressions of pro-inflammatory factors in primary macrophages in 

response to M-IMs  

The cells were cultured for 3 h with stimulants such as LPS (5 µg/mL) or M-IM (10 mg/mL). 

Gene expressions of factors involved in inflammation were measured by using RT-qPCR. 

Means not sharing a common letter differ significantly (n = 6, P < 0.05, by Tukey-Kramer’s 

test). 

 

 

 

 

 

 

0 

50 

100 

150 

200 

250 

Tnfα 

a 
a 

b 
0 

20 
40 
60 
80 

100 
120 
140 
160 

Il6 

a 
a 

b 
0 

20 

40 

60 

80 

100 

Il1β 

a a 

b 
0 

20 

40 

60 

80 

100 

Cox2 

a 
a 

b 
0 

10 

20 

30 

40 

50 

60 

70 

Nlrp3 

a 
a 

b 

0 

5 

10 

15 

20 

Nos2 

a 

a 

b 

0 

1 

2 

3 

4 

5 

6 

7 

Ccl2 

a 
a 

b 

0 

1 

2 

3 

4 

5 

6 

7 

Icam1 

a 
a 

b 

0 
0.5 

1 
1.5 

2 
2.5 

3 
3.5 

4 

Vcam1 

a 

ab 

b 

0.0  

0.5  

1.0  

1.5  

2.0  

2.5  

3.0  

Tlr2 

  a 

a 

   b 



 

３３ 

 

 

Figure 2-6. Phagocytosis of primary macrophages in response to cytochalasin D, LPS, 

or M-IMs 

The cells were pretreated with stimulants such as cytochalasin D (2 µM), LPS (1 µg/mL), or 

M-IMs (10 mg/mL) for 4 h. E. coil suspension was added to each well and cultured for 6 h. 

Relative incorporation of E. coil was evaluated in response to LPS or M-IMs. Means not 

sharing a common letter differ significantly (n = 6, P < 0.05, by Tukey-Kramer’s test). 

 

 

 

 

 

 

 

 

0.0  

0.5  

1.0  

1.5  

Control Cytochalasin D LPS M-IM 

R
e
la

ti
v
e
 i
n
c
o
rp

o
ra

ti
o
n
 

  a 

 b 

 a 

 a 



 

３４ 

 

  

Figure 2-7. Effects ofTLR4 signaling inhibitor on TNFα and IL6 production in primary 

macrophages in response to M-IMs 

(A) TNFα and (B) IL6 productions. The cells were pretreated with or without TAK-242 (100 

µM) for 20 h, and stimulated with M-IMs (10 mg/mL) for 48 h. The TNFα and IL6 

concentrations in the supernatant were measured with ELISA kits. Two-way ANOVA P-

values are inserted at the panel. Means not sharing a common letter differ significantly (n = 4, 

P < 0.05, by Tukey-Kramer’s test). 
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Chapter 2 

2-4. Discussion 

 

In a preliminary experiment, we tested whether the DP of IMs was a response 

determinant in leukocytes that were isolated from rat mesenteric lymph nodes as well as in 

macrophage cell line Raw 264.7. As a result, an increase in TNFα production against M-IMs 

was possibly dependent on the DP (data not shown). The TNFα production induced by M-

IMs was much higher in Raw 264.7 cells compared with the production in isolated leukocytes. 

These results suggested that macrophages recognize M-IMs. Because Raw 264.7 cells are an 

established cell line, the responsiveness is not necessarily consistent with the in vivo 

responses of macrophages. Thus, we isolated primary macrophages to investigate their 

response to M-IMs. As expected, the primary macrophages produced TNFα in response to M-

IMs. Likewise, O-IMs did not influence TNFα production in the primary macrophages, 

indicating that the DP of IMs is a determinant in the recognition performed by macrophages. 

LPS receptors such as TLR4 and CD14 may be the candidate molecules that 

recognize M-IMs, because the cytokine expression profile in response to M-IMs were similar 

to the profile that occurred in response to LPS.  TLR4 in an intestinal epithelia cell line IEC-

18 is responsible for CCL2 secretion induced by NDSs such as fructooligosaccharides, 

galactooligosaccharides, inulin, and goat milk oligosaccharides (Ortega-Gonzáles M et al., 

2014). Induced CCL2 secretion by NDS was suppressed in colonic explants of TLR4 

knockout mice as well as TLR4 or myeloid differentiation primary response gene 88 

knockdowns in IEC-18 cells (Ortega-Gonzáles M et al., 2014). Additionally, the inhibitors of 

TLR4 signaling-related molecules such as ERK1/2, JNK, p38, MAPK, and NF-κB 

suppressed CCL2 production in IEC-18 cells (Ortega-Gonzáles M et al., 2014), suggesting 
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that the activation of the TLR4 signaling pathway is involved in the response induced by 

NDS. Based on these studies, we examined the role of TLR4 in the responses to M-IMs by 

using TLR4 inhibitor TAK-242, which suppresses the cytokine and NO production induced 

by LPS stimulation in innate immune cells (Ii M et al., 2006) and in vivo (Sha T et al., 2005). 

