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Prediction of Current-dependent Motor Torque Characteristics Using
Deep Learning for Topology Optimization

Taiga Aoyagi1, Yoshitsugu Otomo1, Hajime Igarashi1, Hidenori Sasaki2, Yuki Hidaka2, and Hideaki Arita2
1Graduate School of Information Science and Technology, Hokkaido University, Sapporo 060-0814, Japan

2Advanced Technology Research and Development Center, Mitsubishi Electric Corporation, Amagasaki 661-8661, Japan

In this study, we propose a fast topology optimization method based on a deep neural network (DNN) that predicts the current-
dependent motor torque characteristics using its cross-sectional image. The trained DNN is shown to provide the current condition that
provides the maximum torque under the assumed motor control method. The proposed method helps perform topology optimization
with a reduced number of field computations while maintaining a high search capability.

Index Terms—Convolutional neural network (CNNs), deep learning (DL), permanent magnet motor, topology optimization.

I. INTRODUCTION

S INCE RECENTLY, it is being expected that the zero-
emission vehicles rapidly spread throughout the world.

Accordingly, the development of high-performance electrical
motors for these vehicles has become indispensable. Topology
optimization (TO) is proven to be effective especially for the
initial design stages [1], [2]. Moreover, it does not require the
design parameters to be set. The TO method in which the ma-
chine structure is represented by the Gaussian basis functions
is shown to be effective for motor optimization [3]. In this
method, global search is performed using a population-based
method, such as genetic algorithm or CMAES. This approach
inevitably involves repeated field computations. To reduce the
computing cost, a trained convolutional neural network (CNN)
is adopted for screening the individuals; only those individuals
that are given a high score by the CNN are evaluated using
finite element method (FEM) [4]. The trained CNN predicts
the torque characteristics from the motor cross-sectional image.
This method is proven to reduce the computing cost of TO
without compromising the search capability. However, the
current amplitude and phase are assumed constant in this
method even though they vary according to the motor control.
It has been shown that the d and q axis inductances, which are
assumed to be constants, can be predicted using CNN from the
cross-sectional image of an IPM motor [5]. This method allows
us to find the current condition that maximizes the torque.
However, because the d and q axis inductances actually depend
on the current conditions, this method would be inaccurate in
cases where such dependence is significant.

In this paper, we propose a fast TO method based on
the CNN which predicts the current-dependent motor torque
characteristics, which are represented by a curvilinear surface,
using its cross-sectional image. We can obtain the maximum
torque condition from this surface under a given motor control
condition such as MTPA (maximum torque per ampere), and
MTPV (maximum torque er voltage). To verify the effective-
ness of the present TO, we optimized the rotor shape of PM
motors with I-shaped and V-shaped magnets so that the average
torque is maximized while the torque ripple is suppressed as
small as possible.

II. PROPOSED METHOD
A. Topology optimization method

The material distribution in the design region of a permanent
magnet rotor is determined from the output of a Normalized
Gaussian network (NGnet) [3] which is given by

f(x) =

N∑
i=1

wibi(x) (1)

bi(x) = Gi(x)/

N∑
k=1

Gk(x) (2)

where, x, Gk(x), and wi indicate the position vector, Gaussian
basis function, and weighted coefficients, respectively. The
material attribute Ae of element e in the design region is
determined such that Ae = iron(f >= 0), Ae = air(f < 0).
In the present TO, the weighting coefficient w is determined
using the real-coded genetic algorithm named AREX+JGG [6]
to minimize the cost function.

B. Prediction of torque characteristics using a CNN

The optimization models are shown in Fig. 1 and the
specifications of these models are summarized in Table 1. The

(a) (b)

Fig. 1. Optimization models. (a) I-shaped magnet, four poles, 24 slots. (b)
V-shaped magnet, eight poles, 48 slots.



TABLE I.
EQUIPMENT SETTINGS FOR THE OPTIMIZATION MODELS

Property Unit I-shaped model V-shaped model
Coil turns 30 20

Core material 50JN400 50JN400
Coil resistance Ω 1 1

Thickness mm 100 100
Rotating speed rpm 1000 1000

Driving frequency Hz 100/3 200/3
Magnetization of magnet T 0.8 0.8

(a) (b)

Fig. 2. Torque distribution on dq current space. (a): Sampling points and
smoothed surface. (b): Sampling points and approximated surface.

