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Fast Multi-objective Optimization of Electromagnetic Devices 

Using Adaptive Neural Network Surrogate Model 
 

Hayaho Sato1, Hajime Igarashi1 
 

1Graduate School of Information Science and Technology, Hokkaido University, Sapporo, 060-0814, Japan. 

 

This paper presents a fast population-based multi-objective optimization of electromagnetic devices using an adaptive neural network 

surrogate model. The proposed method does not require any training data or construction of a surrogate model before the optimization 

phase. Instead, the neural network surrogate model is built from the initial population in the optimization process, and then it is 

sequentially updated with high-ranking individuals. All individuals were evaluated using the surrogate model. Based on this evaluation, 

high-ranking individuals are re-evaluated using high-fidelity electromagnetic field computation. The suppression of the execution of 

expensive field computations effectively reduces the computing costs. It is shown that the proposed method works two to four times 

faster-maintaining optimization performance than the original method that does not use surrogate models.  

 
Index Terms—Genetic algorithm, IPM motor, Machine learning, Magnetic shield, Shape optimization.  

 

I. INTRODUCTION 

esign optimization based on electromagnetic field 

computation is now an indispensable process for the 

development of electric and electronic devices. In particular, 

population-based stochastic optimization methods, such as 

genetic algorithm (GA) and particle swarm optimization, are 

more effective than other methods, such as gradient-based 

methods, for the problems encountered in the design process, 

which contain complicated constraints and multimodal 

objective functions [1], [2]. Population-based methods have 

numerous merits: (a) global search ability, (b) flexible treatment 

of complicated constraints, (c) easy extension to multi-

objective problems using, for example, NAGA-II [3] and 

SPEA-II [4], and (d) robust optimization [5]. However, this 

method has a relatively large computing cost, which becomes 

problematic when the objective function evaluation is 

computationally expensive. In particular, when the 

performance of an electric device is evaluated by the finite 

element method (FEM) or other field computing methods, the 

computing cost for population-based optimization can be 

unacceptably long. To overcome this difficulty, a surrogate 

model was employed for the fast evaluation of the objective and 

constraint functions. In this method, surrogate models based on 

artificial neural networks (NNs) [6–9], kriging method [10], 

[11], and response surface [12–14] are built to make 

approximate computation faster than the field computations. 

The surrogate-based optimization can be classified into fixed 

(offline) and adaptive (online) methods [15], [16]. In the former 

approach, the surrogate model is prepared based on a set of 

training data before the optimization phase [17]. Once the 

surrogate model is constructed, the function evaluation during 

the optimization process can be performed promptly. When the 

number of design variables is relatively small, this method is 

effective. However, its performance was determined based on 

the quality of the prepared surrogate model. It becomes rapidly 

difficult to ensure sufficient sampling as the degree of freedom 

in the problem increases. If the sampling is insufficient in the 

training phase, the optimization performance is unsatisfactory. 

A remedy for this problem is to conduct intensive sampling 

around promising points. This can be done using the adaptive 

method, in which the surrogate model is updated with 

additional sampling data during the optimization process. 

Taran et and D. G. proposed an adaptive surrogate model 

using the kriging method for the optimal design of electric 

motors [16]. In this study, an inexpensive Pareto front was built 

using the surrogate model for a multi-objective problem with 

respect to the design parameters. The individuals on the 

inexpensive Pareto front are then evaluated using the FEM to 

build the expensive Preto front. This method would be effective 

for obtaining approximated solutions, while its performance 

would not always be satisfactory because the inexpensive 

Pareto front that governs the evolution direction would 

inherently have errors owing to the surrogate model. 

In this study, we proposed a different adaptive surrogate-

based optimization method for multi-objective problems. In this 

method, we updated the surrogate model based on the artificial 

NN, not only from the Pareto front but also from lower-ranking 

individuals. It will be shown that this extended sampling is 

important for maintaining the optimization quality. The 

proposed method based on the extended sampling is shown to 

make the optimization process faster keeping the performance 

in the optimized devices. Moreover, the proposed method is 

shown to be valid not only for parametric but also for topology 

optimization problems. Because the optimization variables in 

the topology optimization tends to be more than those in the 

parameter optimization, the former needs more computing cost. 