TAK-242 reportedly binds with TLR4 and inhibits the association of TLR4 with its two 

adaptor molecules, toll/inteleukin-1 receptor domain-containing adaptor protein (TIRAP) and 

the TIRAP-inducing interferon-γ-related adaptor molecule, accompanied by the suppression 

of NF-κB activation (Matsunaga N et al., 2011). We demonstrated in the present study that 

TAK-242 suppressed TNFα production in the M-IM-treated primary macrophages. These 

data suggested a link between TLR4 signaling and M-IM-induced cytokine production. 

In the expression profile, Nos2, the NO-inducing enzyme, significantly increased 

when the cells were exposed to M-IMs or LPS. The NO induced by Nos2 mediates many 

biological functions such as vasodilation and inflammation (Gordon S, 2003). NO production 

(Fig. 2-3A) was consistent with Nos2 expression (Fig. 2-5). In general, the production of 

bioactive factors depends on the cell viability. The compound in the cell-counting kit solution 

is a highly water-soluble tetrazolium salt that is similar to 3-(4,5-dimethylthiazol-2-yl)-2,5-

diphenyltetrazolium bromide, which is known as MTT. LPS stimulation is reported to 

enhance cell viability (Pozzolini M et al., 2003). In the present study, the cell viability 

significantly increased in response to LPS and M-IMs (Fig. 2-3B). The results showed no 

signs of apoptosis in the cells that were exposed to LPS or M-IMs.  

Phagocytosis is the first step of innate immune responses against exogenous antigens. 

The result indicates that M-IMs do not disturb the activation of phagocytosis by macrophages. 

Luminal antigens in intestine are incorporated by antigen-presenting cells at Peyer’s patches, 

and presented to T cells at Peyer’s patches or mesenteric lymph nodes (Mowat AM, 2003). In 

combination with the cytokine productions, M-IMs might contribute to activation of T cells 
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via antigen-presentation by macrophages at these sites. Ten mg/mL of M-IM was required to 

detect the induction of TNFα production. The concentration of M-IMs was 2,000 times 

higher than that of LPS. Thus, the induction by M-IMs was very weak compared with that of 

LPS. Our previous study showed that the ingestion of an M-IM-containing diet does not 

exacerbate an experimental colitis induced by dextran sulfate sodium (Iwaya H et al., 2012). 

These results indicate that the M-IMs do not induce in vivo inflammation although M-IMs 

induce the production of inflammatory cytokines in the culture experiments as shown in the 

present study. The ingestion of IMs itself is not considered to evoke unnecessary 

inflammatory responses. These observations indicate that M-IMs play a role in an initial step 

of the inflammation process and the prevention of infection via modulation of macrophage 

functions.  

In conclusion, IMs modulate macrophage functions such as cytokine and NO 

production depending on their DP. It is possible that M-IMs play a role in the modulation of 

macrophage polarization via TLR4 signaling. 
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Chapter 3  

Ingestion of megalo-type isomaltosaccharides 

ameliorates LPS-induced acute liver injury in rats 
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Chapter 3 

3-1. Introduction 

 

Liver is involved in metabolism of nutrients, such as carbohydrate, protein, and fat, 

stores nutrients and supplies them to other organs when necessary (Rui L, 2014). In addition, 

liver plays roles in metabolism of alcohol and toxic substances to detoxify these substances 

(Liska DJ, 1998). Bile acids produced by liver as a detergent contribute to digestion and 

absorption of dietary lipids (Mitra V and Metcalf J, 2009). As shown above, liver is the 

center of metabolism in the body not only for nutrients, but also for toxic substances. These 

indicate that liver failure provokes massive impact in enormous aspects of metabolism, 

resulting in development of several disorders. Excess consumption of alcohol induces 

alcoholic liver diseases (ALD), whereas excess energy consumption associated with obesity 

and diabetes triggers development of non-alcoholic fatty liver disease (NAFLD) even without 

alcohol consumption (Pagano G et al., 2002). Lipid accumulation was observed both in ALD 

and NAFLD, which leads to inflammation via oxidative stress, resulting in hepatic fibrosis. 

Subsequently, several types of liver disorders develop, for example, cirrhosis and liver cancer.  

Kupffer cells regulate inflammatory responses in liver and are involved in the 

prevention or pathogenesis of liver diseases. Damage of hepatocytes induces production of 

inflammatory cytokines from Kupffer cells that are involved in development of insulin 

resistance (Shoelson SE et al., 2006). Also, these cytokines produced lead to hepatocytes 

apoptosis in turn, indicating that Kupffer cells play pivotal roles in development of liver 

disease. There are several models of hepatitis to identify preventive effect of drugs and food 

ingredients on liver disease. For example, deficiency of choline with or without methionine is 



 

４０ 

 

frequently used to induce steatohepatitis with fibrosis (Sahai A et al., 2004). High-fat diets 

induce steatohepatitis (Anstee QM and Goldin RD, 2006) and promotes the increase in serum 

ALT activity in response to LPS (Li Z et al., 2005), but relatively long-term (4 to 12 weeks) 

experiment is required for development of the hepatitis. Carbon tetrachloride induces much 

severe hepatitis with high serum TNFα concentration and ALT activity (Lee C-H et al., 2007). 