(a) (b)

Fig. 3. Squared flux linkage distribution on dq current space. (a): Sampling
points and smoothed surface. (b): Sampling points and approximated surface.

typical torque surface of the IPM motor of interest is shown
in Fig. 2(a). We expressed the torque surface as a quadratic
polynomial given by:

T (id, iq) = β0i
2
d + β1i

2
q + β2idiq + β3id + β4iq + β5 (3)

where, id and iq represent the d and q-axis currents, respec-
tively. As shown in Fig. 2(b), the current characteristics are
sampled at 100 points on a grid in the dq-axis current space,
and the parameters are determined by the least-squares method.
The parameters from β0 to β5 are predicted by CNN from the
input motor cross-sectional image. Once these parameters are
obtained, the currents that maximize the torque for the MTPA
control can be estimated. To determine the currents under the
MTPV control, we need to evaluate the induced voltage from
the magnetic flux that interlinks with the coils. We considered
the squared flux linkage Ψ2, which can be represented by a
quadratic polynomial as follows:

Ψ2(id, iq) = γ0i
2
d + γ1i

2
q + γ2id + γ3 (4)

The distribution of Ψ2 for a typical IPM motor is shown
in Fig. 3(a). The least-square interpolation is shown in Fig.
3(b). The parameters from γ0 to γ3 are predicted by CNN
as well as βi(i = 0, · · · , 5). It is remarked that the order of

Fig. 4. Flow diagram for estimating the optimal current condition.

Fig. 5. CNN flow diagram for estimating β and γ.

polynomial for the interpolation would be higher for a larger
current value to consider the effect of deep saturation, whereas
interpolation (4) appears to be sufficiently accurate for current
of up to 70 A, which is assumed to be the maximum current
in our optimization. As shown in Fig. 4, we constructed two
types of CNNs: one to estimate the flux linkage parameters
γi(i = 0, · · · , 3) and the other to estimate the torque parameters
βi(i = 0, · · · , 5).

To predict these parameters, we utilized a CNN that was
constructed using VGG16 [7], as shown in Fig. 5. Further,
we trained it using Image-Net before training it using the
motor image data. We generated IPM motors with different flux
barriers by performing a preliminary topology optimization
to obtain 12,900 samples for each of the I-shaped and V-
shaped models. These data samples were further divided into
9,030 and 3,870, which were used for training and testing, re-
spectively. Moreover, we stored the corresponding parameters
β(= {β0, · · · , β5}) and γ(= {γ0, · · · , γ3}) to train CNN.

III. NUMERICAL RESULTS

First, we considered the prediction accuracy of CNNs. Fig.
6 shows the correlation between the observed and predicted
values of the selected polynomial coefficients for I-shaped
and V-shaped models. The correlation coefficient r, mean
absolute error (MAE) and root mean square error (RMSE)
for all the coefficients are summarized in Table 2. Although
the overall prediction accuracy appears to be sufficient for the
optimization, the r values for β0 and γ0 are smaller than 0.9.
We observed that these correlations are relatively weaker due to
the randomly distributed iron cores of the motors. Because this
finding appears in the first generation of the genetic algorithm
used for the optimization it would give a limited effect on the
optimization. We performed TO using the trained CNN for
both models. The optimization problem is defined by

F (w) = −1.2
Tavg(w)

T ref
avg

+ 0.1
Trip(w)

T ref
rip

→ min (5)



(a) (b)

(c) (d)

Fig. 6. Correlation of coefficients obtained from FEM and CNN for each
model and parameters. (a) V-shaped model γ3 r = 0.984. (b) V-shaped
model β2 r = 0.945. (c) I-shaped model γ1 r = 0.985. (d) I-shaped model
β0 r = 0.956.

TABLE II.
STATISTICS OF ESTIMATION ERROR

parameter Model r MAE RMSE
γ0 V-shaped model 0.964 0.134 0.289
γ1 V-shaped model 0.971 0.128 0.292
γ2 V-shaped model 0.974 0.111 0.264
γ3 V-shaped model 0.984 0.076 0.206
β0 V-shaped model 0.884 0.142 0.450
β1 V-shaped model 0.978 0.0864 0.222
β2 V-shaped model 0.945 0.0972 0.312
β3 V-shaped model 0.856 0.135 0.489
β4 V-shaped model 0.982 0.0847 0.213
β5 V-shaped model 0.900 0.171 0.466
γ0 I-shaped model 0.848 0.144 0.765
γ1 I-shaped model 0.985 0.0606 0.207
γ2 I-shaped model 0.930 0.109 0.611
γ3 I-shaped model 0.983 0.0643 0.219
β0 I-shaped model 0.956 0.114 0.315
β1 I-shaped model 0.984 0.0949 0.190
β2 I-shaped model 0.983 0.0954 0.197
β3 I-shaped model 0.971 0.100 0.260
β4 I-shaped model 0.985 0.0893 0.190
β5 I-shaped model 0.980 0.101 0.216

where, Tavg(w) and Trip(w) denote the average torque and
torque ripple, respectively, and the quantities with the index
“ ref”represent the values for the reference motor. Moreover,
w denotes the vector composed of the weighting coefficients to
the Gaussian basis functions used for the topology optimization
[3]. We then used genetic algorithm to find w that mini-
mized F . We performed three optimizations: the conventional
method, where the current condition was not altered [3], and
the optimizations under the MTPA and MTPV controls. The

Fig. 7. Estimated current phase angle during optimization in MTPA for
V-shaped magnet model. The final state is (id, iq) : (−17.8, 41.3)A.