The proposed method particularly effective to make the 

topology optimization faster without loss of optimization 

quality. Although the proposed method is for multi-objective 

optimization, it can also be applied to single-objective problems, 

which will be discussed in the Appendix. 

II. ADAPTIVE SURROGATE-BASED OPTIMIZATION METHOD 

The nomenclature of parameters is summarized in Table I. 

A. Shape Optimization Based on GA 

As a population-based optimization method, we adopted the 

GA, whose algorithm is summarized as follows: 

1. For the initial population, individuals were randomly 
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generated and analyzed by FEM to evaluate their fitness. 

2. Parents are selected. 

3. Children are generated from the parents by crossover and 

mutation. 

4. Children were analyzed using FEM for selection. The 

selected children returned to the population. 

5. The algorithm terminates if the maximum number of 

generations is attained. Otherwise, return to Step 2. 

In parameter optimization, the genes comprise design 

parameters, such as material size, position, angle, and material 

type. In topology optimization, the material distribution is 

determined, allowing the generation and elimination of holes 

such that the cost function is minimized. Here, we adopt the 

NGnet-based on/off method, which has been shown to be fairly 

suitable for the optimization of electric apparatus, such as 

electric motors [18] and wireless power transfer devices [19]. 

In this method, the material distribution (for example, magnetic 

core/air) is determined from the sign of the shape function ���, �� defined by 

 

���, �� � � 	
�
���
�


�
, (1a) 

�
��� � �
���
∑ ��������

, (1b) 

�
��� � 1
2�� exp �� �� � �
���� � �
�

2�� � . (1c) 

 

TABLE I 

NOMENCLATURE 

Parameter Quantity 
 

Parameter Quantity 

� coordinate vector    population � design variable  ! children " number of design 

variables 

 # stored data 

� standard deviation 

of Gaussian basis 

function 

 ℳ surrogate model 

� average vector of 

Gaussian basis 

function 

 "%&% size of population 

', '�, '� objective function  "( number of 

children )*,
 , )+,
 width of magnetic 

shield and air gap 

 , number of highest 

ranks to be re-

evaluated -*, -+ width of design 

region (magnetic 

shielding) 

 ./ re-evaluation ratio 

for individuals in 

lower rank 0
 magnetic flux 

density in 1-th 

element 

 2345 maximum number 

of generation 

|0|478 average of 

magnetic flux 

density 

 9 ground truth 

": number of 

elements in target 

region 

 9; inferred value 

<478 average torque  =>4?4 number of 

training data </@% torque ripple  "% number of parents 

(single-objective) <345 maximum torque  .4 threshold for fine 

tuning execution 

(single-objective) <3@A minimum torque  .( classification 

threshold (single-

objective) <478/BC reference value of 

average torque 

(single-objective) 

 Ω design region 

</@%/BC reference value of 

torque ripple 

(single-objective) 

   

 

Fig. 2.  Algorithm of adaptive surrogate model for multi-objective 

optimization, where ,, D are hyperparameters given in the text. 

 

Start

Generate initial population data and build training data by FEM

Construct surrogate model with 

Set 

Generate children ( )

Evaluate performance of individuals in with 

Apply non-dominated ranking to

Evaluate individuals of highest ranks in using FEM

In addition, evaluate individuals at lower ranking with probability 

Remove individuals who are not evaluated from 

Set 

Perform non-dominated ranking to 

Push individuals in from the highest 

ranking into until 

Update surrogate model with 

to build 

Build training data from 

Number of generations ?

End

No

Yes

 
Fig. 1.  NGnet-based on/off method. 
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The NGnet on/off method is schematically shown in Fig. 1. If ���, �� E 0, the material is set to the magnetic core (“on”), and 

otherwise, it is set to air (“off”). Here, the weight coefficients � � G	�, 	�, … , 	�I are the design parameters of the gene. 

B. Adaptive NN Surrogate Model 

Fig. 2 shows the algorithm of the proposed adaptive 

surrogate model for multi-objective optimization, which is 

schematically depicted in Fig. 3. In the first stage of this method, 

the initial population  � � G��, ��, … , ��JKJI  is randomly 

generated, and its performance is evaluated by field 

computation, where FEM is used to build the initial training 

data #L � G���, 9��, ���, 9��, … , ���JKJ , 9�JKJ�I . 