Other drugs such as D-galactosamine (GalN), thiocetamide, concanavalin A, and LPS are 

also used as inducers of acute hepatic failure (Rahman TM and Hodgson HJ, 2000). 

In these inducers, LPS, one of the cell-wall components in Gram-negative bacteria 

(Schumann RR, 1992), is naturally found in luminal contents of the gut. Once disruption of 

gut barrier occur, LPS is possible to penetrate host tissues. Enhancement of gut permeability 

is observed in genetically-modified obese mice (ob/ob and db/db mice) and high-fat diet-fed 

mice, where blood LPS concentration increases (Brun P et al., 2007; Cani PD et al., 2007). 

Hepatocytes produce LPS-binding protein (LBP) and LPS-LBP complex binds to CD14 on 

the membrane of Kupffer cells, resulting in activation of TLR4 signaling (Su GL, 2002). The 

stimulation of TLR4 signaling by LPS leads to liver inflammation by producing cytokines 

such as TNFα and IL1β.  

In the previous chapter, the stimulation with M-IMs enhances inflammatory cytokine 

productions via TLR4 signaling in primary macrophages in a culture experiment, suggesting 

modulation of inflammatory responses in in vivo. We have already investigated whether the 

ingestion of M-IMs modulates in-vivo inflammation by using DSS-induced colitis rats 

(Iwaya H et al., 2012). However, there is no apparent induction in inflammatory response 

with or without the M-IM ingestion, suggesting that the M-IMs do not directly induce 

mucosal inflammation. Recently, it is reported that the ingestion of NDS improve symptom 

of liver injury. For example, monosaccharides of corn bran hemicellulose partially normalize 

increased blood levels of ALT and AST activities in GalN-induced hepatitis rats (Geng X et 
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al., 2005). Dietary fiber in edible seaweeds diminished the ALT and AST activities in GalN-

injected rats (Kawano N et al., 2007).  

The immune system is classified as innate and adaptive immunity. Macrophages are 

one of the innate immune cells to present antigens to T-cells, adaptive immune cells, resulting 

in production of antigen-specific antibodies. It is possible that M-IMs regulate not only innate 

immunity, but also adaptive immunity. T-cell-dependent antibody response (TDAR) is used 

as an immuno-toxicology test to identify alteration of antigen-specific antibody production 

(Plitnick LM and Herzyk DJ, 2010). Keyhole limpet hemocyanin (KLH) is widely used as an 

antigen in TDAR. Thus, we investigated influence of M-IMs on adaptive immunity using the 

TDAR to KLH. In this study, we investigated influence on M-IMs in both in-vivo innate and 

adaptive responses at the same time. Because it is required for 3 weeks at least to determine 

TDAR in the standard protocol, we consider that it is necessary for the rats to get accustomed 

to the M-IM diet beforehand to facilitate TDAR response in this condition. 

The aim of this study is to investigate whether the M-IM ingestion modulates TDAR 

and LPS-induced liver injury in rats.  
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Chapter 3 

3-2. Materials and methods 

 

3-2-1. Animals and diets 

Experiments were approved by the Institutional Animal Care and Use Committee 

of the National University Corporation of Hokkaido University, and the rats were 

maintained in accordance with the National University Corporation of Hokkaido 

University Regulations on Animal Experimentation (permission number: 14-0026). The 

rats were housed in individual stainless steel cages with wire-mesh bottoms. The cages 

were placed in a room with controlled temperature (22 ± 2 °C), relative humidity (40-60%), 

and lighting (lights on 8:00-20:00) throughout the experiment. The food intake and body 

weight during the experimental period were recorded every two days at 10:00 a.m. 

To determine the dose of LPS, male WKAH/HkmSlc rats (5-6 weeks old: Japan 

SLC, Hamamatsu, Japan) were used and fed a modified American Institute of Nutrition 

(AIN)-93G rodent diet (Reeves et al., 1993) containing sucrose as the carbohydrate source 

for 1 week (control diet, Table 3-1). LPS was intraperitoneally administered at 2, 4, or 8 

mg/kg in 0.9% physiological saline (E. coil, serotype 055:B5; Sigma Chemicals). At 6 h 

after the LPS administration, the rats were euthanized with sodium pentobarbital (50 

mg/kg) and the blood plasma was collected from aortic vessel with heparin (50 U/mL 

blood) and aprotinin (500 KIU/mL blood).  

To determine whether M-IM ingestion modulates KLH-specific antibody 

production and LPS-induced liver injury (Fig 3-1), male F344/Jcl rats (5 weeks old; Japan) 

were fed control diet (Table 3-1) for 4 days. After acclimation, the rats were divided into 

two groups and fed diets with or without the M-IM supplementation (at 30 g/kg) for 35 
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days (Table 3-1). The rats were administrated with KLH at day 14. At the end of the 

experimental period (day 35), the rats were subcutaneously administrated with 4 mg/kg of 

LPS to induce acute liver injury. At 6 h after the LPS administration, the rats were 

euthanized with sodium pentobarbital and the blood plasma was collected from aortic 

vessel with heparin and aprotinin.  

