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Using Digital Annealer 

 
 Akito Maruo1,2, Takeshi Soeda1, and Hajime Igarashi2, IEEE Member 
 

1 FUJITSU LTD., Atsugi 243-0197, Japan, maruo.akito@fujitsu.com 
2 Graduate School of Information Science and Technology, Hokkaido University, Sapporo 060-0814, Japan 

 
Topology optimization has been formulated as a quadratic unconstrained binary optimization (QUBO) problem that can be solved by 

Digital Annealer (DA) and quantum computers, which can realize massive parallelization. It is shown that the 3D topology optimization 
(TO) of a permanent magnet, with 600 unknowns, is successfully performed by the DA with the aid of the finite element method for field 
computations. Moreover, it is shown to perform TO of a magnetic core, with 758 unknowns, in such a way that the QUBO and field 
problems are iteratively solved to determine the optimal solution wherein the magnetic field and optimal core structure are self-
consistent. 
 

Index Terms— Design optimization, Digital Annealer, Magnetic shield, Quadratic unconstrained binary optimization, Topology 
optimization. 
 

I. INTRODUCTION 
OPOLOGY optimization (TO) has attracted significant 
attention in recent years because it can provide novel 

machine structures with outstanding performance. TO does not 
require the setting of shape parameters in contrast to the 
conventional parameter optimization. TO can be classified into 
two types of methods: (i) approaches, such as the density 
method and level set method, based on sensitivity computation, 
and (ii) the on-off method, which determines the binary states 
of small cells using stochastic optimization algorithms. In this 
study, we employ the latter method because it can perform a 
global search without performing sensitivity computations. 
However, the on-off method requires a heavier computational 
burden than (i). This drawback can be alleviated by using 
parallel computations.  

In this study, we show that TO can be formulated as a 
quadratic unconstrained binary optimization (QUBO) problem, 
which can be solved by Fujitsu Quantum-inspired Computing 
Digital AnnealerTM (DA) [1-5] and quantum computers, whose 
performance is expected to rapidly increase. It is expected that 
the proposed method can solve a large-scale TO problems 
which cannot be solved effectively by the conventional 
methods. Using DA, we can solve fully connected QUBO 
problems using an algorithm based on simulated annealing 
(SA) with massive parallel computations. The authors have 
shown that DA successfully optimizes the two-dimensional 
structure of a Halbach magnet array [4]. In this study, we extend 
this method to solve TO for a permanent magnet (PM) with 
assumed magnetization. Moreover, we extend the method to 
apply TO to the design of magnetic cores, whose magnetization 
is determined by field computations.  

It is necessary to formulate the problems in QUBO forms for 

ease of use in DA as well as quantum computing, whose 
performance is expected to surpass that of Neumann-type 
computers. The scientific novelty of this study is that TO is 
initially formulated as a QUBO problem for DA and quantum 
computing. 

II. TOPOLOGY OPTIMIZATION OF PERMANENT MAGNET 

 Optimization Problem 
We consider the TO of the two-dimensional PM shown in 

Fig. 1. The purpose of this problem is to determine the PM 
structure such that the magnetic flux density 𝐵𝐵𝑦𝑦

(𝑗𝑗) at points 𝑃𝑃𝑗𝑗, 
𝑗𝑗 = 1,2, … ,𝑁𝑁𝑝𝑝,  on the observation line matches the 
predetermined value. The PM region is divided into small PMs 
for the on-off method. The binary variable 𝑠𝑠𝑖𝑖 ∈ {0,1} denotes 
the material attribute of the i-th element in the PM region; the 
magnet and air correspond to states 𝑠𝑠𝑖𝑖 = 1, 0, respectively. We 
determine the PM state vector 𝒔𝒔  such that 𝐵𝐵𝑦𝑦  along the 
observation line becomes sinusoidal. The small PMs are 
assumed as magnetized parallel to the y-axis, as shown in Fig. 
1. We minimize the squared error between 𝐵𝐵𝑦𝑦