Subsequently, the surrogate model ℳ� is constructed based on #L, and "( children, !�, are generated by mutation from  � and 

they are ranked based on the approximate evaluation using ℳ�. 

The individuals of the highest , ranks in !� are re-evaluated by 

FEM to build new data #� and the others are eliminated. Using #�  (data sets #
 , #
N�, … , #O ,  P � max �1, 1 � D S 1� , in 

general), the surrogate model is updated to obtain ℳ� (ℳ
T�). 

The new population,  � is built from !� and  �. 

The population   generated in the above procedure is 

occupied by the individuals evaluated by FEM, and the 

surrogate model ℳ is constructed from the selected children in 

the latest D  generations through the FE computations. The 

computing cost is reduced by the limited number of FE 

evaluations for individuals with the highest , ranks. It will be 

shown that the resultant solutions can be unsatisfactory if the 

surrogate model is constructed only from the highest-ranking 

individuals, composing the tentative Pareto front. 

In this study, we adopted an artificial NN for the surrogate 

model ℳ, which can be replaced by other methods, such as 

kernel regression and kriging. One of the advantages of NN is 

that it works well for a relatively large number of design 

variables. In this study, we apply the proposed method to 

topology optimization, which can have more than 100 variables. 

Fig. 4 shows the structure of the NN. The input and output of 

the NN are the design parameters and the predicted value of the 

device performance, respectively. The ReLU function 9�U� �max �0, U� is used as the activation function. In addition, in 

each layer, we introduce a dropout with a probability of 0.2.  

As shown in Figs. 2 and 3, the surrogate mode, NN, is 

updated for every generation. In this update, the initial NN 

weights are set to the weights in the previous generation. 

The loss function V for training is: 

 

V � 1
=>4?4 � W9
 � 9;
X�

YZ[\[


�
. (2) 

 

III. APPLICATION TO PARAMETER OPTIMIZATION 

In Sections III and IV, we describe numerical examples for 

the parameter and topology optimization problems, 

respectively. In these computations, we used an Intel (R) Xeon 

(R) CPU (3.2 GHz, 8 cores, 16 threads). 

 
Fig. 3.  Overview of algorithm of adaptive surrogate model for multi-objective optimization. 

 

 
Fig. 4.  Neural network used as surrogate model. 
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A. Optimization of Magnetic Shielding Structure 

We consider the optimization of the magnetic shield shape 

placed near a coil, as shown in Fig. 5 [20] to minimize the  

magnetic flux density averaged over the target region, |0|478, 

and simultaneously minimize the magnetic core area ] inside 

the design region Ω. Fig. 6 shows the design parameters for the 

assumed double-shield structur  e, which are represented by the 

optimization variables � � G	*,�, … , 	*,^, 	+,�, … , 	+,^I  in 

such a way that 

 

)*,
 � -*	*,
∑ 	*,��̂�
, )+,
 � -+	+,
∑ 	+,��̂�

, 1 � 1, … , 4. (3) 

 

B. Problem Definition  

The multi-objective optimization problem for '�, '�  is 

defined as follows: 

 

'���� � |0|478 � 1
": �|0
|

�`


�
→ min., (4a) 

'���� � ] → min. (4b) 

 

 The optimization settings are summarized in Table II. 

Because '�  can be computed directly from the design 

parameters, we build an NN only for '�. The search for the 

Pareto solutions is performed based on NSGA-II, which is a 

widely used multi-objective GA [3]. For crossover, we adopt 

Simulated Binary Crossover [21] with a crossover probability 

of 90% and a crossover parameter d>, which is a parameter that 

controls the range of children generated, set to 2. 

During the optimization process, we update the NN using the 

proposed method in Fig. 2 and 3 with the parameters 

summarized in Table II. For training the NN during the 

optimization process, which corresponds to ℳ
 ,  1 e 2 , the 

number of epochs is set to be much smaller than that for the 

training of ℳ�  in the initial step. This enables us to avoid 

overfitting and shorten the training time. We consider three 

different rank ranges for the construction of the NN, , � 1, 2, 3, 

 
Fig. 5.  Magnetic shield problem for parameter optimization (mm). 

 

 
Fig. 7.  Pareto solutions for magnetic shielding problem. 