In a separate experiment (Fig 3-2), male F344/Jcl rats (5 weeks old; Japan) were 

fed control diet (Table 3-1) for 5 days. Then, the rats were divided into two groups and fed 

diets supplemented with or without M-IMs (at 30 g/kg) for 37 days. At the end of the 

experimental period, the rats were euthanized with sodium pentobarbital and the blood 

plasma was collected from aortic vessel with heparin and aprotinin.  

In all experiment, the plasma was separated after centrifugation and stored at -80°C. 

The liver was weighed and collected and stored at -80°C. 

 

3-2-2. T-cell-dependent antibody production  

KLH (Sigma Chemicals, St. Louis, MO, USA) was dissolved in PBS (2 mg/ml). 

The final dose of KLH was 1 mg/animal. Male F344 rats were subcutaneously given 500 

μL of KLH-containing solution. The bloods were collected from tail veil, centrifuged 

2,500 g for 15 min at room temperature, and kept at -80°C until analysis. KLH-specific 

IgM and IgG production in serum were analyzed by ELISA kits (Shibayagi, Shibukawa 

Gunma, Japan) at day 21 (IgM) and day 32 (IgG), respectively (Fig 3-1). 

 

3-2-3. Plasma parameters  

The aortic plasma was analyzed using a trasaminase CⅡ test Wako kit (Wako Puse 

Chemical Industries, Ltd.) to measure liver injury markers alanine transaminase (ALT) and 

aspartate transaminase (AST) activity. The concentration of creatinine, kidney injury 
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marker, was determined by creatinine assay Wako kit (Wako Puse Chemical Industries, 

Ltd.). Also, the concentrations of TNFα (Biolegend, San Diego, CA, USA), IL6 

(Biolegend), Caspase-1 (CUSABIO, College Park, MD, USA), and IL1β (Thermo, 

Waltham, MA, USA) were measured with ELISA kits. 

 

3-2-4. Quantitative real-time PCR 

At 6 h after the LPS administration, the liver were collected and stored at -80°C. 

Inflammatory cytokine mRNA expression was measured by using real-time PCR with a 

Taqman probe. RNA was extracted from the cells with an RNeasy mini kit (Qiagen, Hilden, 

Germany). The RNA concentration was measured by spectrophotometry (NanoDrop Lite; 

Thermo Scientific, Waltham, MA, USA). RNA (1 μg) was used for reverse transcription 

with ReverTra Ace®  qPCR RT master mix with gDNA remover according to the 

manufacturer’s instructions. The qPCR reaction was performed using an Mx3000P real-

time PCR system (Agilent Technologies, Santa Clara, CA, USA) with Taqman gene 

expression assays for Tnfα, Il6, Il1β, Il10, Arg1, and Cd14. Rplp0 was used as a control 

(Table 3-2). A serial dilution of the cDNA solution for each target gene was used as a 

standard to confirm the ranges of the PCR reactions. 

 

3-2-5. Statistical analysis 

Statistical analysis was performed with JMP software (version 12.0; SAS Institute, 

Inc., Tokyo, Japan). All the values are presented as the average and standard error of the 

mean. The analysis was performed with a Student’s t-test for the comparison of two groups. 

Differences were considered to be significant at P < 0.05. 
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Table 3-1. Diet composition for feeding study of M-IMs  

Ingredient  g/kg   

 Control  M-IM  

Casein
1 

 200  200  

Soybean oil
2
  70  70  

Crystalline cellulose
3
  50  50  

AIN-93G mineral mixture
4
  35  35  

AIN-93 vitamin mixture
5
  10  10  

Choline bitarate  2.5  2.5  

L-Cystine  3  3  

M-IM   30  

Sucrose
6 

 To make 1 kg 

1 
NZMP Acid Casein (Fonterra. Ltd., Auckland, New Zealand).  

2
 (J-Oil Mills Tokyo, Japan).  

3
 Ceolus PH102 (Asahi Chemical Industry, Tokyo, Japan).  

4,
 
5 

Mineral mixtures were prepared according to the AIN93-G formulation and vitamin 

mixtures were prepared according to the AIN93 formulation.  