(𝑗𝑗) generated by 
the PMs and value 𝐵𝐵0

(𝑗𝑗) defined by 
 

𝐹𝐹 = ��𝐵𝐵𝑦𝑦
(𝑗𝑗) − 𝐵𝐵0

(𝑗𝑗)�
2

𝑁𝑁𝑝𝑝

𝑗𝑗=1

= ���𝐵𝐵𝑦𝑦
(𝑖𝑖,𝑗𝑗)𝑠𝑠𝑖𝑖

𝑁𝑁𝑚𝑚

𝑖𝑖=1

− 𝐵𝐵0
(𝑗𝑗)�

2

 

𝑁𝑁𝑝𝑝

𝑗𝑗=1

 (1) 

 
where 𝑁𝑁𝑚𝑚  and 𝐵𝐵𝑦𝑦

(𝑖𝑖,𝑗𝑗)  denote the number of small PMs and 
magnetic flux density in 𝑦𝑦 -direction generated by the i-th 
magnet at 𝑃𝑃𝑗𝑗, respectively. The coefficients 𝐵𝐵𝑦𝑦

(𝑖𝑖,𝑗𝑗) are computed 
using Biot–Savart’s law [4] and given to DA. Given that 𝐵𝐵𝑦𝑦

(𝑖𝑖,𝑗𝑗) 
are the linear functions of 𝑠𝑠𝑗𝑗, (1) can be represented by a QUBO 
problem, which is solved by DA to determine 𝑠𝑠𝑗𝑗. Furthermore, 
the optimal PM shape is expected to be symmetric because we 
assume a sinusoidal magnetic field distribution in this problem. 
Hence, variables 𝑠𝑠𝑖𝑖  of QUBO are assumed to exhibit a 

T 
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symmetric distribution along the x-axis.  
The on-off method can lead to checkerboard-like shapes that 

cannot be manufactured [6]. Therefore, we introduce a 
regularization term for Equation (1). Specifically, we impose 
the linkage constraints used in the game of Reversi. The 
concatenation constraints for vertical, horizontal, and diagonals 
(\) and (/) are as follows: 
 