 

0.0E+00

4.0E-03

8.0E-03

1.2E-02

1.6E-02

0.0E+00 5.0E-03 1.0E-02

Reference

0.0E+00

1.0E-03

2.0E-03

3.0E-03

4.0E-03

0.0E+00 2.5E-04 5.0E-04

Reference

(a) Entire solutions.

(b) Solutions near origin.

 
Fig. 6.  Design parameters for double magnetic shields. 

 

TABLE II 

OPTIMIZATION SETTINGS IN MULTI-OBJECTIVE OPTIMIZATION OF MAGNETIC 

SHIELD 

Parameters Value 

" 8 "%&% 160 

"( 80 2345 200 D 1 

Number of epochs for 

training of ℳ� 
50 

Number of epochs for 

training of ℳ
 , 1 e 2 

2 

./ 10% 

Design variable 0 g 	*,
 , 	+,
 h ∞ 

�0 g )*,
, )+,
 g 120� 
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to test the optimization performance of the proposed method. 

C. Optimization Result 

Fig. 7 shows the Pareto solutions obtained by the proposed 

method and a conventional approach, represented by 

“Reference,” in which all the individuals are evaluated by FEM. 

It can be seen that the Pareto front obtained by the proposed 

method approaches “Reference” as , increases. In particular, 

when , � 3, the former becomes almost identical to the latter. 

It is stressed that the NN constructed only from the tentative 

Pareto front, which corresponds to , � 1, does not work well 

in this problem.  

Fig. 8 shows the typical solutions on the Pareto front when , � 3 . Solution (i) significantly reduced |0|478  with thick 

shields. In contrast, solution (iii) has no magnetic shield, where ] � 0. Solution (ii) has a suitable balance, |0|478 is reduced 

with the magnetic shield of a small area. 

The number of function calls for the FE analysis and 

computing time are summarized in Table III. The number of 

function calls was reduced to approximately 25% even when , � 3. The computing time was reduced to approximately 50% 

when , � 3, where we include the training time of the NN. 

IV. APPLICATION TO TOPOLOGY OPTIMIZATION 

A. Optimization of Motor Structure 

Fig. 9 shows the internal permanent magnet (IPM) motor 

models for topology optimization. The IPM motor models, 

which are based on the IEEJ D model [22], shown in (a) and (b), 

have I-shaped and V-shaped permanent magnets. Hereafter, 

they are referred to as I and V models, respectively. The 

magnetization was assumed to be normal to the wide surface of 

the magnets. The BH curve of the magnetic core is shown in 
Fig. 10. The other settings are summarized in Table IV. 

Although we consider here I and V models, we can apply the 

 
Fig. 10.  BH curve of magnetic core (50A400). 
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Fig. 9.  IPM motors for topology optimization (mm), � � 1.5 mm. 

 

Fig. 8.  Shapes for Pareto solutions when , � 3  for multi objective 

optimization of magnetic shield. Black line: magnetic flux. 

 

TABLE III 

REDUCTION OF FUNCTION CALLS AND COMPUTING TIME FOR MAGNETIC 

SHIELD PROBLEM 

 

Num. of 

function calls 

for FEM (a) 

(-) 

Reduction 

in (a) 

(%) 

Optimization 

time (b) 

(s) 

Reduction 

in (b) 

(%) 

Reference 16160 100.0 340.2 100.0 , � 1 2415 14.9 110.6 32.5 , � 2 4185 25.9 165.2 48.6 , � 3 4446 27.5 157.7 46.3 

 

TABLE IV 

MACHINE PARAMETERS 

Parameters Value 

Thickness (mm) 65.0 

Current amplitude (A) 3.0 

Number of turns of coil 

(turns) 

35 

Current phase angle (°) 20 

Residual flux density of 

permanent magnets (T) 

1.4 

Material of magnetic core 50A400 

 

TABLE V 

OPTIMIZATION SETTINGS IN MULTI-OBJECTIVE OPTIMIZATION OF IPM 

MOTORS 

Parameters (a) I model (b) V model 

" 37 35 "%&% 740 700 

"( 370 350 2345 200 200 D 10 10 

Number of epochs for 

training of ℳ� 
50 50 

Number of epochs for 

training of ℳ
 , 1 e 2 

5 5 

./ 10% 10% 

Design variable �∞ h 	
 h ∞ �∞ h 	
 h ∞ 

 



> FOR CONFERENCE-RELATED PAPERS, REPLACE THIS LINE WITH YOUR SESSION NUMBER, E.G., AB-02 (DOUBLE-CLICK HERE) < 

 

 

6 

proposed method to other PM motors such as IPM motors with 

different magnet configurations, spoke-type PM motors, and 

surface PM motors. 