6 
Nippon Beet Sugar Manufacturing Co., Ltd., Japan).  
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Table 3-2. The primer sequences for quantitative reverse transcription-polymerase 

chain reaction 

Gene Primer Taqman Probe 

Assay ID 

NCBI reference 

Sequence 

Forward (5’→3’) 

Reverse (3’→5’) 

Arg1 CCCGCAGCATTAAGGAAAGC 

GCAAGCCGATGTACACGATG 

Rn00691090_m1 NM_017134.3 

Cd14 GCCAGAGAACGCTGCTGTAA 

ACCGCACAGTAAGCCTCTTC 

Rn00572656_g1 NM_021744.1 

Il1β GCTACCTATGTCTTGCCCGT 

TGCTGATGTACCAGTTGGGG 

Rn00580432_m1 NM_031512.2 

Il6 AGAGACTTCCAGCCAGTTGC 

AGAGCATTGGAAGTTGGGGT 

Rn01410330_m1 NM_012589.1 

Il10 GTAGATGCCGGGTGGTTCAA 

CCTCTGGATACAGCTGCGAC 

Rn00563409 NM_012854.2 

Tnfα CAGAACTCCAGGCGGTGTC 

CTTGGTGGTTTGCTACGACG 

Rn01525859_g1 NM_012675.3 

Tlr4 CAGGAAGCTTGAATCCCTGC 

TTTTGTCTCCACAGCCACCA 

Rn00569848_m1 NM_019178.1 

Rplp0 GGCAAGAACACCATGATGCG 

GTGATGCCCAAAGCTTGGAA 

Rn03302271_gH NM_022402.2 
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Figure 3-1. Experimental design with LPS treatment 

Male F344/Jcl rats (5 weeks old) were fed diets supplemented with or without M-IMs (30 

g/kg diet) for 35 days. KLH was administered subcutaneously (1 mg/rat) at day 14 as an 

exogenous antigen. KLH-specific antibody production in serum were analyzed by ELISA kits 

at day 21 (IgM) and day 32 (IgG), respectively. At the end of the experimental period, the 

rats were administrated with 4 mg/kg of LPS to induce acute liver injury. At 6 h after the LPS 

administration, the aorta plasma and liver were collected. 
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Figure 3-2. Experimental design without LPS treatment 

The rats were fed the diet supplemented with or without 3% M-IMs for 36 days. The aorta 

plasma and liver were collected and stored at -80°C (n =6). 
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Chapter 3 

3-3. Results 

 

3-3-1. Partial suppression of increases in plasma AST, ALT and IL1β in the rats fed 

M-IMs in response to LPS 

In a preliminary experiment, plasma TNF-α concentration (Fig. 3-3A) and ALT 

activity (Fig. 3-3B) increased depending on LPS concentration. Apparent increases in 

TNF-α concentration and ALT activity were observed at 4 mg/kg of LPS. Thus, we 

assessed the influence of M-IMs on LPS-induced liver injury at 4 mg/kg. 

Our previous study demonstrates that M-IMs were recognized by macrophage in 

primary culture (Chapter 2), indicating that the M-IMs may modulate not only innate 

immunity, but also adaptive immunity in vivo. Thus, we examined the impact of M-IMs on 

antigen-specific antibody production by using KLH. There was no significant difference in 

body weight and food intake by the ingestion of M-IMs (Fig. 3-4A and B), suggesting no 

effect of the ingestion of M-IMs on the growth. Although serum KLH-specific IgM (Fig. 

3-5A) and production tended to increase, there was no significant difference in the KLH-

specific IgG (Fig. 3-5B) at last. 

No significant difference was found in the weight of liver, kidney, whole cecum, 

spleen, and epididymal adipose tissue (Fig. 3-6A to E) in the LPS-treated rats. Liver injury 

markers, plasma ALT (Fig. 3-7A) and AST (Fig. 3-7B) decreased significantly by the 

ingestion of M-IMs. On the other hand, there was no significant difference in the plasma 

creatinine concentration (Fig. 3-7C). 

It is possible that suppression of the liver injury markers by ingestion of M-IMs 

likely to be associated with the inflammatory cytokines production. Therefore, we 
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confirmed production of the pro-inflammatory cytokines of the ingestion of M-IM in LPS-

induced hepatitis models. As a result, the ingestion of M-IMs significantly suppressed 

IL1β production (Fig. 3-8D). Also, both IL6 (Fig. 3-8B) and caspase-1 (Fig. 3-8C) 

productions tended to decrease in the rat fed the M-IM supplemented diet. However, there 

was no significant difference in the TNFα production (Fig. 3-8A).  

Then, we measured the expression of inflammatory cytokine in the liver. No 

significant difference was observed in liver expression of Tnfα, Il6, Il1β, Arg1 and Cd14 by 

the ingestion of M-IMs. (Fig. 3-9A to E). In contrast, the Nlrp3 expression (Fig. 3-9F) was 

increased by the ingestion of M-IMs.   

 

3-3-2. Down-regulation of liver Cd14 expression in the M-IM-fed rats 

To assess whether the M-IM-ingestion modulates factors associated with 

inflammation under untreated condition, we analyzed mRNA expressions and cytokine 

production in liver and plasma at the rats without LPS-treatment. No difference was 

observed in the growth and food intake as well as organ weights (Fig. 3-10 and Fig. 3-11). 

The plasma TNFα concentration in the rats fed control diet was below the range of the 

calibration curve (Fig. 3-12A). Also, in the M-IM-ingestion group, 3 out of 6 samples were 

below the range of the calibration curve.  