𝐶𝐶𝑤𝑤 = � ��𝑠𝑠(𝑖𝑖+𝑗𝑗×𝑁𝑁𝑥𝑥)−1 − 𝑠𝑠(𝑖𝑖+𝑗𝑗×𝑁𝑁𝑥𝑥)�
𝑁𝑁𝑥𝑥−1

𝑖𝑖=2

𝑁𝑁𝑦𝑦

𝑗𝑗=1

× �𝑠𝑠(𝑖𝑖+𝑗𝑗×𝑁𝑁𝑥𝑥)+1 − 𝑠𝑠(𝑖𝑖+𝑗𝑗×𝑁𝑁𝑥𝑥)� 

𝐶𝐶ℎ = � ��𝑠𝑠(𝑖𝑖+𝑗𝑗×𝑁𝑁𝑥𝑥)−𝑁𝑁𝑥𝑥 − 𝑠𝑠(𝑖𝑖+𝑗𝑗×𝑁𝑁𝑥𝑥)�
𝑁𝑁𝑥𝑥

𝑖𝑖=1

𝑁𝑁𝑦𝑦−1

𝑗𝑗=2

× �𝑠𝑠(𝑖𝑖+𝑗𝑗×𝑁𝑁𝑥𝑥)+𝑁𝑁𝑥𝑥 − 𝑠𝑠(𝑖𝑖+𝑗𝑗×𝑁𝑁𝑥𝑥)� 

𝐶𝐶𝑏𝑏 = � ��𝑠𝑠(𝑖𝑖+𝑗𝑗×𝑁𝑁𝑥𝑥)−𝑁𝑁𝑥𝑥−1 − 𝑠𝑠(𝑖𝑖+𝑗𝑗×𝑁𝑁𝑥𝑥)�
𝑁𝑁𝑥𝑥−1

𝑖𝑖=2

𝑁𝑁𝑦𝑦−1

𝑗𝑗=2

× �𝑠𝑠(𝑖𝑖+𝑗𝑗×𝑁𝑁𝑥𝑥)+𝑁𝑁𝑥𝑥+1 − 𝑠𝑠(𝑖𝑖+𝑗𝑗×𝑁𝑁𝑥𝑥)� 

𝐶𝐶𝑠𝑠 = � ��𝑠𝑠(𝑖𝑖+𝑗𝑗×𝑁𝑁𝑥𝑥)−𝑁𝑁𝑥𝑥+1 − 𝑠𝑠(𝑖𝑖+𝑗𝑗×𝑁𝑁𝑥𝑥)�
𝑁𝑁𝑥𝑥−1

𝑖𝑖=2

𝑁𝑁𝑦𝑦−1

𝑗𝑗=2

× �𝑠𝑠(𝑖𝑖+𝑗𝑗×𝑁𝑁𝑥𝑥)+𝑁𝑁𝑥𝑥−1 − 𝑠𝑠(𝑖𝑖+𝑗𝑗×𝑁𝑁𝑥𝑥)� 

(2) 

 
where 𝑁𝑁𝑥𝑥  and 𝑁𝑁𝑦𝑦  denote the numbers of small PMs in the x- 
and y-axes, respectively. The aforementioned constraint terms, 
which are positive unless the constraint is satisfied and zero if 
it is satisfied, are added to (1). 
 
𝐹𝐹′ = 𝐹𝐹 + 𝛼𝛼𝑤𝑤𝐶𝐶𝑤𝑤 + 𝛼𝛼ℎ𝐶𝐶ℎ + 𝛼𝛼𝑏𝑏𝐶𝐶𝑏𝑏 + 𝛼𝛼𝑠𝑠𝐶𝐶𝑠𝑠 → min. (3) 

 
where, 𝛼𝛼𝑤𝑤 ,𝛼𝛼ℎ,𝛼𝛼𝑏𝑏 ,𝛼𝛼𝑠𝑠 denote the weight coefficients. 

Next, we consider the TO of a three-dimensional PM where 
the two-dimensional structure is extruded along the z-axis. 
Furthermore, symmetry is considered in the z-axis direction as 
shown in Fig. 2. We consider a PM consisting of four layers, 
where the uppermost and lower-most layers and the middle two 
layers have the same structures. Given that the magnetic field 
varies along the z-axis, the observation lines 𝐿𝐿𝑖𝑖 are placed at the 
center of each layer. The magnet shape is optimized such that 
the total error along the observation lines is minimized.   

 Optimization Results 
TO is applied to the two-dimensional PM as shown in Fig.1. 

We solve TO problem (3) using DA, where 𝑁𝑁𝑥𝑥,  𝑁𝑁𝑦𝑦 , and 𝑁𝑁𝑝𝑝 are 
set to 40, 20, and 21, respectively. The PM is subdivided into 
small square PMs with a side length of 10 mm, and the distance 
between the magnet region and observation line is set to 10 mm. 
Fig. 3 shows the optimization results. As shown in Fig. 3 (b), 
the desired magnetic flux density is generated by the optimized 
PM. The maximum error is Δ𝐵𝐵𝑦𝑦 = 3.24 mT. The optimized 
shape has a fan-shaped spread toward the observation line. 
Moreover, it has a smooth boundary owing to concatenation 
constraints. 

TO is then applied to the three-dimensional PM shown in 
Fig.2. We solve (3) using DA, where 𝑁𝑁𝑥𝑥 ,  𝑁𝑁𝑦𝑦 , and 𝑁𝑁𝑧𝑧 are set as 
30, 20, and 4, respectively. We have 600 unknowns in total. We 
place 16 sampling points along one observation line such that 
the total number of sampling points 𝑁𝑁𝑝𝑝 is 64. Fig. 4 shows the 
optimization results. The upper and lower most layers have a 
fan-shaped structure similar to that of the two-dimensional PM. 
The middle layers have small island PMs that contribute to the 
uniformity of 𝐵𝐵𝑦𝑦 in the z-axis direction. The resulting magnetic 
flux density is in good agreement with the predetermined flux 
density. The maximum error is Δ𝐵𝐵𝑦𝑦 = 7.92 mT. 