Fig. 8. Estimated current phase angle during optimization in MTPA for
I-shaped magnet model. The final state is (id, iq) : (−19.1, 29.3)A.

current amplitude I and phase angle β in the conventional
method were set to (id, iq) : (−15.4, 42.3)A for the V-shaped
model and (id, iq) : (−17.5, 30.3)A for the D-shaped model.
During the optimization under the MTPA control, the phase
angles β computed by CNN for the individuals changed for
both models as generations proceeded, as plotted in Figs. 7
and 8. In the initial populations, the β values exhibited wide
distribution, whereas, they converged to a value between 20°
and 25° for MTPA, and to a value between 31° and 34°
for MPTA. Figs. 9 and 10 show the evolution of the d−
and q− current components evaluated by CNN during the
optimization of both models under the MTPV control. We
maintained constant (id, iq) for the five first generations. In
Figs. 9 and 10, it can be seen that the current state converges
to approximately (id, iq) : (−35, 51)A for the V-shaped model
and (id, iq) : (−19, 38)A for the I-shaped model. The assumed
current states in the conventional method are shown in Figs. 10
and 11 for the reference. Figs. 11 and 12 show the optimized
shapes obtained by the conventional method [3], in which
the current conditions are constant, and those obtained by the
proposed method, respectively. Comparing the results in (a)
with that in (b), although the average torques are approximately
equal, the torque ripple is improved by the proposed method
considering MTPA. Moreover, because the final current states
of MTPA happen to be in the vicinity of those assumed in
the conventional method, there is no significant difference in
shapes depicted in Fig. 12(a) and (b). In contrast, the results
obtained assuming the MTPV control, as shown in Fig. 12(c),
are different from those in (a) and (b). Furthermore, because the
converged current amplitude resulted from the MTPV control
is greater than the that obtained by conventional approach,



Tavg obtained using MTPV is greater than that attained using
the other two cases. Therefore, it can be said that the motor
obtained under the MTPV control is reluctance-torque oriented.

For the individuals generated in the optimization process,
searching for the optimal current conditions by changing
(id, iq) using FEM would require a huge computational cost
[8]. In comparison, the computational cost required by the
proposed method is approximately 80% lower than that in
the case of conventional method based on the search for the
optimal current condition on the grid of 10×10 nodes in the id
- iq space. When using CPU: Intel(R) Xeon(R) E5- 2637v4×2
(Clock: 3.5 GHz, cores: 4, threads: 16, 64 GB RAM) in our
computing environment, the computing times per generation
observed for the conventional and the proposed methods were
1302 s and 288 s, respectively. In addition to this computing
time, the proposed method requires additional computing time
to construct CNN for optimization, that is, the preliminary
optimization for constructing training data and training the
CNN. It took 376 minutes to build the training data and
695 minutes to train the CNN. Even after considering these
additional time durations, the proposed method works 30%
faster than the conventional method. Moreover, once the CNN
is trained, it works swiftly for the optimization problems with
different weighting coefficients in the cost function (5) and
with different constraints.

IV. CONCLUSION

In this paper, we have proposed topology optimization based
on the deep neural network that predicts the torque and induced
voltage dependent on the current amplitude and phase. Using
the proposed method, we can find the optimal shape of the
rotor and simultaneously the optimal current condition under
MTPA and MTPV. The proposed method can also apply to
the flux weakening control. The proposed method reduces the
computing cost by 80% in comparison with the conventional
method with search for optimal current condition.
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Fig. 9. Evolution of d− and q− current components for I-shaped motor
under MTPV control. The number represent the generation of genetic
algorithm (same in Fig.10).

Fig. 10. Evolution of d− and q− current components for V-shaped motor
under MTPV control.

(a) Conventional method (b) Proposed method MTPA (c) Proposed method MTPV

Fig. 11. Optimized V-shaped magnet model shapes.
(a):Tavg : 33.89(N/m), Trip : 0.520 at (id, iq) : (−15.4, 42.3)A.
(b):Tavg : 33.91(N/m), Trip : 0.119 at (id, iq) : (−17.8, 41.3)A.
(c):Tavg : 49.30(N/m), Trip : 0.890 at (id, iq) : (−34.6, 51.5)A.

(a) Conventional method (b) Proposed method MTPA (c) Proposed method MTPV

Fig. 12. Optimized I-shaped magnet model shapes.
(a):Tavg : 14.52(N/m), Trip : 0.230 at (id, iq) : (−17.5, 30.3)A.
(b):Tavg : 14.93(N/m), Trip : 0.219 at (id, iq) : (−19.1, 29.3)A.
(c):Tavg : 25.33(N/m), Trip : 0.471 at (id, iq) : (−19.4, 38.3)A.
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