The distribution of iron and air in Ω was determined by the 

NGnet on/off method. The Gaussian basis functions are 

uniformly distributed in Ω, where the circles in Fig. 9 represent 

their contour lines |� � �
|� � �� , � � 1.5  mm. Moreover, 

assuming mirror symmetry, we considered only half of the 

region. 

B. Problem Definition  

The multi-objective optimization problem for '� , '�  is 

defined as follows: 

 

'���� � <478 → max., (5a) 

'���� � </@% → min., (5b) 

</@%��� � <345 � <3@A. (5c) 

 

The optimization variables are the weighting coefficients � in 

(1a). We trained the two NNs to predict  '� and '� from �. 

The optimization settings are summarized in Table V. To 

stabilize the training, we assume a larger value for D compared 

to that in Section III.  

C. Optimization Results 

Fig. 11 shows the Pareto solutions, where “Reference” 

represents the solutions obtained without the surrogate model, 

as described in Section III. It can be seen that the solutions 

approximate the distribution of the reference solution when , �2, 3. In Fig. 11 (a), the solutions obtained for , � 2 govern the 

solutions for , � 3  near the corner of the Pareto front at 

approximately <478 � 1.8 Nm. However, the latter had a denser 

distribution. The same tendency can be observed in Fig. 11 (b). 

This can be attributed to the stochastic nature of the GA. 

Fig. 12 shows the typical Pareto solutions for , � 3. In both 

Fig. 12 (a) and (b), solutions (i) have a narrow magnetic path 

 
Fig. 11.  Pareto solutions for multi objective optimization of IPM motors. 
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(a) I model.

(b) V model.  
Fig. 12.  Pareto solutions for multi objective optimization of IPM motors. 

 

TABLE VI 

REDUCTION OF FUNCTION CALLS AND COMPUTING TIME FOR OPTIMIZATION OF IPM MOTORS 

 (a) I model (b) V model 

 

Num. of 

function calls 

for FEM (a) 

(-) 

Reduction in 

(a) 

(%) 

Optimization 

time (b) 

(s) 

Reduction in 

(b) 

(%) 

Num. of 

function calls 

for FEM (a) 

(-) 

Reduction in 

(a) 

(%) 

Optimization 

time (b) 

(s) 

Reduction in 

(b) 

(%) 

Reference 74740 100.0 74631.1 100.0 70700 100.0 67639.2 100.0 , � 1 11379 15.2 12349.0 16.5 11909 16.8 11537.0 17.1 , � 2 16145 21.6 17203.4 23.1 17036 24.1 15492.7 22.9 , � 3 24123 32.3 25580.8 34.3 23505 33.2 22099.3 32.7 
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concentrating the magnetic flux to increase <478. In contrast, 

solution (iii) has extremely large air gaps to reduce </@% and also 

<478. Solutions (ii) realize a good balance; the magnetic flux 

concentration is relaxed with the wider magnetic core surfaces 

facing the air gap, and simultaneously, the average magnetic 

flux increases with small air gaps. 

The number of function calls for the FEM and the computing 

time are summarized in Table VI. To evaluate <478 and </@%, FE 

analysis must be repeated by changing the mechanical angle of 

the rotor. In this numerical example, we performed 15 FE 

computations for each individual. Therefore, in contrast to the 

numerical example in Section III, the computing time for NN 

training is much shorter than that of FE analysis. Therefore, the 

reduction ratio for the function calls is almost similar to that of 

the computing time. As a result, the computing time is reduced 

to approximately 25% and 35 % when , � 2, 3 by the proposed 

method. 

Although we do not consider constraints in the 

aforementioned optimization problems for simplicity, the 

proposed method can also be applied to constrained problems. 

To do so, we would employ constrained NSGA-II [3] or other 

optimization algorithms for constrained problems instead of 

NSGA used for the problems discussed above. In constrained 

NSGA-II, the individuals are classified into feasible and 

infeasible solutions to be ranked according to the fitness as well 

as feasibility. This process can easily be implemented to the 

proposed algorithm shown in Fig. 2 and 3. 