III. TOPOLOGY OPTIMIZATION OF MAGNETIC CORE 
The method described in Section II is extended to perform 

the TO of a magnetic core. We use the finite element method 
(FEM) for magnetostatic field computation, where the cells in 
the design region correspond to the finite elements. The 
material attribute of the cell is identified as a magnetic core (air) 
if  𝑠𝑠𝑖𝑖 = 1 (0). The difference between the problems for the PM 
and magnetic core is that the magnetization 𝑴𝑴𝑗𝑗 , 𝑗𝑗 = 1,2, …  in 
the cells must be determined in the latter. In the first stage, 
assuming that 𝑠𝑠𝑖𝑖 = 1  in all the cells in the design region, we 
compute the magnetic flux density distribution using the FEM. 

  
Fig. 1.  Analysis object. Fig. 2.  3D analysis model. 

  

  
(a) (b) 

Fig. 3 . 2-D Optimization results (40× 20× 1 model). (a) Shape. (b) 
Magnitude of the magnetic flux density along the observation line. 
 

  
(a) (b) 

  
(c) (d) 

Fig. 4. 3-D Optimization results (30×20×4 model). (a) Layer 1, Layer 4. 
(b) Layer 2, Layer 3. (c) Overall view. (d) Magnitude of the magnetic flux 
density along the observation line. 
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Next, 𝑴𝑴𝑗𝑗  in the design region is obtained from the resultant 
magnetic flux density distribution. We then compute the 
magnetic flux density generated by 𝑴𝑴𝑗𝑗 using Biot–Savart’s law. 
Given that DA can only deal with QUBO forms, we convert the 
topology optimization problem to QUBO. The binary variable 
𝑠𝑠𝑖𝑖  is determined by solving the QUBO using the DA. 
Furthermore, to suppress the complexity of the material 
distribution, the distribution is smoothed by a spatial filter, 
where the density is weighted with distance [7]. A flowchart of 
the proposed method is presented in Fig. 5. 

Once 𝑴𝑴𝑗𝑗 in the cells is assumed, 𝑠𝑠𝑗𝑗 is determined using the 
DA to minimize the cost function. After determining 𝑠𝑠𝑗𝑗 , we 
update the magnetization by performing FE computation of the 
magnetic field with a conventional computer. This process is 
repeated until convergence. 

 Optimization Problem 
We consider the TO of a two-dimensional magnetic shielding 

system shown in Fig. 6, where the design region is divided into 
758 elements. The aim of this problem is to obtain a magnetic 
shield configuration that minimizes the magnetic flux density 
in the target region with a minimal amount of magnetic 
material. Fig. 7 shows the BH curve of the magnetic material. 

 Determination of Magnetization 
The magnetization vector 𝑴𝑴𝑗𝑗  in the cell, where 𝑠𝑠𝑗𝑗 = 1 , is 

obtained from the magnetic flux density distribution, 𝑩𝑩𝑗𝑗 , 
computed from the FEM analysis as follows: 
 

𝑴𝑴𝑗𝑗 =
𝜇𝜇𝑟𝑟 − 1
𝜇𝜇0𝜇𝜇𝑟𝑟

𝑩𝑩𝑗𝑗 (4) 

where 𝜇𝜇0  and 𝜇𝜇𝑟𝑟  denote the permeability of air and relative 
permeability of the magnetic core, respectively. In the 
optimization process, we assign 𝑴𝑴𝑗𝑗 to all elements in the design 
region. If the element is air (𝑠𝑠𝑖𝑖 = 0), we assume the newest 
value for 𝑴𝑴𝑗𝑗 computed in the previous steps. 

 QUBO Formulation 
The magnetic flux density 𝑩𝑩𝑘𝑘 of the k-th element in the target 

region is computed using Biot–Savart’s law [8], where the field 
source is as follows: 

 