There was no significant difference in plasma IL6 concentrations (Fig. 3-12B) as 

well as the gene expressions of Arg1, Il1β, Nlrp3 and Tlr4 in the liver (Fig. 3-13A to E). 

The Il6 expression tended to increase in liver of the M-IMs supplemented diet (Fig. 3-13E). 

Meanwhile, the Cd14 expression (Fig. 3-13F) was significantly decreased in the liver of 

the rats fed the M-IM supplemented diet. 
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Figure 3-3. Changes in TNFα concentration and ALT activity by intraperitoneal 

administration of LPS 

Male WKAH/Hkm Slc rats (5 weeks old) were fed AIN-93G sucrose based diets. To 

determine appropriate dose of LPS to induce liver injury, the rats intraperitoneally 

administered with various concentration of LPS. Saline was administered as vehicle. At 6 h 

after the administration, the aorta plasma was collected. (A) TNFα concentration in the aortic 

plasma and (B) ALT in the aortic plasma (n=1-2). 
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Figure 3-4. Changes in body weight and food intake in the rats fed the diet with or 

without 3% M-IMs  

The rats were fed the diet containing M-IM (30 g/kg diet) for 35 days. (A) The body weight 

and (B) food intake were recorded every two days.  
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Figure 3-5. Antigen-specific antibody in sera of the rats fed the M-IM-supplemented 

diet 

KLH was administered subcutaneously (1 mg/rat) at day 14 as an exogenous antigen. KLH-

specific (A) IgM and (B) IgG in the serum were measured at day 7 and day 18 after the 

administration of KLH, respectively. The antibody production was measured with ELISA kits. 
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Figure 3-6. Tissue weights of the rats fed the diet with or without 3% M-IMs in LPS-

treated condition  
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Figure 3-7. Plasma liver and kidney injury makers in the LPS-treated rats 

At 6 h after the 4 mg/kg LPS subcutaneous administration, the aorta plasma was collected 

and stored at -80°C. (A) ALT and (B) AST in the aortic plasma were measured with wako 

transaminase CⅡ test kits. (C) creatinine concentration in the aorta plasma was analyzed by 

using wako creatinine assay kits. Means not sharing a common letter differ significantly (n = 

9-10, *P < 0.05, by Student’s t-test). 
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Figure 3-8. Inflammatory cytokine concentrations in aortic plasma of the LPS-treated 

rats 

The rats were fed the diet supplemented with or without 3% M-IMs for 35 days. The rats 

were administrated with 4 mg/kg of LPS at day 35 to induce acute liver injury. At 6 h after 

the LPS administration, (A) TNFα, (B) IL6, (C) Caspase-1 and (D) IL1β concentrations in the 

aorta plasma was measured with ELISA kits. Means not sharing a common letter differ 

significantly (n = 9-10, *P < 0.05, by Student’s t-test). 
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Figure 3-9. mRNA expressions in liver of the LPS-treated rats 

The rats were fed the diet supplemented with or without 3% M-IMs for 35 days. The rats 

were administrated with 4 mg/kg of LPS at day 35 to induce acute liver injury. At 6 h after 

the LPS administration, the liver was collected and stored at -80°C. The RNA was isolated 

from liver, and the expressions of (A) Tnfα, (B) Il6, (C) Il1β, (D) Il10, (E) Arg1, (F) Nlrp3 

were measured by using RT-qPCR. Means not sharing a common letter differ significantly (n 

= 9-10, *P < 0.05, by Student’s t-test). 
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Figure 3-10. Changes in body weight and food intake in the rats fed the diet with or 

without 3% M-IMs  

The rats were fed the diet containing M-IM (30 g/kg diet) for 36 days. (A) The body weight 

and (B) food intake were recorded every two days (n =6). 
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Figure 3-11. Tissue weights of the rats fed the diet with or without 3% M-IMs  

(n =6) 
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Figure 3-12. Inflammatory cytokines concentrations in aortic plasma  

(A) TNFα (n =0-3). and (B) IL6 (n =6) concentrations in the aorta plasma were measured 

with ELISA kits. Means not sharing a common letter differ significantly. Means not sharing a 

common letter differ significantly. 
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Figure 3-13. mRNA expressions in liver of the rats fed M-IM-supplemented diet 

The RNA was isolated from liver, and (A) Arg1, (B) Nlrp3, (C) Il1β, (D) Tlr4, (E) Il6, and (F) 

Cd14 expressions of factors involved in immune response were measured by using RT-qPCR. 

Means not sharing a common letter differ significantly (n =5-6, *P < 0.05, by Student’s t-

test). 
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Chapter 3 

3-4 Discussion 

 

Increase in portal LPS concentration is reported in ob/ob and db/db mice (Brun P et 

al., 2007) and a similar increase is observed in mice fed a high-fat diet (Cani PD et al., 2007). 

Both genetically-modified mice and diet-induced obesity mice are representative models in 

metabolic syndrome that are accompanied by insufficient gut barrier functions. Such 

deterioration of gut barrier “leaky gut” would induce penetration of LPS from the gut. 