 

V. DISCUSSION 

We consider the advantages and disadvantages of the 

proposed online (adaptive) method compared with the offline 

(fixed) methods, which is summarized in Table VII. When 

using the offline method, the optimization results highly depend 

on the surrogate model constructed from the sampled data 

before the optimization process. Therefore, a sufficient number 

of sampling points and their uniform distributions are important 

for this approach. For this reason, the merit of this method 

reduces as the number of optimization variables "  increases 

owing to the curse of dimensionality. For example, when " �10, for example, we need approximately 6 × 10^  samplings, 

even assuming three levels for each variable. This may be 

unacceptable unless we have sufficient computing 

environments. Smaller samplings would be sufficient if the 

objective function was sufficiently flat. However, this is not 

always the case. Conversely, the offline optimization works fast 

because it does not require field computations during the 

optimization process. Moreover, the surrogate model can be 

reused for other objective functions and constraints. 

The proposed online method performs adaptive sampling 

during optimization. This means that the sampling can be 

concentrated in the promising region, unlike in the offline 

method. In principle, this offline method can be applied to 

larger problems. Indeed, from the numerical examples in 

Section IV, the proposed method is shown to be valid if " is 

smaller than 40. The surrogate model built in the optimization 

process can be reused for other objective and constraint 

functions. One of the weaknesses of this method is the moderate 

speed-up ratio in comparison with the offline method. 

VI. CONCLUSIONS 

In this study, the adaptive surrogate model was proposed as 

an effective solution to multi-objective optimization problems. 

The surrogate model is realized using an NN whose weights are 

updated during the optimization process. The proposed method 

allows adaptive sampling of promising individuals. It has been 

shown that NN works well if it is constructed from individuals 

with the highest rankings. The proposed method can accelerate 

optimization without loss of quality. The speed-up rate depends 

on the cost of the field computation; it increases with the 

computing cost. Those for magnetic shield and IPM motor 

Fig. 13.  Algorithm for single objective optimization with online method. 

 

Start

Generate initial population data and build training data by FEM

Construct surrogate model with 

Set 

Generate children ( ) with parents 

Remove parents from population

Classify individuals in into upper and lower groups with 

Evaluate individuals in upper group using FEM

In addition, evaluate individuals at lower group with probability 

*Remove individuals who are not evaluated from 

Build training data from 

Number of generations ?

End

Number of individuals in ?

Recover random individuals removed in *

and add them to so that reaches 

Number of upper individuals

?

Update surrogate model with 

to build 

No

Yes

No

No

Yes

Yes

Select highest fitness individuals from and return them to population

TABLE VII 

COMPARISON OF PROPOSED ON-LINE METHOD WITH OFF-LINE METHOD 

 On-line (proposed) Off-line 

Sampling Adaptive Uniform sampling 

before optimization* 

Typical problem size 10–50 10 

Speed up moderate high 

Reuse of surrogate 

model 

possible possible 

* Sufficient number of sampling is needed. The surrogate model and 

optimization results highly depend on the sampled data. 
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problems were approximately two to four, respectively. 
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APPENDIX 

The proposed adaptive surrogate model was applied to a 

single objective problem. The algorithm for the single-objective 

problem is illustrated in Fig. 13. For single-objective 

optimization, it seems sufficient to classify children into upper 

and lower groups. All individuals in the upper group and ./ �%� in the lower group were evaluated. We set .4 � 75 %, .( � 25 %, and ./ � 10 %. 

Here, we consider the IPM motor models mentioned in 

Section IV. We perform topology optimization, where the 

problem is defined as follows: 

 

'��� � � <478
<478/BC S 0.2 </@%

</@%/BC → min. (6) 

 

We adopt the real-coded GA realized by the JGG+REXstar 

[23] with step size 1.0. Each optimization was performed five 

times, where 2345 � 200. 

Table VIII summarizes the average and standard deviation of ', and Table IX includes the number of function calls for the 

FE analysis and computing time. It can be said that the results 

obtained by the adaptive surrogate model are slightly inferior to 

the reference results without the surrogate model in terms of 

average and standard deviation. Conversely, the adaptive 

method effectively reduces the number of function calls for the 

FE analysis and computing time. The speed-up ratio is 

approximately two for this problem; however,  it increases with 

the computing cost for the FE analysis.  
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