𝑩𝑩𝑘𝑘 =
𝜇𝜇0
2𝜋𝜋

�𝑠𝑠𝑖𝑖 �2
𝑴𝑴𝑖𝑖 ⋅ 𝑹𝑹𝑖𝑖,𝑘𝑘
𝑹𝑹𝑖𝑖,𝑘𝑘4

𝑹𝑹𝑖𝑖,𝑘𝑘 −
𝑴𝑴𝑖𝑖

𝑹𝑹𝑖𝑖, 𝑘𝑘2
�𝛥𝛥𝑆𝑆𝑖𝑖

𝑁𝑁𝐷𝐷

𝑖𝑖=1

+
𝜇𝜇0
2𝜋𝜋

�
𝑱𝑱𝑗𝑗 × 𝑹𝑹𝑗𝑗,𝑘𝑘

𝑹𝑹𝑗𝑗,𝑘𝑘
2 𝛥𝛥𝑆𝑆𝑗𝑗

𝑁𝑁𝐶𝐶

𝑗𝑗=1

 

(5) 

 
where 𝑹𝑹, 𝑱𝑱, and 𝛥𝛥𝑆𝑆 denote the position vector, current density, 
and element area, respectively. Moreover, 𝑁𝑁𝐷𝐷 and 𝑁𝑁𝐶𝐶  denote 
the total number of elements in the design and coil regions, 
and 𝑖𝑖, 𝑗𝑗, 𝑘𝑘 denote the indexes relevant to the elements in the 
design, coil, and target regions, respectively. The optimization 
problem of the magnetic shield can be expressed in the 
following QUBO form: 
 

𝐸𝐸 =
𝛼𝛼
𝐸𝐸1
�(𝑩𝑩𝑘𝑘𝛥𝛥𝑆𝑆𝑘𝑘)2
𝑁𝑁𝑇𝑇

𝑘𝑘=1

+
𝛽𝛽
𝐸𝐸2
�𝛥𝛥𝑆𝑆𝑖𝑖𝑠𝑠𝑖𝑖

𝑁𝑁𝐷𝐷

𝑖𝑖=1

→ min. (6) 

 

where 𝐸𝐸1 , 𝐸𝐸2 , and 𝑁𝑁𝑇𝑇  denote the square of the magnetic flux 
density in the target region without shielding, area of the design 
region, and number of elements in the target region, 
respectively. Moreover, 𝛼𝛼 and 𝛽𝛽 denote weighting coefficients. 
The first and second terms in (6) denote the normalized 
magnitude of the magnetic flux density in the target region and 
total amount of magnetic shielding. When evaluating 𝐸𝐸 in (6) 
using DA, the coefficients of 𝑠𝑠𝑖𝑖  are computed before the 
optimization using a conventional computer and provided to the 
DA. 

 Optimization Results 
By solving (6) using DA, we optimize the magnetic shield 

shape, where 𝛼𝛼 and 𝛽𝛽  are set to 0.95 and 0.05, respectively. 
Moreover, the filtering radius 𝑟𝑟𝑚𝑚𝑖𝑖𝑚𝑚  was set to 7 [mm]. Fig. 8 
shows the reference and optimization shape, where the area of 
the magnetic material is 1882 [mm2] in both shapes. The 
optimal system has a small magnetic island near the coil, which 
acts as an outer shield. The width of the inner shield is thin near 
the symmetric axis and becomes thicker on the right side. This 
structure increases the magnetic resistance in the central region 
to guide the magnetic flux to the outer side with a lower 
magnetic resistance. Hence, the average magnetic flux density 
in the target region is reduced from 5.91 × 10−2 [mT] in (a) to 

 
Fig. 5. Flowchart of the proposed method. 
 

  
(a) (b) 

Fig. 6.  Optimization model. (a) Whole. (b) Divided elements and size. 
 

 
Fig. 7.  BH curve of the magnetic material. 
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5.42 × 10−2[mT] in (b) without an increase in the amount of 
magnetic material. Fig. 9 shows the change in the value of 𝐸𝐸 
during the optimization using DA by the iterative process in 
Fig. 5. It converges sufficiently after 19 iterations. Moreover, 
FE computations are required to evaluate the final shape. 
Hence, 20 FE computations are performed for this optimization. 