Interestingly, there is a postprandial increase in blood LPS even in mice fed a normal diet 

(Cani PD et al., 2007), suggesting that such transient increase of blood LPS is involved in the 

onset of chronic inflammation. LPS is frequently used to induce liver failure in several 

studies and usually administered with other reagents such as GalN, carbon tetrachloride, or 

alcohols (Rahman TM et al., 2000), but these treatments provoke quite severe inflammatory 

symptoms. On the other hand, a simple treatment with LPS can induce acute inflammation in 

brain (Hong CH et al., 2004) and liver (Bohlinger I et al., 1996). LPS treatment also 

increases plasma inflammatory cytokines (Kato R et al., 2009). A single administration with 

LPS can induce inflammatory responses in many organs although the symptoms are relatively 

subtle. To evaluate prevention of liver failure by dietary factors, it is necessary to use models 

with early events rather than with severe symptoms. We then investigate to find appropriate 

experimental condition with single injection of LPS to induce liver damages. There is a report 

(Kato R et al., 2009) showing that significant increases in the plasma concentrations are 

detected in rats at 3 and 6 h in TNFα and at 3, 6, and 9 h in IL1β after peritoneal injection of 

LPS. In contrast, the increase in nitric oxide production was not observed at 3 h after LPS 
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administration in the same study. A similar LPS administration also enhances the activities of 

ALT and AST at 3 and 6 h post-administration in mice (Sato M et al., 1995). Judged by 

alteration of these plasma parameters, we determined that appropriate endpoint was at 6 h 

after injection of LPS in the present study.  

There is a report showing that a reduction of survival is observed when the rats 

received 5 mg/kg of LPS (Tavares E and Miñano FJ, 2010). Although massive fluctuation in 

the values was detected at 4 mg/kg of LPS, we predict that a significant difference can be 

secured stably if the number of individuals is increased per group. In general, it might be 

quite difficult to detect significant influence of dietary intervention in severe inflammation 

models. Also, we would like to determine preventive effects of dietary intervention in an 

early phase of disease models. According to such points of view, we tried to establish a mild 

liver inflammation model by using LPS administration. In order to ensure to induce liver 

injury, we selected 4 mg/kg of LPS in the present experiment. If LPS is injected 

intraperitoneally, abdominal organs including liver are exposed to enormous amount of LPS, 

which would induce unexpected responses against LPS in this site. To avoid this situation, we 

decided to inject LPS subcutaneously.  

AST is present in liver, heart skeletal muscle, kidney, brain and red blood cell 

(Giannini EG et al., 2005), whereas ALT intensively exists in the liver compared to other 

tissues such as kidney. Blood ALT activity is considered to increase specifically in liver 

injury (Giannini EG et al., 2005). To determine whether the LPS treatment influences kidney 

functions, we measured creatinine concentration in aortic plasma. In the present study, no 

difference of the creatinine concentration with or without LPS administration accompanied 

by LPS-induced increase in liver inflammatory factors suggests that this model represents 

inflammation in liver rather than that in kidney. On the other hand, liver injury can be 

induced by GalN (Kawano N et al., 2007), but there are extremely high levels of ALT and 
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AST activities in response to the treatment as compared to those in the present study, 

suggesting unexpected influences not only in liver but in the other organs such as kidney by 

administration with GalN. Therefore, the liver injury in the present experiment might be a 

reasonable model to represent an early stage of liver inflammation. As a result, we observed 

amelioration of the LPS-induced liver injury by the ingestion of M-IMs. 

Attenuation of the transaminase activities in the M-IM-fed rats suggests modulation 

of inflammatory cytokines by M-IMs. Both TNFα and IL1β are produced in initial step of 

liver inflammation (Su GL, 2002) and regulate IL6 production (aloisi F et al., 1992; Shalaby 

MR et al., 1989). Due to no difference of the TNFα production between the groups, the M-

IM ingestion may suppress IL1β - IL6 pathway in the LPS-induced liver injury. IL1β 

production requires formation of inflammasome in innate immune cells (Guo H et al., 2015). 

Inflammasome activates caspase-1, apoptosis-associated speck-like protein containing CARD, 

and NLRP3, which produces inflammatory cytokines such as IL1β and IL18 in response to 

LPS. No apparent suppression of inflammasome by the M-IM ingestion in terms of gene 

expression in the present study. The M-IM ingestion may modulate some of these factors in 

protein levels. It is reported that serum IL1β and IL18 concentrations increase in response to 

GalN/LPS in mice with a myeloid cell-specific knockout of autophagy protein 5 (Atg5) (Ilyas 

G et al., 2016). Also, deficiency of Atg5 promotes serum ALT activity and liver injury grade 

in response to GaIN/LPS, and the liver injury reduced by IL1 receptor antagonist (IL1Ra) 

(Ilyas G et al., 2016). It is suggested that autophagy protects liver injury by inhibition of IL1β. 