We compare the performance of the proposed method with 
that of the on-off method based on a Gaussian network (NGnet). 
The latter has been shown to be effective in the topology 
optimization of electronic devices such as motors [9]. In this 
method, we employ a shape function 𝑦𝑦(𝒙𝒙,𝒘𝒘) = 
∑ 𝑤𝑤𝑚𝑚�𝐺𝐺𝑚𝑚(𝒙𝒙)/∑ 𝐺𝐺𝑚𝑚(𝒙𝒙)𝑁𝑁𝐺𝐺

𝑚𝑚=1 �𝑁𝑁𝐺𝐺
𝑚𝑚=1 for determining the material 

distribution in the design region is set, where 𝑤𝑤𝑚𝑚,𝒙𝒙 and 𝐺𝐺𝑚𝑚(𝑥𝑥) 
denote the weighting coefficients, position vector and the 
Gaussian function, respectively. From the value of 𝑦𝑦 , we 
determine the material distribution in the design region as 
follows: 𝑠𝑠𝑖𝑖 = 1 , if 𝑦𝑦(𝑥𝑥𝑖𝑖 ,𝑤𝑤) ≥ 0 , 𝑠𝑠𝑖𝑖 = 0  otherwise. Using a 
conventional computer, we determined the unknown 

parameters 𝒘𝒘 by solving the optimization problem defined by 
𝐹𝐹1 = 𝐵𝐵𝑇𝑇_𝑎𝑎𝑎𝑎𝑎𝑎(𝒘𝒘) → min. ,𝐹𝐹2 = 𝑆𝑆𝑚𝑚𝑎𝑎𝑚𝑚(𝒘𝒘) → min.,  using 
NSGA-II [10], where 𝐵𝐵𝑇𝑇_𝑎𝑎𝑎𝑎𝑎𝑎  and 𝑆𝑆𝑚𝑚𝑎𝑎𝑚𝑚  denote the average 
magnetic flux density in the target region and area of the 
magnetic material, respectively. The numbers of generations 
and individuals are set to 100 and 120, respectively. The 
crossover rate of NSGA-II is set to 0.9. The optimization results 
are shown in Fig. 10, where 96 Gaussians are placed as shown 
in Fig. 11 (a). We can find in Fig. 10 that 𝐵𝐵𝑇𝑇_𝑎𝑎𝑎𝑎𝑎𝑎 and 𝑆𝑆𝑚𝑚𝑎𝑎𝑚𝑚 are 
in a trade-off relationship. As shown in Fig. 10, the solution of 
the proposed method is located on the Pareto front obtained by 
the NGnet. Fig. 11 (b) shows the shape of the solution on the 
Pareto front in Fig. 10, where we observe features similar to 
those in Fig. 8. The NGnet method requires 12,000 FE 
computations, whereas the proposed method only needs 20 FE 
computations. Although the problem size that is manageable for 
DA and quantum computers is still significantly smaller than 
that for conventional computers, current intensive research in 
this field can lead to significant improvements. Hence, the 
proposed method can be effectively used to solve engineering 
problems in the aforementioned conditions. 

IV. CONCLUSIONS 
We proposed the QUBO formulation for the TO of PM and 

magnetic core for DA. Furthermore, the proposed formulation 
is valid for quantum computing [11]. The predetermined 
distribution of magnetic induction was successfully generated 
by the optimized PM. Moreover, the optimal magnetic 
shielding structure was obtained by the proposed method, 
where the magnetization and core topology were iteratively 
determined. 
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Fig. 8.  Reference and Optimized shapes. (a) Reference. (b) Optimized. 
 

 
Fig. 9.  Variation in E during optimization process. 
 

  
(a) (b) 

Fig. 10 .  Optimization results. (a) Whole. (b) Part. 0.04 ≤ 𝐵𝐵𝑇𝑇𝑎𝑎𝑎𝑎𝑎𝑎 ≤
0.08, 1000 ≤  𝑆𝑆𝑚𝑚𝑎𝑎𝑚𝑚 ≤ 3000. 
 

  
(a) (b) 

Fig. 11. Optimized result of on-off method based on NGnet. 𝐵𝐵𝑇𝑇_𝑎𝑎𝑎𝑎𝑎𝑎 =
5.85 × 10−2[mT] . 𝑆𝑆𝑚𝑚𝑎𝑎𝑚𝑚 = 1881[mm2].   (a)  Contours of  Gaussian 
functions. (b) Optimized shape and Flux lines. 
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