Also, the ALT activity was decreased by IL1Ra treatment in alcohol-induced liver 

inflammation mice (Petrasek J et al., 2012), suggesting that IL1β promotes liver injury. It is 

reported that lack of Atg5-dependent autophagy in macrophages promoted M1 polarization 

and enhanced inflammatory cytokines such as TNFα, CCL5, IL6, CCL2 and IL1β (Liu K et 

al., 2015), suggesting that such population of macrophages may affect inflammation process 
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in the liver after exposure to LPS. Considering that LPS-induced liver injury is exacerbated 

by lack of autophagy in mice fed a high-fat diet (Liu K et al., 2015), it is possible that M-IM 

attenuates liver injury via modulation of autophagy. 

LPS-induced inflammatory response occurs via interaction of proteins such as LBP, 

CD14, MD-2, TLR4 (Akira S et al., 2006; Lu YC et al., 2008). The TLR4 signaling induces 

activation of NF-κB and MAPK, and produces inflammatory cytokines. In literature (Su GL, 

2002), CD14 is an essential factor to exacerbate LPS-induced inflammation and liver injury. 

TNFα production in response to LPS deceases in Kupffer cells isolated from CD14 knockout 

mice (SU GL et al., 2002). Also, in alcohol-induced liver injury mice, ALT activity is 

reduced in CD14-knockout mice (Yin M et al., 2001). As a result, the ingestion of M-IMs 

reduced the expression of Cd14 in liver, which may contribute to attenuation of liver injury in 

the LPS-treated rats.  

In the cellular experiment, the M-IMs were recognized by primary macrophages and 

induced inflammatory cytokines but not O-IMs. It is possible that M-IMs modulate adaptive 

immunity via regulation of innate immunity such as macrophages functions. The M-IMs have 

no effect on body weight and food intake for experimental period. There were no significant 

differences between groups in KLH-specific antibody production, indicating that the M-IMs 

modulate innate immunity rather than adaptive immunity. Also, M-IMs specifically 

ameliorate inflammation with local immunity.  

In conclusion, ingestion of M-IMs ameliorated LPS-induced acute liver injury in rats. 

Such reduced inflammation by the M-IMs may be associated with dysfunction of CD14 

signaling (Fig. 3-14). Also, there is no influence of the M-IM ingestion on antibody 

production, indicating that M-IMs influence the innate immunity rather than the adaptive 

immunity, which may contribute to prevention of acute inflammation induced by endotoxin. 
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Figure 3-14. Presumable mechanisms of suppression of LPS-induced hepatitis by M-

IMs   
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Chapter 4 

General Discussion 
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Chapter 4 

General Discussion 

 

Currently, a variety of hepatitis models in animal experiments are available such as 

GalN, LPS with GalN, and carbon tetrachloride etc. The symptoms of these models are 

basically quite severe although it depends on the dose of the reagents, which ensure a clear 

difference of parameters of interest including blood cytokines and transaminases, gene 

expressions as well as histological observations. Such severe symptoms might be appropriate 

to evaluate efficiency of pharmaceutical reagents because some clinical symptoms are as such. 

However, development of the disease established by the hepatitis inducers is not accordance 

with those of naturally-occurred hepatitis. Dietary habit can be one of the environmental 

factor in disease development, which is frequently involved in chronic inflammation. The 

influence of dietary intervention is not strong as compared to that of pharmaceutical reagents 

and cannot be detected in severe hepatitis models. In literature (Cani PD et al., 2007), high-

fat diet consumption induces steady increase in blood LPS concentration with leaky gut. As 

shown in chapter 3, a single administration of LPS can induce hepatitis, but the symptom is 

relatively weak than that induced by other treatments. However, the situation happened in a 

high-fat-fed condition. LPS-induced hepatitis in this experiment shows the symptoms in 

initial inflammation, which represents an early phase in chronic inflammation. We propose 

that the experimental model with single injection of LPS can be used to examine preventive 

effect of dietary intervention or food ingredients on hepatitis.  

By using this hepatitis model, one of the possible targets, CD14 signaling, was 

identified in suppression of the LPS-induced hepatitis by the ingestion of M-IMs. Although 

We confirmed the suppressing effect of M-IMs in the liver inflammation, the precise 
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mechanisms are remains to be elucidated. For example, (1) How does the M-IM ingestion 

reduces gene expression of Cd14 in the liver, (2) Does the M-IM modulates macrophage 

population (M1 and M2) in the liver, (3) What is the effective size in DP or the effective 

composition of sugars in M-IMs, (4) the M-IMs are able to be absorbed as the intact form, (5) 

Can luminal M-IMs be a signal to inducing responses in the cells in Peyer’s patches, etc. 

These might be future working hypothesis to clarify the mechanism. One concern is the fate 

of LPS injected in the model. There might be significant problem if the LPS remains in the 

animals, which can induce another inflammation in the body. To elucidate this possibility, a 

long-term is necessary experiment in a similar treatment by using LPS. Obviously, 

appropriate dosage should be determined for the long-term experiment. If the LPS is 

successfully eliminated in the rats fed M-IMs, the M-IMs can be used as a functional 

ingredient in food to prevent chronic inflammation as well as NCDs in a clinical application. 
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